首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
Faithful decoding of the genetic information by the ribosome relies on kinetically driven mechanisms that promote selection of cognate substrates during elongation. Recently, we have shown that in addition to these kinetically driven mechanisms, the ribosome possesses a post peptidyl transfer quality control system that retrospectively monitors the codon–anticodon interaction in the P site, triggering substantial losses in the specificity of the A site during subsequent tRNA and RF selection when a mistake has occurred. Here, we report a detailed kinetic analysis of tRNA selection in the context of a mismatched P-site codon:anticodon interaction. We observe pleiotropic effects of a P-site mismatch on tRNA selection, such that near-cognate tRNA is processed by the ribosome almost as efficiently as cognate. In particular, after a miscoding event, near-cognate codon–anticodon complexes are stabilized on the ribosome to an extent similar to that observed for cognate ones. Moreover, the two observed forward rates of GTPase activation and accommodation are greatly accelerated (∼10-fold) for near-cognate tRNAs. Because the ensemble of effects of a mismatched P site on substrate selection were found to be different from those reported for other ribosomal perturbations and miscoding agents, we propose that the structural integrity of the mRNA–tRNA helix in the P site provides a distinct molecular switch that dictates the specificity of the A site.  相似文献   

2.
Ribosomes control the missense error rate of ~ 10− 4 during translation though quantitative contributions of individual mechanistic steps of the conformational changes yet to be fully determined. Biochemical and biophysical studies led to a qualitative tRNA selection model in which ribosomal A-site residues A1492 and A1493 (A1492/3) flip out in response to cognate tRNA binding, promoting the subsequent reactions, but not in the case of near-cognate or non-cognate tRNA. However, this model was recently questioned by X-ray structures revealing conformations of extrahelical A1492/3 and domain closure of the decoding center in both cognate and near-cognate tRNA bound ribosome complexes, suggesting that the non-specific flipping of A1492/3 has no active role in tRNA selection. We explore this question by carrying out molecular dynamics simulations, aided with fluorescence and NMR experiments, to probe the free energy cost of extrahelical flipping of 1492/3 and the strain energy associated with domain conformational change. Our rigorous calculations demonstrate that the A1492/3 flipping is indeed a specific response to the binding of cognate tRNA, contributing 3 kcal/mol to the specificity of tRNA selection. Furthermore, the different A-minor interactions in cognate and near-cognate complexes propagate into the conformational strain and contribute another 4 kcal/mol in domain closure. The recent structure of ribosome with features of extrahelical A1492/3 and closed domain in near-cognate complex is reconciled by possible tautomerization of the wobble base pair in mRNA–tRNA. These results quantitatively rationalize other independent experimental observations and explain the ribosomal discrimination mechanism of selecting cognate versus near-cognate tRNA.  相似文献   

3.
The ribosome must discriminate between correct and incorrect tRNAs with sufficient speed and accuracy to sustain an adequate rate of cell growth. Here, we report the results of explicit solvent molecular dynamics simulations, which address the mechanism of discrimination by the ribosome. The universally conserved 16S rRNA base A1493 and the kink in mRNA between A and P sites amplify differences in stability between cognate and near-cognate codon-anticodon pairs. Destabilization by the mRNA kink also provides a geometric explanation for the higher error rates observed for mismatches in the first codon position relative to mismatches in the second codon position. For more stable near-cognates, the repositioning of the universally conserved bases A1492 and G530 results in increased solvent exposure and an uncompensated loss of hydrogen bonds, preventing correct codon-anticodon-ribosome interactions from forming.  相似文献   

4.
During protein synthesis, interactions between the decoding center of the ribosome and the codon-anticodon complexes maintain translation accuracy. Correct aminoacyl-tRNAs induce the ribosome to shift into a "closed" conformation that both blocks tRNA dissociation and accelerates the process of tRNA acceptance. As part of the ribosomal recognition of cognate tRNAs, the rRNA nucleotides G530 and A1492 form a hydrogen-bonded pair that interacts with the middle position of the codon.anticodon complex and recognizes correct Watson-Crick base pairs. Exchanging these two nucleotides (A530 and G1492) would not disrupt these interactions, suggesting that such a double mutant ribosome might properly recognize tRNAs and support viability. We find, however, that exchange mutants retain little ribosomal activity. We suggest that even though the exchanged nucleotides might function properly during tRNA recruitment, they might disrupt one or more other functions of the nucleotides during other stages of protein synthesis.  相似文献   

5.
Nucleic acids are under constant assault from endogenous and environmental agents that alter their physical and chemical properties. O6-methylation of guanosine (m6G) is particularly notable for its high mutagenicity, pairing with T, during DNA replication. Yet, while m6G accumulates in both DNA and RNA, little is known about its effects on RNA. Here, we investigate the effects of m6G on the decoding process, using a reconstituted bacterial translation system. m6G at the first and third position of the codon decreases the accuracy of tRNA selection. The ribosome readily incorporates near-cognate aminoacyl-tRNAs (aa-tRNAs) by forming m6G-uridine codon–anticodon pairs. Surprisingly, the introduction of m6G to the second position of the codon does not promote miscoding, but instead slows the observed rates of peptide-bond formation by >1000-fold for cognate aa-tRNAs without altering the rates for near-cognate aa-tRNAs. These in vitro observations were recapitulated in eukaryotic extracts and HEK293 cells. Interestingly, the analogous modification N6-methyladenosine (m6A) at the second position has only a minimal effect on tRNA selection, suggesting that the effects on tRNA selection seen with m6G are due to altered geometry of the base pair. Given that the m6G:U base pair is predicted to be nearly indistinguishable from a Watson-Crick base pair, our data suggest that the decoding center of the ribosome is extremely sensitive to changes at the second position. Our data, apart from highlighting the deleterious effects that these adducts pose to cellular fitness, shed new insight into decoding and the process by which the ribosome recognizes codon–anticodon pairs.  相似文献   

6.
Ogle JM  Murphy FV  Tarry MJ  Ramakrishnan V 《Cell》2002,111(5):721-732
A structural and mechanistic explanation for the selection of tRNAs by the ribosome has been elusive. Here, we report crystal structures of the 30S ribosomal subunit with codon and near-cognate tRNA anticodon stem loops bound at the decoding center and compare affinities of equivalent complexes in solution. In ribosomal interactions with near-cognate tRNA, deviation from Watson-Crick geometry results in uncompensated desolvation of hydrogen-bonding partners at the codon-anticodon minor groove. As a result, the transition to a closed form of the 30S induced by cognate tRNA is unfavorable for near-cognate tRNA unless paromomycin induces part of the rearrangement. We conclude that stabilization of a closed 30S conformation is required for tRNA selection, and thereby structurally rationalize much previous data on translational fidelity.  相似文献   

7.
Almlöf M  Andér M  Aqvist J 《Biochemistry》2007,46(1):200-209
Recent crystal structures of the small ribosomal subunit have made it possible to examine the detailed energetics of codon recognition on the ribosome by computational methods. The binding of cognate and near-cognate anticodon stem loops to the ribosome decoding center, with mRNA containing the Phe UUU and UUC codons, are analyzed here using explicit solvent molecular dynamics simulations together with the linear interaction energy (LIE) method. The calculated binding free energies are in excellent agreement with experimental binding constants and reproduce the relative effects of mismatches in the first and second codon position versus a mismatch at the wobble position. The simulations further predict that the Leu2 anticodon stem loop is about 10 times more stable than the Ser stem loop in complex with the Phe UUU codon. It is also found that the ribosome significantly enhances the intrinsic stability differences of codon-anticodon complexes in aqueous solution. Structural analysis of the simulations confirms the previously suggested importance of the universally conserved nucleotides A1492, A1493, and G530 in the decoding process.  相似文献   

8.
Translocation is an essential step in the elongation cycle of the protein synthesis that allows for the continual incorporation of new amino acids to the growing polypeptide. Movement of mRNA and tRNAs within the ribosome is catalyzed by EF-G binding and GTP hydrolysis. The 30S subunit decoding center is crucial for the selection of the cognate tRNA. However, it is not clear whether the decoding center participates in translocation. We disrupted the interactions in the decoding center by mutating the universally conserved 16S rRNA bases G530, A1492, and A1493, and the effects of these mutations on translocation were studied. Our results show that point mutation of any of these 16S rRNA bases inhibits EF-G-dependent translocation. Furthermore, the mutant ribosomes showed increased puromycin reactivity in the pretranslocation complexes, indicating that the dynamic equilibrium of the peptidyl tRNA between the classical and hybrid-state configurations is influenced by contacts in the decoding center.  相似文献   

9.
Helix 69 of 23S rRNA forms one of the major inter-subunit bridges of the 70S ribosome and interacts with A- and P-site tRNAs and translation factors. Despite the proximity of h69 to the decoding center and tRNAs, the contribution of h69 to the tRNA selection process is unclear: previous genetic analyses have shown that h69 mutations increase frameshifting and readthrough of stop codons. However, a complete deletion of h69 does not affect the selection of cognate tRNAs in vitro. To address these discrepancies, the in vivo effects of a range of single- and multi-base h69 mutations in Escherichia coli 23S rRNA on various translation errors have been determined. While a majority of the h69 mutations examined here affected readthrough of stop codons and frameshifting, the ΔA1916 single base deletion mutation uniquely influenced missense decoding. Different h69 mutants had either increased or decreased levels of stop codon readthrough. The h69 mutations that decreased UGA readthrough also decreased UGA reading by a mutant, near-cognate tRNATrp carrying a G24A substitution in the D arm, but had far less effect on UGA reading by a suppressor tRNA with a complementary anticodon. These results suggest that h69 interactions with release factors contribute significantly to termination efficiency and that interaction with the D arm of A-site tRNA is important for discrimination between cognate and near-cognate tRNAs.  相似文献   

10.
Tight recognition of codon–anticodon pairings by the ribosome ensures the accuracy and fidelity of protein synthesis. In eubacteria, translational surveillance and ribosome rescue are performed by the ‘tmRNA–SmpB’ system (transfer messenger RNA–small protein B). Remarkably, entry and accommodation of aminoacylated‐tmRNA into stalled ribosomes occur without a codon–anticodon interaction but in the presence of SmpB. Here, we show that within a stalled ribosome, SmpB interacts with the three universally conserved bases G530, A1492 and A1493 that form the 30S subunit decoding centre, in which canonical codon–anticodon pairing occurs. The footprints at positions A1492 and A1493 of a small decoding centre, as well as on a set of conserved SmpB amino acids, were identified by nuclear magnetic resonance. Mutants at these residues display the same growth defects as for ΔsmpB strains. The SmpB protein has functional and structural similarities with initiation factor 1, and is proposed to be a functional mimic of the pairing between a codon and an anticodon.  相似文献   

11.
The decoding A site of the small ribosomal subunit is an RNA molecular switch, which monitors codon–anticodon interactions to guarantee translation fidelity. We have solved the crystal structure of an RNA fragment containing two Homo sapiens cytoplasmic A sites. Each of the two A sites presents a different conformational state. In one state, adenines A1492 and A1493 are fully bulged-out with C1409 forming a wobble-like pair to A1491. In the second state, adenines A1492 and A1493 form non-Watson–Crick pairs with C1409 and G1408, respectively while A1491 bulges out. The first state of the eukaryotic A site is, thus, basically the same as in the bacterial A site with bulging A1492 and A1493. It is the state used for recognition of the codon/anticodon complex. On the contrary, the second state of the H.sapiens cytoplasmic A site is drastically different from any of those observed for the bacterial A site without bulging A1492 and A1493.  相似文献   

12.
Accurate discrimination between cognate and near-cognate aminoacyl-tRNAs during translation relies on the specific acceleration of forward rate constants for cognate tRNAs. Such specific rate enhancement correlates with conformational changes in the tRNA and small ribosomal subunit that depend on an RNA-specific type of interaction, the A-minor motif, between universally conserved 16S ribosomal RNA nucleotides and the cognate codon-anticodon helix. We show that perturbations of these two components of the A-minor motif, the conserved rRNA bases and the codon-anticodon helix, result in distinct outcomes. Although both cause decreases in the rates of tRNA selection that are rescued by aminoglycoside antibiotics, only disruption of the codon-anticodon helix is overcome by a miscoding tRNA variant. On this basis, we propose that two independent molecular requirements must be met to allow tRNAs to proceed through the selection pathway, providing a mechanism for exquisite control of fidelity during this step in gene expression.  相似文献   

13.
The selection of cognate tRNAs during translation is specified by a kinetic discrimination mechanism driven by distinct structural states of the ribosome. While the biochemical steps that drive the tRNA selection process have been carefully documented, it remains unclear how recognition of matched codon:anticodon helices in the small subunit facilitate global rearrangements in the ribosome complex that efficiently promote tRNA decoding. Here we use an in vitro selection approach to isolate tRNATrp miscoding variants that exhibit a globally perturbed tRNA tertiary structure. Interestingly, the most substantial distortions are positioned in the elbow region of the tRNA that closely approaches helix 69 (H69) of the large ribosomal subunit. The importance of these specific interactions to tRNA selection is underscored by our kinetic analysis of both tRNA and rRNA variants that perturb the integrity of this interaction.  相似文献   

14.
Many contacts between the ribosome and its principal substrates, tRNA and mRNA, involve universally conserved rRNA nucleotides, implying their functional importance in translation. Here, we measure the in vivo translation activity conferred by substitution of each 16S rRNA base believed to contribute to the A or P site. We find that the 30S P site is generally more tolerant of mutation than the 30S A site. In the A site, A1493C or any substitution of G530 or A1492 results in complete loss of translation activity, while A1493U and A1493G decrease translation activity by >20-fold. Among the P-site nucleotides, A1339 is most critical; any mutation of A1339 confers a >18-fold decrease in translation activity. Regarding all other P-site bases, ribosomes harboring at least one substitution retain considerable activity, >10% that of control ribosomes. Moreover, several sets of multiple substitutions within the 30S P site fail to inactivate the ribosome. The robust nature of the 30S P site indicates that its interaction with the codon-anticodon helix is less stringent than that of the 30S A site. In addition, we show that G1338A suppresses phenotypes conferred by m(2)G966A and several multiple P-site substitutions, suggesting that adenine at position 1338 can stabilize tRNA interaction in the P site.  相似文献   

15.
Decoding the genome: a modified view   总被引:10,自引:4,他引:6       下载免费PDF全文
Transfer RNA’s role in decoding the genome is critical to the accuracy and efficiency of protein synthesis. Though modified nucleosides were identified in RNA 50 years ago, only recently has their importance to tRNA’s ability to decode cognate and wobble codons become apparent. RNA modifications are ubiquitous. To date, some 100 different posttranslational modifications have been identified. Modifications of tRNA are the most extensively investigated; however, many other RNAs have modified nucleosides. The modifications that occur at the first, or wobble position, of tRNA’s anticodon and those 3′-adjacent to the anticodon are of particular interest. The tRNAs most affected by individual and combinations of modifications respond to codons in mixed codon boxes where distinction of the third codon base is important for discriminating between the correct cognate or wobble codons and the incorrect near-cognate codons (e.g. AAA/G for lysine versus AAU/C asparagine). In contrast, other modifications expand wobble codon recognition, such as U·U base pairing, for tRNAs that respond to multiple codons of a 4-fold degenerate codon box (e.g. GUU/A/C/G for valine). Whether restricting codon recognition, expanding wobble, enabling translocation, or maintaining the messenger RNA, reading frame modifications appear to reduce anticodon loop dynamics to that accepted by the ribosome. Therefore, we suggest that anticodon stem and loop domain nucleoside modifications allow a limited number of tRNAs to accurately and efficiently decode the 61 amino acid codons by selectively restricting some anticodon–codon interactions and expanding others.  相似文献   

16.
During the process of translation, an aminoacyl tRNA is selected in the A site of the decoding center of the small subunit based on the correct codon–anticodon base pairing. Though selection is usually accurate, mutations in the ribosomal RNA and proteins and the presence of some antibiotics like streptomycin alter translational accuracy. Recent crystallographic structures of the ribosome suggest that cognate tRNAs induce a “closed conformation” of the small subunit that stabilizes the codon–anticodon interactions at the A site. During formation of the closed conformation, the protein interface between rpS4 and rpS5 is broken while new contacts form with rpS12. Mutations in rpS12 confer streptomycin resistance or dependence and show a hyperaccurate phenotype. Mutations reversing streptomycin dependence affect rpS4 and rpS5. The canonical rpS4 and rpS5 streptomycin independent mutations increase translational errors and were called ribosomal ambiguity mutations (ram). The mutations in these proteins are proposed to affect formation of the closed complex by breaking the rpS4-rpS5 interface, which reduces the cost of domain closure and thus increases translational errors. We used a yeast two-hybrid system to study the interactions between the small subunit ribosomal proteins rpS4 and rpS5 and to test the effect of ram mutations on the stability of the interface. We found no correlation between ram phenotype and disruption of the interface.  相似文献   

17.
RsgA (ribosome-small-subunit-dependent GTPase A, also known as YjeQ) is a unique GTPase in that guanosine triphosphate hydrolytic activity is activated by the small subunit of the ribosome. Disruption of the gene for RsgA from the genome affects the growth of cells, the subunit association of the ribosome, and the maturation of 16S rRNA. To study the interaction of Escherichia coli RsgA with the ribosome, chemical modifications using dimethylsulfate and kethoxal were performed on the small subunit in the presence or in the absence of RsgA. The chemical reactivities at G530, A790, G925, G926, G966, C1054, G1339, G1405, A1413, and A1493 in 16S rRNA were reduced, while those at A532, A923, G1392, A1408, A1468, and A1483 were enhanced, by the addition of RsgA, together with 5′-guanylylimidodiphosphate. Among them, the chemical reactivities at A532, A790, A923, G925, G926, C1054, G1392, A1413, A1468, A1483, and A1493 were not changed when RsgA was added together with GDP. These results indicate that the binding of RsgA induces conformational changes around the A site, P site, and helix 44, and that guanosine triphosphate hydrolysis induces partial conformational restoration, especially in the head, to dissociate RsgA from the small subunit. RsgA has the capacity to coexist with mRNA in the ribosome while it promotes dissociation of tRNA from the ribosome.  相似文献   

18.
The penultimate stem-loop of 16S ribosomal RNA (rRNA), helix 44, plays a central role in ribosome function. Using time-resolved dimethyl sulfate (DMS) probing, we have analyzed time-dependent modifications that occur at specific bases in this helix near the decoding region, resulting from the binding of elongation factor G (EF-G) in various forms. When EF-G-GTP is bound to 70S ribosomes, bases A1492 and A1493 are immediately protected, while other bases in the region show either no change or enhanced modification. When apo-EF-G is bound to 70S ribosomes and GTP is added, substantial transient time-dependent enhancement occurs at bases A1492 and A1493, with somewhat less enhancement occurring at base A1483, all in the first 45 ms. When mRNA and deacylated tRNAs are bound to the 70S ribosome and EF-G-GTP is added, bases A1492 and A1493 again show substantial and continued enhancement, while bases A1408, A1413, and A1418 all show time-dependent protection. These results provide primary, real-time evidence that EF-G induces direct or indirect structural changes in this region as EF-G is bound and as GTP is hydrolyzed.  相似文献   

19.
In bacteria, stalled ribosomes are recycled by a hybrid transfer-messenger RNA (tmRNA). Like tRNA, tmRNA is aminoacylated with alanine and is delivered to the ribosome by EF-Tu, where it reacts with the growing polypeptide chain. tmRNA entry into stalled ribosomes poses a challenge to our understanding of ribosome function because it occurs in the absence of a codon-anticodon interaction. Instead, tmRNA entry is licensed by the binding of its protein partner, SmpB, to the ribosomal decoding center. We analyzed a series of SmpB mutants and found that its C-terminal tail is essential for tmRNA accommodation but not for EF-Tu activation. We obtained evidence that the tail likely functions as a helix on the ribosome to promote accommodation and identified key residues in the tail essential for this step. In addition, our mutational analysis points to a role for the conserved K(131)GKK tail residues in trans-translation after peptidyl transfer to tmRNA, presumably EF-G-mediated translocation or translation of the tmRNA template. Surprisingly, analysis of A1492, A1493, and G530 mutants reveals that while these ribosomal nucleotides are essential for normal tRNA selection, they play little to no role in peptidyl transfer to tmRNA. These studies clarify how SmpB interacts with the ribosomal decoding center to license tmRNA entry into stalled ribosomes.  相似文献   

20.
Transfer RNA molecules translate the genetic code by recognizing cognate mRNA codons during protein synthesis. The anticodon wobble at position 34 and the nucleotide immediately 3' to the anticodon triplet at position 37 display a large diversity of modified nucleosides in the tRNAs of all organisms. We show that tRNA species translating 2-fold degenerate codons require a modified U(34) to enable recognition of their cognate codons ending in A or G but restrict reading of noncognate or near-cognate codons ending in U and C that specify a different amino acid. In particular, the nucleoside modifications 2-thiouridine at position 34 (s(2)U(34)), 5-methylaminomethyluridine at position 34 (mnm(5)U(34)), and 6-threonylcarbamoyladenosine at position 37 (t(6)A(37)) were essential for Watson-Crick (AAA) and wobble (AAG) cognate codon recognition by tRNA(UUU)(Lys) at the ribosomal aminoacyl and peptidyl sites but did not enable the recognition of the asparagine codons (AAU and AAC). We conclude that modified nucleosides evolved to modulate an anticodon domain structure necessary for many tRNA species to accurately translate the genetic code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号