首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Transcriptional control by nuclear receptors   总被引:21,自引:0,他引:21  
M Beato 《FASEB journal》1991,5(7):2044-2051
  相似文献   

5.
Hepatocyte DNA synthesis, initiated by epidermal growth factor (EGF), is reversibly inhibited by 2% dimethyl sulfoxide (DMSO). At that concentration, both the survival of the cells in culture and the expression of differentiated functions are prolonged. DMSO does not affect thymidine uptake or EGF receptor binding. Moreover, EGF receptor binding is maintained at 84% of initial 12 hr binding when cells are cultured for several days in the presence of DMSO, whereas specific receptor binding declines to 49% of initial binding under standard culture conditions without DMSO. Studies of hepatocyte functional activity indicate that, during early culture, total cellular export protein synthesis, specific albumin synthesis, and glycogen synthesis are enhanced in the presence of DMSO. Dexamethasone is required for the effect of DMSO on survival, and although dexamethasone alone enhances hepatocyte DNA synthesis in the presence of EGF, it does not reverse the inhibitory effect of 2% DMSO on DNA replication. The correlation of prolonged survival with growth inhibition supports the hypothesis that hepatic growth and differentiated functional activity may be reciprocally regulated.  相似文献   

6.
Xiao D  Qu X  Weber HC 《Cellular signalling》2003,15(10):945-953
Bombesin and its mammalian homologue gastrin-releasing peptide have been shown to be highly expressed and secreted by neuroendocrine cells in prostate cancer, and are thought to be related to the carcinogenesis and progression of this disease. We found, in this study, bombesin specifically induced mitogen-activated protein (MAP) kinase activation as shown by increased extracellular regulated kinase (ERK) phosphorylation and epidermal growth factor (EGF) receptor transactivation in prostate cancer cells, which express functional gastrin-releasing peptide receptor. The transactivation of EGF receptor was required for bombesin-induced ERK phosphorylation. Furthermore, non-receptor tyrosine kinase Src and cellular Ca2+ were shown to be involved in bombesin-induced EGF receptor transactivation and ERK phosphorylation. Inhibition of either EGF receptor transactivation or ERK activation blocked bombesin-induced DNA synthesis in these cells. Taken together, these data suggest bombesin may act as a mitogen in prostate cancer by activating MAP kinase pathway via EGFR transactivation.  相似文献   

7.
8.
9.
DNA regulatory elements for steroid hormones   总被引:19,自引:0,他引:19  
  相似文献   

10.
The addition of EGF to cultured murine 3T3 cells produces a decrease in EGF binding activity with concomitant internalization and degradation of the initially bound EGF. When the EGF receptor on cultured 3T3 cells is affinity labeled with high specific activity 125I-EGF, and the fate of the affinity labeled EGF-receptor complex determined, the loss in binding activity was accounted for by receptor internalization and subsequent proteolytic processing of the EGF receptor molecules in the lysosomes. Studies of the effects of EGF concentration on EGF binding by cells, EGF-induced receptor internalization and EGF-induced stimulation of 3H-thymidine uptake into cellular DNA show that there is a direct correlation between EGF-induced receptor internalization and EGF-induced stimulation of DNA synthesis, but not between EGF binding and EGF-induced stimulation of DNA synthesis. This correlation is lost at high EGF concentrations, where stimulation of DNA synthesis is suboptimal. Optimal stimulation of DNA synthesis requires a minimum of 6 h of incubation of EGF with cells, and the suboptimal stimulation of DNA synthesis at high EGF concentration is intensified when the period of incubation of EGF with cells is less than 6 h. These data are consistent with a model of hormone signal transmission by Endocytic Activation, wherein the activation of EGF-induced processes requires constant EGF-induced internalization of receptor for a requisite 6–8 h period as an obligatory step in production of “second messenger” in the action of this hormone.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Previous analyses have indicated that steroid hormone receptors undergo an allosteric change in structure upon binding by the steroid ligand. This structural change was envisioned as an intramolecular unmasking of the protein's DNA-binding domain, thus allowing the receptor to function in gene regulation. We report an analysis of the effect of hormone on the DNA-binding activity of the chicken progesterone receptor. Using an isocratic elution of DNA affinity columns we show that unliganded receptor (aporeceptor) can bind a 23-basepair progesterone response element with high affinity and a high degree of sequence preference. Hormone causes a 1.5-fold increase in affinity for the PRE sequence and a 2-fold decrease in affinity for non-specific DNA. Kinetic analysis of the off-rate of receptor-DNA complexes is consistent with this minor effect of hormone. In addition, gel retardation analysis of receptor-progesterone response element complexes further substantiates that hormone is not required for sequence-specific DNA binding. These results indicate that hormone is not necessary for the progesterone receptor to fold into a conformation that recognizes specific gene regulatory sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号