首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the endocytosis of ricin at the apical pole of polarized MDCK II cells after permeabilization of the cells basolaterally with streptolysin O. Ricin endocytosis after the addition of cytosol with an ATP-regenerating system was 2-3-fold higher than after the addition of a transport medium. A similar increase in ricin endocytosis was obtained by reconstitution of dialyzed cytosol with the nonhydrolyzable GTP analog, GTP gamma S, in the presence of an ATP-regenerating system. The nonhydrolyzable GDP analog, GDP beta S, did not increase ricin uptake. In contrast to the data obtained with ricin, GTP gamma S was found to inhibit apical transferrin uptake in MDCK II cells transfected with the human transferrin receptor, and the data thus imply that GTP gamma S supports clathrin-independent endocytosis. Electron microscopy (EM) demonstrated that free endocytic vesicles were formed from the apical pole of permeabilized MDCK II cells in the presence of GTP gamma S and that both a ricin-HRP conjugate, HRP, and cationized gold were endocytosed. Ricin endocytosis in the presence of intact cytosol, as well as GTP gamma S-stimulated ricin uptake, was inhibited by Clostridium botulinum C3 transferase, an enzyme found to inactivate Rho proteins. The data demonstrate that apical clathrin-independent endocytosis functions in the presence of GTP gamma S, and suggest that one or more of the small GTP binding proteins of the Rho family is involved in regulation of the apical clathrin-independent endocytosis in MDCK II cells.  相似文献   

2.
We have studied the effects of brefeldin A (BFA) on endocytosis and intracellular traffic in polarized MDCK cells by using the galactose-binding protein toxin ricin as a membrane marker and HRP as a marker of fluid phase transport. We found that BFA treatment rapidly increased apical endocytosis of both ricin and HRP, whereas basolateral endocytosis was unaffected, as was endocytosis of HRP in the poorly polarized carcinoma cell lines HEp-2 and T47D. Tubular endosomes were induced by BFA both apically and basolaterally in some MDCK cells, comparable with those seen in HEp-2 and T47D cells. In addition, in MDCK cells, BFA induced formation of small (< 300 nm) vesicles, labeled both after apical and basolateral uptake of HRP, as well as some very large (> 700 nm) vacuoles, which were only labeled when HRP was present in the apical medium. In contrast, neither in MDCK nor in HEp-2 or T47D cells, did BFA have any effect on lysosomal morphology. Moreover, transcytosis in the basolateral-apical direction was stimulated both for HRP and ricin. Other vesicular transport routes were less affected or unaffected by BFA treatment. Two closely related structural analogues of BFA (B16 and B21), unable to produce the changes in Golgi and endosomal morphology seen after BFA treatment in a number of different cell lines, were also unable to mimic the effects of BFA on MDCK cells.  相似文献   

3.
The effect of monensin on endocytosis, transcytosis, recycling and transport to the Golgi apparatus in filter-grown Madin-Darby canine kidney (MDCK) cells was investigated using 125I-labeled ricin as a marker for membrane transport, and horseradish peroxidase (HRP) as a marker for fluid phase transport. Monensin (10 microM) stimulated transcytosis of both markers about 3-fold in the basolateral to apical direction. Transcytosis of HRP in the opposite direction, apical to basolateral, was reduced to approximately 50% of the control by monensin, whereas that of ricin was slightly increased. Recycling of markers endocytosed from the apical surface was reduced in the presence of monensin and there was an increased accumulation of both ricin and HRP in the cells. Transport of ricin to the Golgi apparatus increased to the same extent as the increase in intracellular accumulation. No change in recycling or accumulation was observed with monensin when the markers were added basolaterally, but transport of ricin to the Golgi apparatus increased almost 3-fold. Our results indicate that basolateral to apical transcytosis is increased in the absence of low endosomal pH, and they suggest that apical to basolateral transcytosis of a membrane-bound marker (ricin) is affected by monensin differently from that of a fluid phase marker (HRP).  相似文献   

4.
The toxic plant protein ricin binds to both the apical and basolateral surface domains of MDCK (strain I) cells grown on polycarbonate filters. Endocytosis of 125I-labeled ricin was not only higher from the basolateral than from the apical surface--an observation which can be explained by the higher surface area of the basolateral surface--but it also appeared to be more efficient when measured as a percentage of total cell-associated ricin. Monovalent ricin-horseradish peroxidase (Ri-HRP), which is known to behave like native ricin with respect to intracellular transport, also binds to, and is taken up from, both the apical and the basolateral surfaces. Initially, after 10 to 15 min, molecules taken up from the two surface domains at 37 degrees C are present in two separate (basolateral and apical) early endosomal populations. This can also be obtained by incubating for 60 min at 18 degrees C. However, after 30 to 60 min at 37 degrees C, most internalized ligand is found in apical lysosomes, regardless from which surface endocytosis took place. Experiments with endocytosis of cationized ferritin from the apical pole and HRP or Ri-HRP from the basolateral pole showed that intermixing in apical lysosomes (or prelysosomes) of molecules taken up from the two poles occurs. Bidirectional transcytosis involving coated pits of both 125I-labeled ricin and Ri-HRP was demonstrated and was found to be most efficient (as measured in per cent of endocytosed toxin) from the apical pole. Transcytosis was strongly reduced at 18 degrees C, and no transepithelial transport of ricin could be measured at 4 degrees C. Transcytosed ricin was intact and could intoxicate new cells. Finally, delivery of ricin internalized from both the apical and the basolateral surface to the apically localized trans-Golgi network occurred at 37 degrees C but not at 18 degrees C, and ricin inhibited protein synthesis largely with the same kinetics following uptake from the two poles. Incubation at 18 degrees C strongly inhibited the toxic effect of ricin. These data show that ricin can intoxicate epithelia from both sides and also penetrate tight epithelial barriers in intact form.  相似文献   

5.
The effect of calmodulin antagonists on endocytosis, transcytosis, recycling, and transport to the Golgi apparatus from both the apical and the basolateral plasma membrane of polarized Madin–Darby canine kidney cells has been investigated by using the plant toxin ricin as a membrane marker. The calmodulin antagonists trifluoperazine andN-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) stimulated apical endocytosis of ricin, whereas basolateral endocytosis was unaffected. A stimulation of the apical uptake of the fluid-phase marker horseradish peroxidase by calmodulin antagonists was also found both by biochemical and by ultrastructural studies. Furthermore, W-7 reduced the recycling of ricin to the apical plasma membrane, whereas the recycling to the basolateral plasma membrane was not changed. Transport of ricin to the Golgi apparatus was also selectively affected by the calmodulin antagonist W-7. After basolateral endocytosis of ricin, transport to the Golgi apparatus was reduced, whereas after apical endocytosis the fraction of endocytosed ricin transport to the Golgi apparatus was increased. Transcytosis of ricin from the basolateral to the apical pole was increased in the presence of calmodulin antagonists, whereas these compounds did not have any significant effect on the apical to basolateral transcytosis. Thus, the results obtained indicate that calmodulin is involved in regulation of apical endocytosis and recycling as well as in transcytosis of ricin from the basolateral plasma membrane. Furthermore, the data suggest that calmodulin plays a role in regulation of ricin transport to the Golgi apparatus.  相似文献   

6.
The efficient sorting and targeting of endocytosed macromolecules is critical for epithelial function. However, the distribution of endosomal compartments in these cells remains controversial. In this study, we show that polarized Madin–Darby canine kidney (MDCK) cells target the apical endosomal protein endotubin into an apical early endosomal compartment that is distinct from the apical recycling endosomes. Furthermore, through a panel of site-directed mutations we show that signals required for apical endosomal targeting of endotubin are composed of two distinct motifs on the cytoplasmic domain, a hydrophobic motif and a consensus casein kinase II site. Endotubin-positive endosomes in MDCK cells do not label with basolaterally internalized transferrin or ricin, do not contain the small guanosine triphosphate-binding protein rab11, and do not tubulate in response to low concentrations of brefeldin-A (BFA). Nevertheless, high concentrations of BFA reversibly inhibits the sorting of endotubin from transferrin and cause colocalization in tubular endosomes. These results indicate that, in polarized cells, endotubin targets into a distinct subset of apical endosomes, and the targeting information required both for polarity and endosomal targeting is provided by the cytoplasmic portion of the molecule.  相似文献   

7.
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.  相似文献   

8.
Disruption of epithelial barrier by proinflammatory cytokines such as IFN-gamma represents a major pathophysiological consequence of intestinal inflammation. We have previously shown that IFN-gamma increases paracellular permeability in model T84 epithelial cells by inducing endocytosis of tight junction (TJ) proteins occludin, JAM-A, and claudin-1. The present study was designed to dissect mechanisms of IFN-gamma-induced endocytosis of epithelial TJ proteins. IFN-gamma treatment of T84 cells resulted in internalization of TJ proteins into large actin-coated vacuoles that originated from the apical plasma membrane and resembled the vacuolar apical compartment (VAC) previously observed in epithelial cells that lose cell polarity. The IFN-gamma dependent formation of VACs required ATPase activity of a myosin II motor but was not dependent on rapid turnover of F-actin. In addition, activated myosin II was observed to colocalize with VACs after IFN-gamma exposure. Pharmacological analyses revealed that formation of VACs and endocytosis of TJ proteins was mediated by Rho-associated kinase (ROCK) but not myosin light chain kinase (MLCK). Furthermore, IFN-gamma treatment resulted in activation of Rho GTPase and induced expressional up-regulation of ROCK. These results, for the first time, suggest that IFN-gamma induces endocytosis of epithelial TJ proteins via RhoA/ROCK-mediated, myosin II-dependent formation of VACs.  相似文献   

9.
The effects of brefeldin A (BFA) on transferrin (Tf) transcellular transport, Tf receptor (TfR) distribution, and TfR-mediated endocytosis in filter-grown Madin-Darby canine kidney (MDCK) cells were studied. BFA (1.6 micrograms/ml) markedly enhanced the transcytosis of 125I-labeled Tf (125I-Tf) in both apical-to-basal and basal-to-apical directions; yet, BFA did not enhance the transcytosis of either native horseradish peroxidase (HRP) or membrane-bound HRP-poly(L-lysine) conjugates. Furthermore, this enhanced transcytosis of 125I-Tf was abolished either by competition with excess unlabeled Tf or by incubation at temperatures less than or equal to 25 degrees C. In addition, BFA treatment to MDCK cells: (a) increased 125I-Tf specific binding to the apical membrane and decreased 125I-Tf specific binding to the basal membrane; (b) decreased TfR recycling at the basolateral membrane; (c) altered the apical/basolateral distribution of TfRs in favor of the apical side; and (d) markedly increased 59Fe extraction, but not transcytosis, from apically endocytosed 59Fe-loaded Tf. These effects are consistent with a model in which BFA alters the traffic pattern of internalized Tf by decreasing basolateral TfR recycling, while diverting the nonrecycled fraction to the apical side of the cell. Our results indicate that, unlike the reported inhibition of polymeric IgA transcytosis (Hunziker, W., Whitney, J. A., and Mellman, I. (1991) Cell 67, 617-627), BFA can enhance the transcytosis of Tf in MDCK cells. Thus, by altering the intracellular traffic of ligand-receptor complexes, BFA can elicit either a decrease or an increase in transcytosis depending on the nature of the intracellular receptor processing.  相似文献   

10.
Differential microtubule requirements for transcytosis in MDCK cells.   总被引:31,自引:2,他引:29  
W Hunziker  P Mle    I Mellman 《The EMBO journal》1990,9(11):3515-3525
Given the role of microtubules in directing the transport of many intracellular organelles, we investigated whether intact microtubules were also required for transcytosis across epithelia. Using polarized MDCK cells expressing receptors for the Fc domain of IgG (FcRII-B2) or polymeric immunoglobulin (pIg-R), we examined the involvement of microtubules in apical to basolateral and basolateral to apical transcytosis, respectively. While depolymerization of microtubules with nocodozole had no effect on apical to basolateral transcytosis via FcR, basolateral to apical transcytosis of dimeric IgA via pIg-R was almost completely blocked. Inhibition due to nocodozole was selective for basolateral to apical transcytosis, since neither endocytosis nor receptor recycling was significantly affected at either plasma membrane domain. As shown by confocal microscopy, the block in transcytosis was due to the inability of MDCK cells to translocate IgA-containing vesicles from the basolateral to the apical cytoplasm in the absence of an intact microtubule network. The nocodazole sensitive step could be partially by-passed, however, by allowing cells to internalize IgA at 17 degrees C prior to nocodazole treatment. Although incubation at 17 degrees C blocked release of IgA into the apical medium, it did not prevent translocation of IgA-containing vesicles to the apical cytoplasm. Thus, receptor-mediated transcytosis in opposite directions exhibits distinct requirements for microtubules, a feature which reflects the spatial organization of MDCK cells.  相似文献   

11.
《FEBS letters》1993,330(3):293-296
A complete cDNA encoding rabbit Uteroglobin was constructed and expressed in MDCK and Caco-2 cells. The MDCK cells secrete Uteroglobin in approximately equal amounts to the apical and the basolateral side, whereas the Caco-2 cells secrete Uteroglobin mainly to the basolateral side. Both MDCK and Caco-2 cells thus secrete Uteroglobin in a non-sorted manner. It has, however, previously been shown that Uteroglobin is secreted exclusively at the apical membrane in primary cell culture of endometrial epithelial cells [S.K. Mani et al. (1991) Endocrinology 128, 1563-1573]. This suggests that either the endometrial epithelium has an apical default pathway or recognises a sorting signal not recognised by MDCK cells and Caco-2 cells. Our data thus show that a soluble molecule can be secreted at the apical, the basolateral or both membranes depending on the cell type.  相似文献   

12.
Recent evidence suggests a role for heterotrimeric G proteins in vesicular transport. Cholera toxin, which activates Gs alpha by ADP- ribosylation, has been reported to stimulate both apical secretion (Pimplikar, S.W., and K. Simons. 1993. Nature (Lond.). 352:456-458) and apically directed transcytosis (Bomsel, M., and K.E. Mostov. 1993. J. Biol. Chem. 268:25824-25835) in MDCK cells, via a cAMP-independent mechanism. Here, we demonstrate that apical secretion and apically directed transcytosis are significantly stimulated by agents that elevate cellular cAMP. Forskolin, which activates adenylyl cyclase directly, and 8BrcAMP augment both transport processes in MDCK cells. The increase is not limited to receptor-mediated transport (polymeric Ig receptor), since transcytosis of ricin, a galactose-binding lectin, is similarly stimulated. The effects of elevated cellular cAMP on apical secretion and transcytosis are apparently mediated via protein kinase A (PKA), as they are inhibited by H-89, a selective PKA inhibitor. Experiments employing a 17 degrees C temperature block indicate that cAMP/PKA acts at a late, possibly rate-limiting stage in the transcytotic pathway, after translocation of internalized markers into the apical cytoplasm. However, no significant stimulus of apical recycling was observed in the presence of FSK, suggesting that cAMP/PKA either affects transcytosis at a level proximal to apical early endosomes and/or specifically increases the efficiency by which transcytosing molecules are delivered to the apical plasma membrane. Finally, we overexpressed wild-type Gs alpha and a mutant, Q227L, which constitutively activates adenylyl cyclase, in MDCK cells. Although Q227L increased transcytosis more than wild-type Gs alpha, neither construct was as effective as FSK in stimulating transcytosis, arguing against a significant role of Gs alpha in transcytosis independent of cAMP and PKA.  相似文献   

13.
Inhibition of endocytosis from coated pits by acidification of the cytosol   总被引:8,自引:0,他引:8  
Binding and endocytosis of the ligands transferrin, epidermal growth factor (EGF), and ricin were measured in a number of different cell lines after treatment of cells with compounds that react with SH-groups and under conditions where the cytosolic pH was lowered. N-ethylmalemide and diamide irreversibly inhibited endocytosis of all ligands tested, whereas low pH in the cytosol strongly inhibited endocytosis of transferrin and EGF. Data obtained by electron microscopy indicated that the formation of coated vesicles from coated pits is inhibited in acidified cells. Entry of ricin was much less affected, and ricin endocytosed under these conditions was able to intoxicate the cells. At low pH in the cytosol there was a calcium-dependent increase in the number of transferrin receptors at the cell surface. The increase was even larger in the presence of the calcium ionophore A23187, whereas it was completely blocked by the calmodulin antagonists trifluoperazine and W7. The results show that endocytosis from coated pits can be inhibited in a reversible way by acidification of the cytosol and they suggest that a second pathway of endocytosis exists, possibly involving formation of vesicles from uncoated areas of the membrane.  相似文献   

14.
The glycolipid-binding cytotoxin produced by Shigella dysenteriae 1, Shiga toxin, binds to MDCK cells (strain 1) only after treatment with short-chain fatty acids like butyric acid or with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate. The induced binding sites were found to be functional with respect to endocytosis and translocation of toxin to the cytosol. Glycolipids that bind Shiga toxin appeared at both the apical and the basolateral surface of polarized MDCK cells grown on filters, and Shiga toxin was found to be endocytosed from both sides of the cells. This was demonstrated by EM of cells incubated with Shiga-HRP and by subcellular fractionation of cells incubated with 125I-labeled Shiga toxin. The data indicated that toxin molecules are endocytosed from coated pits, and that some internalized Shiga toxin is transported to the Golgi apparatus. Fractionation of polarized cells incubated with 125I-Shiga toxin showed that the transport of toxin to the Golgi apparatus was equally efficient from both poles of the cells. After 1-h incubation at 37 degrees C approximately 10% of the internalized toxin was found in the Golgi fractions. The results thus suggest that glycolipids can be efficiently transported to the Golgi apparatus from both sides of polarized MDCK cell monolayers.  相似文献   

15.
Efficient postendocytic membrane traffic in polarized epithelial cells is thought to be regulated in part by the actin cytoskeleton. RhoA modulates assemblies of actin in the cell, and it has been shown to regulate pinocytosis and phagocytosis; however, its effects on postendocytic traffic are largely unexplored. To this end, we expressed wild-type RhoA (RhoAWT), dominant active RhoA (RhoAV14), and dominant inactive RhoA (RhoAN19) in Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. RhoAV14 expression stimulated the rate of apical and basolateral endocytosis, whereas RhoAN19 expression decreased the rate from both membrane domains. Polarized basolateral recycling of transferrin was disrupted in RhoAV14-expressing cells as a result of increased ligand release at the apical pole of the cell. Degradation of basolaterally internalized epidermal growth factor was slowed in RhoAV14-expressing cells. Although apical recycling of immunoglobulin A (IgA) was largely unaffected in cells expressing RhoAV14, transcytosis of basolaterally internalized IgA was severely impaired. Morphological and biochemical analyses demonstrated that a large proportion of IgA internalized from the basolateral pole of RhoAV14-expressing cells remained within basolateral early endosomes and was slow to exit these compartments. RhoAN19 and RhoAWT expression had little effect on these postendocytic pathways. These results indicate that in polarized MDCK cells activated RhoA may modulate endocytosis from both membrane domains and postendocytic traffic at the basolateral pole of the cell.  相似文献   

16.
Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells.  相似文献   

17.
MAL is an integral protein component of the machinery for apical transport in epithelial Madin-Darby canine kidney (MDCK) cells. To maintain its distribution, MAL cycles continuously between the plasma membrane and the Golgi complex. The clathrin-mediated route for apical internalization is known to differ from that at the basolateral surface. Herein, we report that MAL depends on the clathrin pathway for apical internalization. Apically internalized polymeric Ig receptor (pIgR), which uses clathrin for endocytosis, colocalized with internalized MAL in the same apical vesicles. Time-lapse confocal microscopic analysis revealed cotransport of pIgR and MAL in the same endocytic structures. Immunoelectron microscopic analysis evidenced colabeling of MAL with apically labeled pIgR in pits and clathrin-coated vesicles. Apical internalization of pIgR was abrogated in cells with reduced levels of MAL, whereas this did not occur either with its basolateral entry or the apical internalization of glycosylphosphatidylinositol-anchored proteins, which does not involve clathrin. Therefore, MAL is critical for efficient clathrin-mediated endocytosis at the apical surface in MDCK cells.  相似文献   

18.
Treatment with cytochalasin D, a drug that acts by inducing the depolymerization of the actin cytoskeleton, selectively blocked endocytosis of membrane bound and fluid phase markers from the apical surface of polarized MDCK cells without affecting the uptake from the basolateral surface. Thus, in MDCK cell transformants that express the VSV G protein, cytochalasin blocked the internalization of an anti-G mAb bound to apical G molecules, but did not reduce the uptake of antibody bound to the basolateral surface. The selective effect of cytochalasin D on apical endocytosis was also demonstrated by the failure of the drug to reduce the uptake of 125I-labeled transferrin, which occurs by receptor-mediated endocytosis, via clathrin-coated pits, almost exclusively from the basolateral surface. The actin cytoskeleton appears to play a critical role in adsorptive as well as fluid phase apical endocytic events, since treatment with cytochalasin D prevented the apical uptake of cationized ferritin, that occurs after the marker binds to the cell surface, as well as uptake of Lucifer yellow, a fluorescent soluble dye. Moreover, the drug efficiently blocked infection of the cells with influenza virus, when the viral inoculum was applied to the apical surface. On the other hand, it did not inhibit the basolateral uptake of Lucifer yellow, nor did it prevent infection with VSV from the basolateral surface, or with influenza when this virus was applied to monolayers in which the formation of tight junctions had been prevented by depletion of calcium ions. EM demonstrated that cytochalasin D leads to an increase in the number of coated pits in the apical surface where it suppresses the pinching off of coated vesicles. In addition, in drug-treated cells cationized ferritin molecules that were bound to microvilli were not cleared from the microvillar surface, as is observed in untreated cells. These findings indicate that there is a fundamental difference in the process by which endocytic vesicles are formed at the two surfaces of polarized epithelial cells and that the integrity and/or the polymerization of actin filaments are required at the apical surface. Actin filaments in microvilli may be part of a mechanochemical motor that moves membrane components along the microvillar surface towards intermicrovillar spaces, or provides the force required for converting a membrane invagination or pit into an endocytic vesicle within the cytoplasm.  相似文献   

19.
Madin-Darby canine kidney (MDCK) cells expressing constitutively active Rac1 (Rac1V12) accumulate a large central aggregate of membranes beneath the apical membrane that contains filamentous actin, Rac1V12, rab11, and the resident apical membrane protein GP-135. To examine the roles of Rac1 in membrane traffic and the formation of this aggregate, we analyzed endocytic and biosynthetic trafficking pathways in MDCK cells expressing Rac1V12 and dominant inactive Rac1 (Rac1N17). Rac1V12 expression decreased the rates of apical and basolateral endocytosis, whereas Rac1N17 expression increased those rates from both membrane domains. Basolateral-to-apical transcytosis of immunoglobulin A (IgA) (a ligand for the polymeric immunoglobulin receptor [pIgR]), apical recycling of pIgR-IgA, and accumulation of newly synthesized GP-135 at the apical plasma membrane were all decreased in cells expressing Rac1V12. These effects of Rac1V12 on trafficking pathways to the apical membrane were the result of the delivery and trapping of these proteins in the central aggregate. In contrast to abnormalities in apical trafficking events, basolateral recycling of transferrin, degradation of EGF internalized from the basolateral membrane, and delivery of newly synthesized pIgR from the Golgi to the basolateral membrane were all relatively unaffected by Rac1V12 expression. Rac1N17 expression had little or no effect on these postendocytic or biosynthetic trafficking pathways. These results show that in polarized MDCK cells activated Rac1 may regulate the rate of endocytosis from both membrane domains and that expression of dominant active Rac1V12 specifically alters postendocytic and biosynthetic membrane traffic directed to the apical, but not the basolateral, membrane.  相似文献   

20.
Cytochalasin D was found to reduce the endocytosis of ricin and the fluid phase markers [14C]sucrose and Lucifer Yellow in Vero cells without reducing the uptake of transferrin. The number of coated pits at the plasma membrane was not affected by the treatment. Cytochalasin D also reduced the endocytosis of ricin in cells where uptake of transferrin from coated pits was blocked by low cytosolic pH. Colchicine had a similar effect as cytochalasin D. Both drugs inhibited the exocytosis of ricin from the cells, and they reduced the rate by which ricin intoxicated the cells. Cytochalasin D had essentially no effect on the ability of the cells to bind transferrin, whereas colchicine reduced the binding to some extent. Epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) increased the endocytic uptake of ricin in A431 cells both under normal culture conditions and when the coated pit/coated vesicle pathway was blocked by acidification of the cytosol. In contrast, EGF and TPA had no stimulatory effect on the uptake of transferrin at normal cytoplasmic pH, and they did not abolish the ability of low cytoplasmic pH to inhibit endocytic uptake of transferrin. The results indicate that cytochalasin D and colchicine selectively inhibit endocytic uptake from non-clathrin-coated areas of the cell membrane whereas EGF and TPA stimulate it. The data support the view that there are different endocytic mechanisms, and they indicate that at least in some cell types the non-clathrin-coated endocytosis can be modulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号