首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemotaxis by electroporated rabbit peritoneal neutrophils in the absence of Ca2+ is only slightly different from that in the presence of Ca2+. Pretreatment of neutrophils with quin2-AM causes inhibition of chemotaxis. Calcium antagonists as nitrendipine and verapamil are inhibitory in nanomolar concentrations, while 10(5) times higher concentrations are required for inhibition of chemotaxis by neutrophils which were not electroporated. The results support the hypothesis that Ca2+ from Ca(2+)-storing organelles is of importance for chemotaxis, but that chemotaxis is not dependent on changes in cytoplasmic Ca2+ concentrations.  相似文献   

2.
The effect of palmitic acid on basal and insulin-stimulated incorporation of glucose into rat adipocytes was studied. Palmitic acid (2.40 mM) stimulated basal as well as insulin-stimulated glucose incorporation in rat adipocytes three and twofold, respectively. Similar degrees of stimulation of basal glucose oxidation by palmitate were also observed. The ability of palmitic acid to stimulate glucose uptake was additive with respect to the stimulation induced by insulin and was proportional to the palmitic acid concentration between 0.15 mM and 2.40 mM. Stimulation of glucose incorporation by palmitic acid was inhibited by preincubating the cells with quin2-AM, which accumulates intracellularly yielding the trapped chelator form. quin2, which binds intracellular Ca2+.The concentration of quin2-AM required for half-maximal inhibition of palmitic acid stimulated glucose incorporation was 3.8 +/- 1.2 microM (mean +/- SEM). The inhibition of palmitic acid-stimulated glucose incorporation by quin2-AM (10 microM) was overcome by incubating cells with the Ca2+ ionophore, A23187, in the presence of extracellular Ca2+ (2.6 mM). Chelation of extracellular Ca2+ with EGTA did not significantly affect the magnitude of palmitic acid-stimulated glucose incorporation. Dantrolene (12.5-100 microM) failed to affect basal or palmitic acid-stimulated glucose incorporation. These findings suggest that palmitic acid stimulates incorporation of glucose in the adipocyte by a mechanism dependent upon intracellular but not extracellular Ca2+.  相似文献   

3.
A calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was purified to near homogeneity from human polymorphonuclear leukocytes and shown to be identical to bovine protein kinase C. The Ca2+ activation of the enzyme was studied and the Ca2+ concentrations required to activate the enzyme were compared to free cytosolic Ca2+ concentrations in resting and activated polymorphonuclear leukocytes. The free calcium concentrations in the cytosol and in the enzyme assay mixture were determined using the calcium indicator quin 2. The enzyme activity was almost totally dependent upon phosphatidylserine and could be strongly activated by Ca2+ concentrations in the micromolar range, but was not activated by phosphatidylserine at Ca2+ concentrations corresponding to the intracellular free Ca2+ concentration under resting conditions. However, at similar Ca2+ concentrations (less than 2.5 X 10(-7) M) the enzyme was highly activated by phorbol 12-myristate 13-acetate (PMA) or diolein in the presence of phosphatidylserine. It was demonstrated that PMA stimulation of human polymorphonuclear leukocytes did not induce any increase in the level of the intracellular free calcium concentration. It was concluded that PMA activation of protein kinase C occurred independently of a rise in the intracellular Ca2+ concentration. K0.5 (half-maximal activation) for the PMA activation of purified protein kinase C was shown to be equivalent to the K0.5 for PMA stimulation of superoxide (O-2) production in human polymorphonuclear leukocytes, suggesting that protein kinase C is involved in activation of the NADPH oxidase. The presumed intracellular Ca2+ antagonist TMB-8 inhibited the PMA-induced superoxide production, but neither by an intracellular Ca2+ antagonism nor by a direct inhibition of protein kinase C activity.  相似文献   

4.
The new, fluorescent Ca2+ indicator, fura-2, promises to expand our understanding of the role of subcellular changes in Ca2+ underlying cell function. During an investigation of the role of Ca2+ in the polarization response of human polymorphonuclear leukocytes to formyl-methionyl-leucyl-phenylalanine, we found that fura-2 trapped by cells incubated with the acetoxy-methyl ester of fura-2, F2-AM, yielded measurements of Ca2+ that were depressed at rest and during the response to formyl-methionyl-leucyl-phenylalanine. Fura-2, trapped by the cells, exhibited a spectrum in the presence of saturating Ca2+ that differed from that of fura-2 free acid. We have shown that the cellular fluorescence can be spectrally decomposed into two components: one with Ca2+ sensitivity identical to fully deesterified fura-2, and another which is Ca2+-insensitive. The Ca2+-insensitive component appears to be more fluorescent than F2-AM as well as spectrally different from F2-AM. The insensitive form probably results from incomplete deesterification of F2-AM by the cells. In order to accurately measure Ca2+ in polymorphonuclear leukocytes, it is imperative to check for the presence of Ca2+-insensitive fluorescence. The contribution of Ca2+-insensitive fura-2 fluorescence can be assessed routinely from spectral data obtained by calibration of intracellular fura-2 with known [Ca2+] using ionomycin. The end-of-experiment calibration step not only ensures accurate [Ca2+] measurements in polymorphonuclear leukocytes and in other cell types that display Ca2+-insensitive, contaminating fluorescence but also yields the spectral characteristics of the insensitive species.  相似文献   

5.
Vanadate stimulated the release of lipoprotein lipase (LPL) activity from rat fat pads into the medium in a time- and dose-dependent manner. It exerted the synergetic effect with heparin. The stimulatory effects of vanadate and heparin were decreased by incubation in Na+- or Ca2+-free media but were well preserved in K+-free medium. Amiloride inhibited the vanadate-stimulated release of LPL activity in a dose-dependent manner, but did not inhibit the heparin-stimulated release of LPL activity. Colchicine, antimycin A, and carbonyl cyanide m-chlorophenylhydrazone suppressed the stimulatory effect of vanadate, but cycloheximide did not. Preincubation of the fat pads with the tetrakis (acetoxymethyl) ester of quin 2 (quin 2-AM) inhibited the vanadate-stimulatory release of LPL activity without affecting basal activity. The concentration required for half-maximal inhibition of the action of vanadate by quin 2-AM was calculated to be 39 microM, suggesting that the action of vandate was dependent on intracellular Ca2+ concentration. The heparin-stimulated release, on the other hand, was not inhibited even at higher concentrations of quin 2-AM (up to 200 microM). These findings suggest that vanadate stimulates the release of LPL activity through mechanisms of action involving amiloride-sensitive and calcium-dependent pathways with a requirement of metabolic energy.  相似文献   

6.
1. Rates of Ca2+ inflow across the hepatocyte plasma membrane in the presence of vasopressin were estimated by using quin2. 2. Plots of the rate of Ca2+ inflow as a function of the intracellular quin2 concentration reached a plateau at about 1.7 mM intracellular quin2. Ca2+ inflow was inhibited by 60% in the presence of 400 microM-verapamil. 3. A plot of the rate of Ca2+ inflow as a function of the concentration of extracellular Ca2+ ([Ca2+]o) was biphasic. The second (slower) phase showed no sign of saturation at values of [Ca2+]o up to 5 mM. It is concluded that, in the presence of vasopressin, Ca2+ flows into the liver cell by two different processes, one of which is not readily saturated by Ca2+o. 4. The effect of the replacement of extracellular NaCl by choline or tetramethylammonium chloride on cellular Ca2+ movement was found to depend on the presence or absence of intracellular quin2. 5. In cells loaded with quin2 and incubated in the presence of choline or tetramethylammonium chloride, a small decrease in the basal intracellular free Ca2+ concentration ([Ca2+]i) was observed, and the increase in [Ca2+]i caused by the addition of vasopressin was considerably diminished when compared with cells incubated in the presence of NaCl. In cells loaded with quin2, replacement of NaCl by choline chloride caused a decrease in Ca2+ inflow in the presence of vasopressin, as measured by using quin2 or 45Ca2+ exchange, whereas no change in Ca2+ inflow was observed in the absence of vasopressin. 6. In cells not loaded with quin2, replacement of NaCl by choline chloride did not alter Ca2+ inflow either in the presence or in the absence of vasopressin. 7. It is concluded that (i) Ca2+ inflow through the basal and receptor-activated Ca2+ inflow systems does not involve the inward movement of Ca2+ in exchange for Na+ or the induction of Ca2+ inflow by intracellular Na+, and (ii) the presence of both intracellular quin2 and extracellular choline or tetramethylammonium chloride (in place of NaCl) inhibits Ca2+ inflow through the receptor-activated Ca2+ inflow system but not through the basal Ca2+ inflow system, and inhibits the release of Ca2+ from intracellular stores.  相似文献   

7.
The aim of this paper is critically to evaluate the existing evidence for the role of intracellular Ca2+ in polymorphonuclear leucocyte (PMN) activation and in particular in oxygen radical production. Indirect experiments are based on the manipulation of extracellular Ca2+, measurement of 45Ca fluxes, employing pharmacological agents such as Ca2+-ionophores and intracellular Ca2+ antagonists and monitoring chlortetracycline fluorescence. Experiments of this type do not provide the necessary definitive evidence that an increase in intracellular Ca2+ is the trigger for PMN activation. Recent direct measurements of intracellular free Ca2+ using the Ca2+-activated photoprotein, obelin, and the Ca2+-sensitive fluorescent indicator, quin 2, have provided evidence for the existence of two distinct mechanisms of activation, one triggered by a rise in intracellular Ca2+ and the other independent of a rise in intracellular Ca2+. The source of the Ca2+ for the former mechanism is mainly extracellular but can also come from an intracellular Ca2+ store.  相似文献   

8.
Cytochalasins are routinely used to stimulate a variety of functions in eukaryotic cells even though their precise mode of action remains to be elucidated. In the present work we used the fluorescent Ca2+ indicator quin2 to study the effect of various cytochalasins, cytochalasins A, B, C, D, E (CA, CB, CC, CD, CE) and dihydrocytochalasin B (dhCB) on the intracellular Ca2+ concentration ([Ca2+]i) in various types of leukocytes, viz, neutrophils and lymphocytes. In human neutrophils, cytochalasins increase [Ca2+]i mainly by releasing Ca2+ from membrane-bound, intracellular stores. Thus, in order to readily appreciate the effect of cytochalasins on [Ca2+ )i, these cells must be loaded with low intracellular quin2 concentrations. On the other hand, in peripheral blood lymphocytes, splenocytes and thymocytes, the increase in [Ca2+]i is predominantly due to an increased Ca2+ influx from the extracellular medium. In addition, we found that in neutrophils these drugs prolong the increase in [Ca2+]i induced by chemotactic peptides, probably by increasing the cell permeability to Ca2+. Finally, in thymocytes, cytochalasins potentiate the production of inositol phosphates induced by the polyclonal mitogen concanavalin A (conA).  相似文献   

9.
Activation of ribosomal protein S6 kinase by epidermal growth factor (EGF), insulin, and insulin-like growth factor 1 (IGF1) was studied in the human mammary tumor cell line ZR-75-1 in isotonic buffers. In contrast to growth factor-dependent S6 phosphorylation which is strongly dependent on extracellular pH (Chambard, J. C., and J. Pouyssegur. 1986. Exp. Cell Res. 164:282-294.) preincubation of cells in buffers with different pH values ranging from 7.5 to 6.5 had no effect on basal or EGF-stimulated S6 kinase activity. Replacement of extracellular Na+ with choline or replacement of extracellular Ca++ with EGTA also did not inhibit stimulation of S6 kinase by EGF. When intracellular Ca++ was buffered with the permeable Ca++ chelator quin2, EGF stimulation was reduced 50%. A similar inhibition of the EGF response was observed when cells were incubated in buffers with high K+ concentrations or in the presence of the K+ ionophore valinomycin. Insulin and IGF1 stimulation of S6 kinase were also inhibited by high K+ concentrations and by buffering intracellular Ca++. In contrast to the responses to EGF, insulin- and IGF1-activation of S6 kinase was enhanced when glucose was present and depended on the presence of bicarbonate in the medium. The results indicate that ionic signals generated by growth factors and insulin, such as increases in intracellular pH or Na+, do not seem to be involved in the activation of S6 kinase. However, effects of growth factors or insulin on membrane potential and/or K+ fluxes and redistribution of intracellular Ca++ may play a role in the activation process. Furthermore, the mechanism of insulin activation of S6 kinase is distinct from the growth factors by its dependency on extracellular bicarbonate.  相似文献   

10.
H Nagase  H Ozaki  H Karaki  N Urakawa 《FEBS letters》1986,195(1-2):125-128
Palytoxin (PTX) caused K+ release from rabbit erythrocytes which was dependent on the concentrations of extracellular Ca2+ and PTX. In a Ca2+-free solution, PTX still caused a slow K+ release. An intracellular Ca2+ antagonist, TMB-8, an intracellular Ca2+ chelator, quin 2, and calmodulin inhibitors, prenylamine, W-7 and W-5, inhibited the PTX-induced K+ release in a Ca2+-free solution. These results suggest that the PTX-induced K+ release is dependent on the process including intracellular Ca2+ and calmodulin.  相似文献   

11.
Biphasic responses of amino[14C]pyrine accumulation and oxygen consumption were registered by gastrin stimulation in dispersed parietal cells from guinea pig gastric mucosa, and this was mimicked with the calcium ionophore A23187. The characteristics of these phases (first phase and second phase) were distinguished by the differences in the requirements of extracellular Ca2+. The first phase evoked by gastrin or ionophore A23187 was independent of extracellular Ca2+, whereas the second phase was not. In the first phase, fluorescence of a cytosolic Ca2+ indicator (quin2-AM) increased with the stimulation of ionophore A23187 and carbamylcholine chloride in the presence of extracellular Ca2+. In addition, an increase in cytosolic Ca2+ induced by ionophore A23187, but not by carbamylcholine chloride was also observed in the absence of extracellular Ca2+, suggesting that Ca2+ pool(s) in parietal cells might be present in the intracellular organelle. Cytochalasin B and colchicine, but not oligomycin, could eliminate this cytosolic Ca2+ increase induced by A23187 in a Ca2+-free medium. On the other hand, in a Ca2+-free medium, addition of ATP after pretreatment with digitonin could diminish the cytosolic Ca2+ increase brought about by A23187. This was also observed with oligomycin-treated cells, but not with cytochalasin B-treated cells. Similarly, subcellular fractionation of a parietal cell which had been pretreated with cytochalasin B or colchicine in an intact cell system reduced the rate of ATP-dependent Ca2+ uptake. These observations indicate that intracellular Ca2+ transport in dispersed parietal cells may be regulated by the microtubular-microfilamentous system. In conclusion, this study demonstrates the possibility of the existence of intracellular Ca2+ transport mediated by gastrin or ionophore A23187 and regulated by the microtubular-microfilamentous system in parietal cells.  相似文献   

12.
Gonadotropin-releasing hormone (GnRH) stimulates pituitary gonadotrope cells to release luteinizing hormone (LH). Previous studies have indicated a role for Ca+2 in this process; however, the present study provides the first measurements of an increased intracellular Ca+2 concentration. Pituitary cell cultures enriched for gonadotropes were loaded with quin 2, a fluorescent Ca+2-sensitive molecule. Subsequent addition of GnRH to these cells produced a rapid (within 10 sec) increase in fluorescence (indicating an increase in intracellular free Ca+2). In contrast, two GnRH analogs, des1 GnRH (a very low-affinity binder to the GnRH receptor) and Ac[D-pCl-Phe1,2] DTrp3 DLys6 DAla10-GnRH (a pure GnRH antagonist) produced no such Ca+2 change, thus showing a correlation between increased intracellular Ca+2 and LH release. A functional relationship between increased Ca+2 and LH release was suggested by experiments in which LH release was inhibited from cells loaded with high levels of intracellular quin 2 (in order to chelate intracellular Ca+2). Since this inhibition was completely reversed by addition of the Ca+2 ionophore A23187, quin 2 was not toxic at the concentrations used and apparently inhibited LH release by buffering intracellular Ca+2. The results presented here are consistent with the hypothesis that GnRH-stimulated LH release is mediated by increased intracellular Ca+2 and support the notion that the rate-limiting step in GnRH-stimulated LH release is distal to Ca+2 mobilization.  相似文献   

13.
It has been repeatedly shown that stimulation of a human leukemic T-cell line, JURKAT, by lectins such as phytohaemagglutinin and anti-T3 antibody (OKT3) leads to an elevation in the concentration of cytosolic free Ca2. This Ca2+ transient results from both an intracellular mobilization and an influx of Ca2+ through specific membrane channels. The objective of this study was to investigate the mechanism by which receptor-mediated influx of Ca2+ is regulated in JURKAT cells, which demonstrably lack 'voltage-dependent calcium channels'. It was found that upon increased loading with quin2 or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA) there was a pronounced decline of both phytohaemagglutinin-stimulated and OKT3-stimulated influx of 45Ca2+. Using 15 microM quin2/AM or 30 microM BAPTA/AM, agonist-stimulated 45Ca2+ influx was almost totally abolished. At these concentrations of both quin2/AM or BAPTA/AM, phytohaemagglutinin and OKT3 could still induce a rise of cytosolic free Ca2+ above 200 nM. In the presence of La3+ (200 microM), which completely inhibited the agonist-induced 45Ca2+ influx, both phytohaemagglutinin and OKT3 were able to raise the concentrations of cytosolic free Ca2+ to well above 200 nM by merely mobilizing Ca2+ from intracellular stores alone. The data suggest that an agonist-induced increase in the concentration of cytosolic free Ca2+, due to mobilization from intracellular stores, could either directly or indirectly, initiate receptor-mediated Ca2+ influx across the plasma membrane in JURKAT cells.  相似文献   

14.
Low concentrations of FMLP, partially purified rabbit C5a, leukotriene B4 and platelet activating factor induced a rapid rise of intracellular free Ca2+ in rabbit polymorphonuclear leukocytes. However, the four factors differed markedly in their ability to activate the respiratory burst. The peptides FMLP and C5a induced a single, strong chemiluminescence response whereas the lipids leukotriene B4 and platelet activating factor induced a markedly less intense response with a two-peak profile. Respiratory burst activation by the peptides was dependent on extracellular Ca2+ whereas the lipids required both Mg2+ and Ca2+. The results indicate that mobilization of intracellular Ca2+ is insufficient by itself to induce respiratory burst activation and that the intracellular pathways leading to activation differ depending on the nature of the stimulus.  相似文献   

15.
Recombinant monocyte-chemotactic and activating factor (rMCAF; alternative acronyms MCP-1, TDCF, human JE) induced migration of human monocytes across polycarbonate or nitrocellulose filters. Maximal induction of migration was observed at a concentration of 10 ng/ml (10(-9) M). Checkerboard analysis revealed that rMCAF elicited true gradient-dependent chemotactic migration, although a gradient independent chemokinetic effect was observed at low concentrations (1-5 ng/ml). rMCAF caused a rapid (less than 5 s) and transient (approximately 1.5 min) increase of free cytosolic Ca2+ ions, as assessed by the fura-2 probe. No Ca2+ increase was detected in neutrophils or lymphocytes stimulated by rMCAF. Studies conducted in the absence of extracellular Ca2+ or in the presence of Ni2+ (an inhibitor of Ca2+ influx) suggested that the increase of intracellular Ca2+ induced by rMCAF is dependent on the influx of extracellular Ca2+ through plasma membrane channels. Bordetella pertussis toxin inhibited the intracellular Ca2+ elevation and chemotaxis caused by rMCAF. The possible involvement of Ca(2+)-dependent protein kinases in rMCAF signaling pathway(s) was explored using inhibitors. Inhibitors of GMP-dependent kinase and myosin L chain kinase had no effect on rMCAF-induced monocyte migration. In contrast, protein kinase C/cAMP-dependent kinase inhibitors (such as, C-I, H-7, HA-1004, KT5720, and Staurosporine) markedly decreased rMCAF induced chemotaxis suggesting the involvement of a serine/threonine protein kinase, possibly protein kinase C, in rMCAF signaling pathway.  相似文献   

16.
The mechanisms by which the chemotactic peptide formyl-methyl-leucyl-phenyl-alanine stimulates Ca2+ influx across the plasma membrane were investigated in the human promyelocytic cell line HL-60, induced to differentiate with dimethyl sulfoxide. Ca2+ influx was determined: (a) from the initial rate of Mn2+ influx, apparent from the quenching of intracellular quin2 or fura-2 fluorescence; (b) from the rate of the elevation of cytosolic free calcium, [Ca2+]i, upon readdition of Ca2+ to cells previously stimulated in the absence of extracellular Ca2+. [3H]Inositol tris-, tetrakis-, and pentakisphosphates were analyzed by a high performance liquid chromatography procedure which was optimized for the separation of inositol tetrakisphosphates, yielding three predominant isomers: inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), inositol 1,4,5,6-tetrakisphosphate, and inositol 1,3,4, 6-tetrakisphosphate. Both the kinetics and agonist dose dependence of Ca2+ influx stimulation correlated closely with the corresponding receptor-mediated variations of [Ca2+]i either in the presence or in the absence of extracellular Ca2+. Of the different inositol phosphates determined in parallel and under the same conditions, accumulation of [3H]Ins(1,3,4,5)P4 correlated best with Ca2+ influx both temporally and in its dose dependence in the presence or in the absence of extracellular Ca2+; inositol 1,3,4-trisphosphate was also correlated but to a lesser extent. Attenuations of [Ca2+]i elevations by decreasing extracellular Ca2+ or by increasing the cytosolic Ca2+ buffering capacity with quin2 led to parallel inhibition of Ca2+ influx and Ins(1,3,4,5)P4 production. In conclusion: 1) activation of Ca2+ influx by formyl-methionyl-leucyl-phenylalanine depends on the elevation of [Ca2+]i, the latter being initiated by Ca2+ mobilization from intracellular stores; 2) Ins(1,3, 4,5)P4 is a strong candidate for maintaining receptor-mediated activation of Ca2+ influx in differentiated HL-60 cells.  相似文献   

17.
Chemotaxis of human neutrophils in response to a gradient of the chemotactic peptide, fmet-leu-phe (FMLP), was measured by the under-agarose technique. The dose-response curve for FMLP was biphasic; low concentrations were stimulatory, and the response was reduced at higher concentrations. The response to FMLP was partially inhibited (about 50%) in the absence of extracellular Ca2 (EGTA added). NiCl2 dose-dependently inhibited FMLP-stimulated chemotaxis in the presence of extracellular Ca2+; the maximum inhibition obtainable with NiCl2 was similar to that with the absence of extracellular Ca2+. These results suggest that FMLP-stimulated chemotaxis is, at least partially, dependent on stimulation of Ca2+ influx. The phorbol ester, PMA, dose-dependently inhibited chemotaxis; the response was almost completely inhibited by 10 nM PMA. This result indicates that activation of protein kinase C inhibits chemotaxis. These results are discussed in relation to the physiological responses of neutrophils.  相似文献   

18.
The effects of glucose on cytoplasmic free Ca2+ concentration, [Ca2+]i, and insulin release were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Measurements of [Ca2+]i were performed in cell suspensions in a cuvette and in single cell-aggregates in a microscopic system, using fura 2 and quin 2. Insulin release was studied from indicator loaded cells in a column perifusion system. In the presence of 1.28 mM extracellular Ca2+, an increase in the glucose concentration from 0 to 20 mM had two major effects on [Ca2+]i. Initially there was a decrease, which was immediately followed by a pronounced increase. At reduced extracellular Ca2+, or when Ca2+ influx was blocked, glucose induced only a decrease in [Ca2+]i. With increasing intracellular concentrations of indicator, the effects of glucose on [Ca2+]i were markedly reduced. Changes in [Ca2+]i, similar effects being obtained in the cuvette and microfluorometric measurements, were paralleled by changes in insulin release. Insulin release from indicator loaded cells did not markedly differ from that of non-loaded controls, either with respect to rapidity or size in the response to the sugar. The addition of 20 mM glucose increased the efflux of fura 2, an effect that was not related to insulin release. Permeabilization of indicator loaded cells demonstrated a substantial amount of fura 2 bound intracellularly. Although the effects of glucose on [Ca2+]i seemed to be similar in fura 2 and quin 2 loaded cells, the demonstrated leakage and possible intracellular binding should be considered before using fura 2 for measurements in pancreatic beta-cells.  相似文献   

19.
We examined whether the increase in endothelial albumin permeability induced by alpha-thrombin is dependent on extracellular Ca2+ influx. Permeability of 125I-albumin across confluent monolayers of cultured bovine pulmonary artery endothelial cells was measured before and after the addition of 0.1 microM alpha-thrombin. In the presence of normal extracellular Ca2+ concentration ([Ca2+]o, 1000 microM), alpha-thrombin produced a 175 +/- 10% increase in 125I-albumin permeability. At lower [Ca2+]o (100, 10, 1, or less than 1 microM), alpha-thrombin caused a 140% increase in permeability (P less than 0.005). LaCl3 (1 mM), which competes for Ca2+ entry, blunted 38% of the increase in permeability. Preloading endothelial monolayers with quin2 to buffer cytosolic Ca2+ (Cai2+) produced a dose-dependent inhibition of the increase in 125I-albumin permeability. Preincubation with nifedipine or verapamil was ineffective in reducing the thrombin-induced permeability increase. A 60 mM K+ isosmotic solution did not alter base-line endothelial permeability. alpha-Thrombin increased [Ca2+]i in a dose-dependent manner and the 45Ca2+ influx rate. Extracellular medium containing 60 mM K+ did not increase 45Ca2+ influx, and nifedipine did not block the rise in 45Ca2+ influx caused by alpha-thrombin. Ca2+ flux into endothelial cells induced by alpha-thrombin does not occur through voltage-sensitive channels but may involve receptor-operated channels. In conclusion, the increase in endothelial albumin permeability caused by alpha-thrombin is dependent on Ca2+ influx and intracellular Ca2+ mobilization.  相似文献   

20.
Staphylococcal serine proteinase (SSP) can influence various functions of human polymorphonuclear leukocytes (PMNL) including chemotaxis and phagocytosis. Since the rise in intracellular free calcium concentration is an important step in signal transduction leading to phagocyte activation, we tested the ability of SSP to increase the intracellular free calcium concentration in human PMNL using the fluorescent calcium indicator Fura-2AM. PMNL isolated from healthy donors responded to SSP in the concentration range of 10 to 100 µg/ml. The highest Ca2+ rise (104 ± 47 nM) was observed for 10 µg/ml SSP. It was mainly dependent (81 ± 11%) on extracellular calcium influx, however, SSP mobilized 68 ± 7% of Ca2+ from intracellular calcium stores. Boiling of SSP or preincubation with phenylmethylsulphonylfluoride (an serine proteinase inhibitor) did not change its ability to increase intracellular free calcium concentration in PMNL. It suggests that active center of SSP is not responsible for Ca2+ mobilization. Finally, PMNL responded to each of three consecutive stimulations with SSP independently of the presence of high or low extracellular Ca2 concentration. This may be an additional mechanism responsible for activation of human PMNL and degradation of alveolar walls during the staphylococcal infection in the lower airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号