首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
4.
The slow myosin heavy chain 3 gene (slow MyHC3) is restricted in its expression to the atrial chambers of the heart. Understanding its regulation provides a basis for determination of the mechanisms controlling chamber-specific gene expression in heart development. The observed chamber distribution results from repression of slow MyHC3 gene expression in the ventricles. A binding site, the vitamin D response element (VDRE), for a heterodimer of vitamin D receptor (VDR) and retinoic X receptor alpha (RXR alpha) within the slow MyHC3 promoter mediates chamber-specific expression of the gene. Irx4, an Iroquois family homeobox gene whose expression is restricted to the ventricular chambers at all stages of development, inhibits AMHC1, the chick homolog of quail slow MyHC3, gene expression within developing ventricles. Repression of the slow MyHC3 gene in ventricular cardiomyocytes by Irx4 requires the VDRE. Unlike VDR and RXR alpha, Irx4 does not bind directly to the VDRE. Instead two-hybrid and co-immunoprecipitation assays show that Irx4 interacts with the RXR alpha component of the VDR/RXR alpha heterodimer and that the amino terminus of the Irx4 protein is required for its inhibitory action. These observations indicate that the mechanism of atrial chamber-specific expression requires the formation of an inhibitory protein complex composed of VDR, RXR alpha, and Irx4 that binds at the VDRE inhibiting slow MyHC3 expression in the ventricles.  相似文献   

5.
6.
7.
8.
Using a gel shift assay, we analyzed the binding of in vitro translated alpha- and beta-thyroid hormone (T3) receptors to a T3-response element (TRE) derived from the rat GH gene. No receptor-TRE complexes were observed when translated receptor alone was incubated with the TRE. However, addition of a nuclear extract from liver to the translational products resulted in the formation of two receptor-DNA complexes for both the alpha- and beta-receptors. These complexes were shown to contain translated receptor by comigration of 32P-labeled TRE and 35S-labeled receptor in the gel shift assay. A competition experiment demonstrated that formation of the complexes was sequence specific. Preincubation of the liver nuclear extract at 60 C abolished formation of both complexes indicating that receptor-TRE binding required a heat-labile nuclear factor. Phosphocellulose chromatography of the nuclear extract resulted in separation of the activities required for formation of the two complexes. Analysis of nuclear extracts from different tissues revealed that one complex formed in the presence of all extracts, whereas the second complex appeared predominantly with a nuclear extract from liver. Addition of T3 to the binding reaction had no effect on receptor-TRE complex formation. We suggest that nuclear factors interact with the T3 receptor to enhance hormone-independent binding to a TRE.  相似文献   

9.
The interaction of the vitamin D receptor with a vitamin D-responsive element (VDRE) derived from the human osteocalcin promoter in vitro has been shown to require a nuclear accessory factor (NAF) derived from monkey kidney cells. In this report we show that this factor is widely distributed in cells and tissues, including those that do not express the vitamin D receptor (VDR). NAF is required for VDR binding to a variety of known VDREs. VDR and NAF independently bind the VDRE weakly, as assessed by elution profiles generated during VDRE affinity chromatography. Together, however, both proteins coelute from this column with a profile that indicates a tighter strength of interaction. Analogous chromatography of the VDR derived from ROS 17/2.8 cells treated with 1,25-dihydroxyvitamin D3 in culture also reveals a dual profile of weak and strong binding, suggesting that in vivo modifications are unlikely to alter receptor DNA binding. NAF is a protein of 55 kDa, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and cross-linking experiments suggest that the VDR and NAF together form a heterodimer on a single VDRE with a mol wt of 103 kDa. These data demonstrate that NAF is required for VDR binding to specific DNA in vitro and suggest the possibility that NAF may be required for the transactivation capability of the VDR in vivo.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
The nuclear hormone 1α,25-dihydroxyvitamin D3 (VD) has important cell-regulatory functions but also a strong calcemic effect. Therefore, various VD analogues have been synthesized and screened for their biological profile. In order to gain more insight into the molecular basis of the high antiproliferative but low calcemic action of the VD analogue EB1089, we characterized this compound in comparison to five structurally related VD analogues. The activities of the six VD analogues in in vitro assays (limited protease digestion assays for determining interaction with monomeric vitamin D receptor (VDR), ligand-dependent gel shift assays for showing the increase of DNA binding of VDR-retinoid X receptor (RXR) heterodimers, and reporter gene assays on different types of VD response elements for demonstrating the efficacy in nuclear VD signalling) were found to represent their biological potency (antiproliferative effect on different malignant cell lines). In this series, EB1089 proved to be the most potent VD analogue; that is, every structural modification (20-epi configuration, cis-configuration at position C24, or changes at the ethyl groups at position C25) appeared to reduce the determined activities mediated through the VDR of these analogues. Moreover, the modifications of EB1089 resulted in a loss of VD response element selectivity, suggesting that this parameter is very critical for the biological profile of this VD analogue. J. Cell. Biochem. 71:340–350, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号