首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The degree of emulsification, measured as surface area of oil generated, was studied. The effect of interfacial tension, volume fraction of oil, and power per unit volume on the Sauter mean diameter of the oil drops was determined in an airlift system with motionless mixers. A mathematical expression to predict the Sauter mean diameter was developed using regression techniques. From this equation another equation, which will predict the surface area of oil in terms of the same variables, was derived. The effects of water air surface tension and power per unit volume on the gas hold-up were obtained using similar techniques. The results show that the interfacial tension and the surface tension are important variables when hydrocarbon fermentations are carried out in airlift systems.  相似文献   

2.
The mean sizes and size distributions of air bubbles and viscous castor oil drops were studied in a salt-rich aqueous solution (medium), first separately, and then simultaneously as a three-phase system. The dispersion was created in a 150-mm-diameter stirred tank equipped with a Rushton turbine, and the sizes were measured using an advanced video technique. Trichoderma harzianum biomass was added in some experiments to study the effect of a solid phase under unaerated and aerated conditions to give either three-or four-phase systems. In all cases, the different dispersed phases could be clearly seen. Such photoimages have never been obtained previously. For the three phases, air-oil-medium, aeration caused a drastic increase in Sauter mean drop diameter, which was greater than could be accounted for by the reduction in energy dissipation on aeration. Also, as in the unaerated case, larger drops were observed as the oil content increased. On the other hand, mean bubble sizes were significantly reduced with increasing oil phase up to 15% with bubbles inside many of the viscous drops. With the introduction of fungal biomass of increasing concentration (0.5 to 5 g L(-1)) under unaerated conditions, the Sauter mean drop diameter decreased. Finally, in the four-phase system (oil [10%]-medium-air-biomass) as found in many fermentations, all the phases (plus bubbles in drops) could clearly be seen and, as the biomass increased, a decrease in both the bubble and the drop mean diameters was found. The reduction in size of bubbles (and therefore increase in interfacial area) as the oil and bio- mass concentration increased provides a possible explanation as to why the addition of an oil phase has been reported to enhance oxygen transfer during many fermentations.  相似文献   

3.
Pellet growth of Aspergillus terreus ATCC 20542 in submerged batch fermentations in stirred bioreactors was used to examine the effects of agitation (impeller tip speed u(t) of 1.01-2.71 ms(-1)) and aeration regimens (air or an oxygen-enriched mixture containing 80% oxygen and 20% nitrogen by volume) on the fungal pellet morphology, broth rheology and lovastatin production. The agitation speed and aeration methods used did not affect the biomass production profiles, but significantly influenced pellet morphology, broth rheology and the lovastatin titers. Pellets of approximately 1200 microm initial diameter were reduced to a final stable size of approximately 900 microm when the agitation intensity was >/=600 rpm (u(t)>/=2.03 ms(-1)). A stable pellet diameter of approximately 2500 microm could be attained in less intensely agitated cultures. These large fluffy pellets produced high lovastatin titers when aerated with oxygen-enriched gas but not with air. Much smaller pellets obtained under highly agitated conditions did not attain high lovastatin productivity even in an oxygen-enriched atmosphere. This suggests that both an upper limit on agitation intensity and a high level of dissolved oxygen are essential for attaining high titers of lovastatin. Pellet size in the bioreactor correlated equally well with the specific energy dissipation rate and the energy dissipation circulation function. The latter took into account the frequency of passage of the pellets through the high shear regions of the impellers. Pellets that gave high lovastatin titers produced highly shear thinning cultivation broths.  相似文献   

4.
The surface behaviour of two bile salts, sodium deoxycholate (NaDC) and sodium taurodeoxycholate (NaTDC), as well as that of tetrahydrolipstatin (THL), a potent gastrointestinal lipase inhibitor, was studied at air/water and oil/water interfaces, using interfacial tensiometry methods. The surface behaviour of NaDC and NaTDC was comparable at both oil/water and air/water interfaces. A fairly compact interfacial monolayer of bile salts is formed well below the critical micellar concentration (CMC) and can help to explain the well-known effects of bile salts on the kinetic behaviour of pancreatic lipases. Using the Wilhelmy plate technique, the surface pressure-molecular area curves recorded with THL at the air/water interface showed a collapse point at a surface pressure of 24.5 mN.m(-1), corresponding to a molecular area of 70 A(2). Surprisingly, using the oil drop method, a limiting molecular area of 160 A(2) was found to exist at the oil/water interface. On the basis of the above data, space-filling models were proposed for bile salts and THL at air/water and oil/water interfaces.  相似文献   

5.
The conditions necessary for the production of fumaric acid in 20-liter fermentors by fermentation of glucose with Rhizopus arrhizus strain NRRL 2582 were determined. Continuous neutralization of fumaric acid was necessary for optimal yields. Yields of the calcium salt were in excess of 65 g of fumaric acid from 100 g of sugar consumed during fermentation of sugar concentrations of 10 to 16%. Conditions established for calcium fumarate production include a simple mineral salts medium, 0.5 v:v:min aeration rate, 300 rev/min agitation rate in a baffled tank, 33 C incubation temperature, CaCO(3) to neutralize the acid formed, and a 4 to 5% (v/v) vegetative inoculum. A suitable procedure and medium for the preparation of a vigorous vegetative inoculum were established. The tendency for calcium fumarate fermentations to foam excessively was controlled with a proper antifoam agent added prior to sterilization of the medium and again at daily intervals during fermentation. The production of soluble sodium or potassium fumarates was inhibited when the concentration of fumarates reached 3.5 to 4.0%. No means of overcoming this inhibition was found. Starches and certain other grain-derived carbohydrates were fermented to form calcium fumarate in flask experiments with approximately the same efficiency as was glucose.  相似文献   

6.
Because of the importance of the drop she distribution and interfacial area of the dispersed liquid phase in hydrocarbon fermentations, experiments were carried out to determine the drop size distribution and the interfacial area during batch fermentations of Candida lipolytica on gas oil and on n-hexadecane dissolved in dewaxed gas oil. The effects of cell concentration and dispersed phase volume fraction on size distribution and interfacial area were investigated. Measurements of interfacial tensions, densities, viscosities, and fatty acid concentrations were also made. The results show that the size distribution is skewed and that the Sauter mean diameter is in the range of 10 to 30 μ. Both the Sauter mean diameter and the interfacial area increased during the course of a batch fermentation; however, they decreased at the end of the fermentation. The interfacial area also increased with inoculum size.  相似文献   

7.
The maintenance of constant interfacial area per unit volume is a key parameter for the successful scale-up of two-liquid phase bioconversion processes. To date, however, there is little published information on the hydrodynamics of such systems and a suitable basis for scale-up has yet to be defined and verified. Here we report power input and hydrodynamic data for a whole-cell bioconversion process using resting cells of Rhodococcus R312 to catalyse the hydration of a poorly water-soluble substrate 1,3-dicyanobenzene (1,3-DCB). Experiments were performed in geometrically similar 3-L and 75-L reactors, each fitted with a three-stage Rushton turbine impeller system. The two-phase system used comprised of 20% v/v toluene dispersed in 0.1 M aqueous phosphate buffer containing up to 10 g(ww) x L(-1) of resuspended biocatalyst and 20 g x L(-1) 1,3-DCB. The power input to the 3-L reactor was first determined using an air-bearing technique for both single-phase and two-phase mixing. In both cases, the power number attained a constant value of 11 at Re>10,000, while the measured power inputs were in the range 0.15-3.25 kW x m(-3). Drop size distributions and Sauter mean drop diameters (d(32)) were subsequently measured on-line in both reactors, using an in-situ light-backscattering technique, for scale-up on the basis of either constant power input per unit volume or constant tip speed. At both scales d(32) decreased with increasing agitation rate, while the drop size distributions obtained were log-normal. All the measured d(32) values were in the range of 30-50 microm, with the lowest values being obtained in systems with biocatalyst present. In all cases, constant power input per unit volume was found to be the most suitable basis for scale-up. This gave virtually identical d(32) values and drop size distributions at both scales. A number of correlations were also identified that would allow reasonable prediction of d(32) values for various agitation rates at each scale. While the results obtained are for a particular phase system, the scale-down methodology presented here would allow the rapid evaluation of other bioconversion processes in the 3-L reactor with a 25-fold reduction in scale. In this way, potential problems that might be encountered at the larger scale, such as the carryover of antifoam from the fermentation stage, could be quickly and efficiently identified.  相似文献   

8.
Amphipathic alpha-helices are the main structure and the major lipid binding motif of exchangeable apolipoproteins. To understand how these apolipoproteins behave at an hydrophobic lipoprotein interface, the interfacial properties of a consensus sequence peptide (CSP) derived from three exchangeable apolipoproteins (A-I, A-IV, and E) were studied using an oil drop tensiometer at air/water (A/W) and dodecane/water (DD/W) interfaces. CSP ((PLAEELRARLRAQLEELRERLG)2-NH2) contains two 22-amino acid tandem repeat sequences that form amphipathic alpha-helices. CSP, when added into the aqueous phase, lowered the interfacial tension (gamma) of A/W and DD/W in a concentration-dependent fashion. The gammaA/W was lowered approximately 24 mn/m, and gammaDD/W approximately 31 mn/m, indicating a greater affinity of CSP for DD/W. Using the Gibbs equation for surface, the surface area per CSP molecule was estimated at approximately 702 A2 ( approximately 16 A2/amino acid) on A/W and approximately 622 A2 on DD/W ( approximately 14 A2/amino acid) suggesting that adsorbed CSP lies flat with alpha-helices in the plane of both interfaces. At equilibrium gamma, CSP desorbed from the interface when compressed and re-adsorbed when expanded. The adsorption rate was concentration-dependent, but the desorption rate was not. Less CSP desorbed from DD/W than A/W indicating that CSP has higher affinity for DD/W. Dynamic analysis of elasticity shows that the faster the oscillation period (4, 8 s) and the lower the oscillation amplitude the more elastic the surfaces. CSP can be compressed 6-12% while remaining on the surface, but large increases in pressure eject it from the surface. We suggest that surface pressure-mediated desorption and readsorption of amphipathic alpha-helices provide lipoprotein stability during remodeling reactions in plasma.  相似文献   

9.
We previously reported that, although agitation conditions strongly affected mycelial morphology, such changes did not lead to different levels of recombinant protein production in chemostat cultures of Aspergillus oryzae (Amanullah et al., 1999). To extend this finding to another set of operating conditions, fed-batch fermentations of A. oryzae were conducted at biomass concentrations up to 34 g dry cell weight/L and three agitation speeds (525, 675, and 825 rpm) to give specific power inputs between 1 and 5 kWm(-3). Gas blending was used to control the dissolved oxygen level at 50% of air saturation except at the lowest speed where it fell below 40% after 60-65 h. The effects of agitation intensity on growth, mycelial morphology, hyphal tip activity, and recombinant protein (amyloglucosidase) production in fed-batch cultures were investigated. In the batch phase of the fermentations, biomass concentration, and AMG secretion increased with increasing agitation intensity. If in a run, dissolved oxygen fell below approximately 40% because of inadequate oxygen transfer associated with enhanced viscosity, AMG production ceased. As with the chemostat cultures, even though mycelial morphology was significantly affected by changes in agitation intensity, enzyme titers (AGU/L) under conditions of substrate limited growth and controlled dissolved oxygen of >50% did not follow these changes. Although the measurement of active tips within mycelial clumps was not considered, a dependency of the specific AMG productivity (AGU/g biomass/h) on the percentage of extending tips was found, suggesting that protein secretion may be a bottle-neck in this strain during fed-batch fermentations.  相似文献   

10.
The culture conditions of a multiphase fermentation involving morphologically complex mycelia were simulated in order to investigate the influence of mycelial morphology (Trichoderma harzianum) on castor oil and air dispersion. Measurements of oil drops and air bubbles were obtained using an image analysis system coupled to a mixing tank. Complex interactions of the phases involved could be clearly observed. The Sauter diameter and the size distributions of drops and bubbles were affected by the morphological type of biomass (pellets or dispersed mycelia) added to the system. Larger oil drop sizes were obtained with dispersed mycelia than with pellets, as a result of the high apparent viscosity of the broth, which caused a drop in the power drawn, reducing oil drop break-up. Unexpectedly, bubble sizes observed with dispersed mycelia were smaller than with pellets, a phenomenon which can be explained by the segregation occurring at high biomass concentrations with the dispersed mycelia. Very complex oil drops were produced, containing air bubbles and a high number of structures likely consisting of small water droplets. Bubble location was influenced by biomass morphology. The percentage (in volume) of oil-trapped bubbles increased (from 32 to 80%) as dispersed mycelia concentration increased. A practically constant (32%) percentage of oil-trapped bubbles was observed with pelleted morphology at all biomass concentrations. The results evidenced the high complexity of phases interactions and the importance of mycelial morphology in such processes.  相似文献   

11.
Warm microemulsions based on lipids characterized by a melting point over 50 degrees C have been successfully used as starting matrix in a quenching process to obtain solid lipid nanoparticles (SLN). In this work, we have investigated the effect of 1-butanol (B) on the phase behavior of the lecithin (LCT)/water (W)/tripalmitin (TP) system at 70 degrees C. The study has been carried out at LCT/B=1 (weight ratio). Emulsion and liquid crystalline phase regions have been observed in the ternary phase diagram, while the presence of 1-butanol in the LCT/W/B/TP system allows the formation of a wide area of liquid isotropic phase from the whole (LCT+B)/TP binary axis up to 37 wt% of water. The microstructure of this isotropic phase has been investigated by means of 1H NMR PGSE technique. The self-diffusion coefficients of the different components along oil and water dilution lines indicate a microstructural organization characterized by a highly connected water in oil domains.  相似文献   

12.
The influence of three well-known antifoaming agents (polypropylene glycol, silicone and soybean oil) on gas-liquid mass transfer in stirred tanks is studied, both in model and in fermentation media. The effect of antifoam concentration, ionic strength, viscosity, agitation speed and gas flow rate are investigated. It is found that antifoam addition at low concentrations markedly decreases the gas-liquid volumetric mass transfer coefficient, kLa, for the three antifoam agents tested. Although the major effect is on the film coefficient kL, some effect is also detected on the specific area, a. It is found that the influence of viscosity and antifoam addition are not cumulative: each tends to attenuate the other's effect on mass transfer. Both for silicone and for soybean oil, but not for PPG in the concentration range studied, there is an antifoam concentration above which further antifoam addition starts to improve kLa.  相似文献   

13.
A new kind of potential oscillation with a short period of 7.5 s was found to occur in a water/oil/water system which consisted of an aqueous solution of surfactant, nitrobenzene and an aqueous solution of NaCI. A long period (approximately 10 min) oscillation previously reported was also found to be superposed on the new oscillation. The power spectrum of the short period oscillation has been measured.  相似文献   

14.
The effects of foaming on the production of the hydrophobin protein HFBII by fermentation have been investigated at two different scales. The foaming behaviour was characterised in standard terms of the product enrichment and recovery achieved. Additional specific attention was given to the rate at which foam, product and biomass overflowed from the fermentation system in order to assess the utility of foam fractionation for HFBII recovery. HFBII was expressed as an extracellular product during fed-batch fermentations with a genetically modified strain of Saccharomyces cerevisiae, which were carried out with and without the antifoam Struktol J647. In the presence of antifoam, HFBII production is shown to be largely unaffected by process scale, with similar yields of HFBII on dry matter obtained. More variation in HFBII yield was observed between fermentations without antifoam. In fermentations without antifoam, a maximum HFBII enrichment in the foam phase of 94.7 was measured with an overall enrichment, averaged over all overflowed material throughout the whole fermentation, of 54.6 at a recovery of 98.1%, leaving a residual HFBII concentration of 5.3 mg L−1 in the fermenter. It is also shown that uncontrolled foaming resulted in reduced concentration of biomass in the fermenter vessel, affecting total production. This study illustrates the potential of foam fractionation for efficient recovery of HFBII through simultaneous high enrichment and recovery which are greater than those reported for similar systems.  相似文献   

15.
Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.  相似文献   

16.
The region between residues 968 and 1882 of apolipoprotein B (apoB-21 to apoB-41) is rich in amphipathic beta strands (AbetaSs) and promotes the assembly of primordial triacylglyceride (TAG)-rich lipoproteins. To understand the importance of AbetaS in recruiting TAG, the interfacial properties of two AbetaS consensus peptides, P12 and P27, were studied at dodecane/water (DD/W) and triolein/water (TO/W) interfaces. P12 (acetyl-LSLSLNADLRLK-amide) and P27 (acetyl-LSLSLNADLRLKNGNLSLSLNADLRLK-amide), when added into the aqueous phase surrounding a suspended oil drop (dodecane or triolein), decreased the interfacial tension (gamma) in a concentration-dependent manner. At the DD/W interface, 1 x 10(-5) M P12 decreased gamma to approximately 20 mN/m and 6.6 x 10(-6) M P27 decreased gamma to approximately 13 mN/m. At the TO/W interface, 1.5 x 10(-5) M P12 decreased gamma to approximately 14 mN/m and 9.0 x 10(-6) M P27 decreased gamma to approximately 12 mN/m. The surface area of both peptides was between 11.2 and 15.1 angstroms2 per residue, consistent with beta sheets lying flat on DD/W and TO/W interfaces. P12 and P27 are almost purely elastic on DD/W, TO/W, and air/water interfaces. When P12 and P27 were compressed beyond the equilibrium gamma to as low as 4 mN/m, they could not be readily desorbed from either interface. These properties probably help in assembling nascent TAG-rich lipoproteins, and AbetaS may anchor apoB to beta lipoproteins.  相似文献   

17.
Size distributions of total airborne particles and bioaerosols were measured in a full-scale composting facility, using an optical particle counter and an agar-inserted six-stage impactor, respectively. Higher concentrations of total airborne particles and bioaerosols were detected at a sampling location near the screening process preceded by the composting process than at sampling locations in the composting process. At the sampling location near the screening process, the concentrations of total airborne particles were approximately 10(8)particles/m3 at the size of 0.3 microm and 10(5)particles/m3 at 6.2 microm. The concentration of bioaerosols was about 10(4)CFU/m3 in each stage of 7.0 microm (1st stage), 7.0-4.7 microm (2nd), 4.7-3.3 microm (3rd), 3.3-2.1 microm (4th), 2.1-1.1 microm (5th) and 1.1-0.65 microm (6th). Most of submicron particles smaller than 1 microm among the total airborne particles were believed to originate from the ambient air.  相似文献   

18.
Viscoelastic behavior of proteins at interfaces is a critical determinant of their ability to stabilize emulsions. We therefore used air bubble surfactometry and drop volume tensiometry to examine the dynamic interfacial properties of two plasma apolipoproteins involved in chylomicron assembly: apolipoprotein A-IV and apolipoprotein B-17, a recombinant, truncated apolipoprotein B. At the air/water interface apolipoproteins A-IV and B-17 displayed wide area - tension loops with positive phase angles indicative of viscoelastic behavior, and suggesting that they undergo rate-dependent changes in surface conformation in response to changes in interfacial area. At the triolein/water interface apolipoprotein A-IV displayed maximal surface activity only at long interface ages, with an adsorption rate constant of 1.0 3 10(-)(3) sec(-)(1), whereas apolipoprotein B-17 lowered interfacial tension even at the shortest interface ages, with an adsorption rate constant of 9.3 3 10(-)(3) sec(-)(1). Apolipoprotein A-IV displayed an expanded conformation at the air/water interface and a biphasic compression isotherm, suggesting that its hydrophilic amphipathic helices move in and out of the interface in response to changes in surface pressure.We conclude that apolipoproteins A-IV and B-17 display a combination of interfacial activity and elasticity particularly suited to stabilizing the surface of expanding triglyceride-rich particles.  相似文献   

19.
The serotonin transporter (SERT) is the target of several important antidepressant and psychostimulant drugs. It has been shown that under defined conditions, the transporter spread at the air/water interface was able to bind its specific ligands. In this paper, the interfacial organization of the protein has been assessed from dynamic surface pressure and ellipsometric measurements. For areas comprising between 10,400 and 7,100 A(2)/molecule, ellipsometric measurements reveal an important change in the thickness of the SERT film. This change was attributed to the reorientation of the transporter molecules from a horizontal to their natural predictive transmembrane orientation. The thickness of the SERT film at 7,100 A(2)/molecule was found to be approximately equal to 84 A and coincided well with the theoretical value estimated from the calculations based on the dimensions of alpha-helices containing membrane proteins. These data suggest that the three-dimensional arrangement of the SERT may be represented as a box with lengths d(z)=83--85 A and d(y) or d(x)=41--47 A.  相似文献   

20.
The technique of stray-field NMR has been applied to the study of an oil-bearing seed. It is found to provide additional information about the smallest size of oil drops within the cotyledon not easily measurable by other methods. A peanut was chosen as a convenient seed to investigate so as to allow comparison with previously published NMR pulsed field gradient data. We find a broad distribution of oil drop sizes ranging from a lower limit of order 0.26 microm up to a maximum of approximately 1.3 microm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号