首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We observed grips by the hand during locomotor and manipulative behavior of captive chimpanzees to improve our ability to interpret differences between chimpanzees and humans in hand morphology that are not easily explained by current behavioral data. The study generated a new classification of grips,which takes into account three elements of precision and power gripping that appear to distinguish between the chimpanzees and humans, and which have not been explored previously in relation to hand morphology. These elements are (1) the relative force of the precision grips (pinch versus hold), (2) the relative ability to translate and rotate objects by the thumb and fingers (precision handling), and (3) the relative ability to orient a cylindrical object so that it functions effectively as an extension of the forearm (power squeeze). We recommend that this classification be incorporated into protocols for field and laboratory studies of nonhuman primate manipulative behavior, in order to test our prediction that these three elements clearly distinguish humans from chimpanzees and other nonhuman primates. The results of this test will have direct bearing upon decisions as to which grips (with their associated behaviors) are most likely to guide us through kinematic and kinetic analysis to possible explanations for morphological differences between humans and other species. These explanations, in turn, are fundamental to our ability to discern evidence for potential grips and tool behaviors in the manual morphology of fossil hominids.  相似文献   

2.
3.
The activity of 17 hand muscles was monitored by electromyography (EMG) in three subjects during hard hammer percussion manufacture of Oldowan tools. Two of the subjects were archaeologists experienced in the replication of prehistoric stone tools. Simultaneous videotapes recorded grips associated with the muscle activities. The purpose of the study was to identify the muscles most likely to have been strongly and repeatedly recruited by early hominids during stone tool-making. This information is fundamental to the identification of skeletal features that may reliably predict tool-making capabilities in early hominids. The muscles most frequently recruited at high force levels for strong precision pinch grips required to control the hammerstone and core are the intrinsic muscles of the fifth finger and the thumb/index finger regions. A productive search for skeletal evidence of habitual Oldowan tool-making behavior will therefore be in the regions of the hand stressed by these intrinsic muscles and in the joint configurations affecting the relative lengths of their moment arms. Am J Phys Anthropol 105:315–332, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
5.
Population-level right handedness is a human universal, whose evolutionary origins are the source of considerable empirical and theoretical debate. Although our closest neighbor, the chimpanzee, shows some evidence for population-level handedness in captivity, there is little evidence from the wild. Tool-use measures of hand use in chimpanzees have yielded a great deal of variation in directionality and strength in hand preference, which still remains largely unexplored and unexplained. Data on five measures of hand use across four tool-use skills--ant-dipping, algae-scooping, pestle-pounding and nut-cracking--among the wild chimpanzees of Bossou, Guinea, West Africa, are presented here. This study aims to explore age- and sex-class effects, as well as the influence of task motor, cognitive and haptic demands, on the strength and directionality of hand preference within and across all five measures of hand use. Although there was no age- or sex-class effect on the directionality of hand preference, immature 相似文献   

6.
This research examined capuchin monkey (Cebus apella) grips for the use of throwing, nut-cracking, and cutting tools. We provided subjects with stones and apparatus that accommodated the use of stones as tools. Our subjects exhibited five grips, two of which the animals used when force was the primary consideration (power grips) and three of which the animals use when accuracy of sensory judgment and instrumentation was required (precision grips). We believe that the range of contexts in which capuchins use stone tools, combined with the ability of capuchins to employ both power and precision grips as part of their tool repertoire, indicate that Cebus apella can be used to identify grips that facilitated hominid lithic technology. Am J Phys Anthropol 103:131–135, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Was stone tool making a factor in the evolution of human hand morphology? Is it possible to find evidence in fossil hominin hands for this capability? These questions are being addressed with increasingly sophisticated studies that are testing two hypotheses; (i) that humans have unique patterns of grip and hand movement capabilities compatible with effective stone tool making and use of the tools and, if this is the case, (ii) that there exist unique patterns of morphology in human hands that are consistent with these capabilities. Comparative analyses of human stone tool behaviours and chimpanzee feeding behaviours have revealed a distinctive set of forceful pinch grips by humans that are effective in the control of stones by one hand during manufacture and use of the tools. Comparative dissections, kinematic analyses and biomechanical studies indicate that humans do have a unique pattern of muscle architecture and joint surface form and functions consistent with the derived capabilities. A major remaining challenge is to identify skeletal features that reflect the full morphological pattern, and therefore may serve as clues to fossil hominin manipulative capabilities. Hominin fossils are evaluated for evidence of patterns of derived human grip and stress-accommodation features.  相似文献   

8.
Chimpanzees are well known for their tool using abilities. Numerous studies have documented variability in tool use among chimpanzees and the role that social learning and other factors play in their development. There are also findings on hand use in both captive and wild chimpanzees; however, less understood are the potential roles of genetic and non-genetic mechanisms in determining individual differences in tool use skill and laterality. Here, we examined heritability in tool use skill and handedness for a probing task in a sample of 243 captive chimpanzees. Quantitative genetic analysis, based on the extant pedigrees, showed that overall both tool use skill and handedness were significantly heritable. Significant heritability in motor skill was evident in two genetically distinct populations of apes, and between two cohorts that received different early social rearing experiences. We further found that motor skill decreased with age and that males were more commonly left-handed than females. Collectively, these data suggest that though non-genetic factors do influence tool use performance and handedness in chimpanzees, genetic factors also play a significant role, as has been reported in humans.  相似文献   

9.
Grooming is a complex set of motor actions, common in highly social primates. We tested for asymmetries in hand use during unimanual and bimanual allogrooming in 215 captive chimpanzees. In addition to hand use, we coded in the ethogram whether the manual grooming action co-occurred with the use of the mouth. Overall, grooming did not elicit strong handedness at the individual level, but there is a small yet significant population-level right-hand bias for bimanual grooming. Mouth use during grooming had no influence on hand use. A comparison of the findings with previously published data on handedness for grooming in wild chimpanzees suggests that wild apes are more right-handed than captive individuals are for allogrooming. Collectively, the results suggest that role differentiation of the hands is an important factor in the assessment of handedness for grooming, and perhaps additional manual actions of chimpanzees and other primates.  相似文献   

10.
Because of the greater morphological distances among them, genera should be more robustly recognizable in the fossil record than species are. But there are clearly upper as well as lower bounds to their species inclusivity. Currently, the vast majority of fossils composing the large and rapidly expanding paleoanthropological record are crammed into one of two genera (Australopithecus vs Homo), expanding the latter, especially, far beyond any reasonable morphological or phylogenetic limits. This excessive inclusivity obscures both diversity and the complexities of phylogenetic structure within the hominid family.  相似文献   

11.
12.
13.
Paranthropus is distinctive among hominoids in its possession of a greatly thickened hard palate. Although traditionally considered a structural adaptation to counter high-magnitude masticatory stress, alternative developmental models are equally viable. Three models of palatal thickening were evaluated in this study. A mechanical model interprets palatal thickening as a compensatory response to increased instability of the midpalatal suture effected by an anterior placement of the masseteric muscle mass. This model predicts that palatal thickness is correlated with the length of the palate posterior to the masseteric tubercle. Two non-mechanical models consider the thickness of the hard palate to be structurally related to and therefore correlated with either 1) the degree to which the premaxilla overlaps the hard palate in the subnasal region or 2) the height of the posterior facial skeleton. The correlation of craniofacial variables was assessed intraspecifically in ontogenetic series of great ape and human crania. Tests of correlation were performed for each comparison using both residuals calculated from reduced major axis regression of the variable of interest against a measure of cranial size and shape ratios. A significant correlation of palatal thickness with posterior facial height in Pan suggests that the unusually thick hard palate of Paranthropus is directly related to the increased posterior facial height characteristic of this taxon. Further evaluation suggests that extreme palatal thickening in these specimens occurred by virtue of their possession of a nasal septum morphology in which the vomer extends onto the superior nasal surface of the premaxilla. Such a morphology would have constrained the palatal nasal lamina to maintain the approximate level of the premaxillary nasal lamina throughout the growth process thereby promoting palatal thickening. Am J Phys Anthropol 103:375–392, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Different primate species have developed extensive capacities for grasping and manipulating objects. However, the manual abilities of primates remain poorly known from a dynamic point of view. The aim of the present study was to quantify the functional and behavioral strategies used by captive bonobos (Pan paniscus) during tool use tasks. The study was conducted on eight captive bonobos which we observed during two tool use tasks: food extraction from a large piece of wood and food recovery from a maze. We focused on grasping postures, in‐hand movements, the sequences of grasp postures used that have not been studied in bonobos, and the kind of tools selected. Bonobos used a great variety of grasping postures during both tool use tasks. They were capable of in‐hand movement, demonstrated complex sequences of contacts, and showed more dynamic manipulation during the maze task than during the extraction task. They arrived on the location of the task with the tool already modified and used different kinds of tools according to the task. We also observed individual manual strategies. Bonobos were thus able to develop in‐hand movements similar to humans and chimpanzees, demonstrated dynamic manipulation, and they responded to task constraints by selecting and modifying tools appropriately, usually before they started the tasks. These results show the necessity to quantify object manipulation in different species to better understand their real manual specificities, which is essential to reconstruct the evolution of primate manual abilities.  相似文献   

15.
This paper examined the association between grip type, hand use, and fingerprint patterns in a sample of captive chimpanzees. Grip type for simple reaching was assessed for the left and right hand and classified as thumb-index, middle-index, or single-digit responses. Fingerprint patterns were characterized as whorls, loops, or arches on each finger. The results indicated that chimpanzees exhibit significantly more thumb-index responses for the right compared to the left hand. In addition, thumb-index responses were more prevalent for subjects that had a whorl compared to a loop or arch on their thumb. The results suggest that fingerprint patterns are associated with individual differences in grasping type in chimpanzees as well as some variation in hand use.  相似文献   

16.
17.
Studies of hand use in nonhuman primates suggest that several species exhibit hand preferences for a variety of tasks. The majority of studies, however, focus on the lateralized hand use of captive nonhuman primate populations. Although captive settings offer a more controlled environment for assessing hand preferences, studies of wild populations provide important insights into how handedness is affected by natural environmental conditions and thus potential insights into the evolution of handedness. To investigate handedness in a population of wild nonhuman primates, we studied patterns of lateralized hand use during feeding in four simakobu monkeys (Simias concolor), an arboreal species inhabiting the Mentawai Islands, Indonesia. Our data show that individual variation in hand preferences for feeding existed among our study animals. In addition, each simakobu expressed a significant hand preference for supporting itself on a branch during feeding, an uncoordinated bimanual task. This bias was most prevalent when the branch used for support was a main branch rather than a terminal branch. When both hands were employed in a coordinated bimanual feeding activity (bimanual manipulation), only two subjects showed a significant bias for feeding. Our data suggest that these individuals are more likely to express significant hand preferences when feeding from stable, rather than precarious, positions within the canopy.  相似文献   

18.
We examined hand preference in the use of tools by tufted capuchins (Cebus apella). We presented a colony of monkeys with an enclosed container designed to accommodate the use of probing tools. Over an 8-month period, 13 monkeys used probes to extract sweet syrup from the narrow opening of the apparatus. Five monkeys exhibited bias toward use of their right hand and eight monkeys exhibited bias toward use of their left hand. Adult monkeys exhibited a greater percentage of right-hand preferent probing sequences than did juveniles. These results are consistent with hypotheses that in tasks that involve the use of tools, nonhuman primates exhibit strong lateral asymmetries at the individual level, a moderate left-hand bias at the population level, and increased bias with age toward use of the right hand.  相似文献   

19.
20.
How viable is the argument that increased locomotor efficiency was an important agent in the origin of hominid bipedalism? This study reviews data from the literature on the cost of human bipedal walking and running and compares it to data on quadrupedal mammals including several non-human primate species. Literature data comparing the cost of bipedal and quadrupedal locomotion in trained capuchin monkeys and chimpanzees are also considered. It is concluded that increased energetic efficiency would not have accrued to early bipeds. Presumably, however, selection for improved efficiency in the bipedal stance would have occurred once the transition was made. Would such a process have included selection for increased limb length? Data on the cost of locomotion vs. limb length reveal no significant relationship between these variables in 21 species of mammals or in human walking or running. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号