首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
Circadian clocks (oscillators) regulate multiple life functions in insects. The circadian system located in the male reproductive tract of Lepidoptera is one of the best characterized peripheral oscillators in insects. Our previous research on the cotton leafworm, Spodoptera littoralis, demonstrated that this oscillator controls the rhythm of sperm release from the testis and coordinates sperm maturation in the upper vas deferens (UVD). We demonstrated previously that a protein that functions as yolk protein in females is also produced in cyst cells surrounding sperm bundles in the testis, and is released into the UVD. Here, we investigated the temporal expression of the yolk protein 2 (yp2) gene at the mRNA and protein level in the testis of S. littoralis, and inquired whether their expression is regulated by PER-based molecular oscillator. We describe a circadian rhythm of YP2 accumulation in the UVD seminal fluid, where this protein interacts with sperm in a circadian fashion. However, we also demonstrate that yp2 mRNA and YP2 protein levels within cyst cells show only a diurnal rhythm in light/dark (LD) cycles. These rhythms do not persist in constant darkness (DD), suggesting that they are non-circadian. Interestingly, the per gene mRNA and protein levels in cyst cells are rhythmic in LD but not in DD. Nevertheless, per appears to be involved in the diurnal timing of YP2 protein accumulation in cyst cells.  相似文献   

4.
In an effort to understand whether heat shock protein 70 (Hsp70) participates in the environmental 5 °C signal reception/transduction toward breaking embryonic diapause of the silkworm Bombyx mori, we isolated a cDNA for Hsp70a and examined the expression of Hsp70a mRNA in B. mori diapause and nondiapause eggs by quantitative real-time PCR. Hsp70a mRNA gradually increased in diapause eggs continuously kept at 25 °C after oviposition to maintain diapause. When diapause eggs were exposed to the diapause-terminating condition of 5 °C beginning at 2 days post-oviposition, Hsp70a mRNA increased beginning at 5 days post-cold treatment. Even in nondiapause eggs, Hsp70a mRNA increased slightly with exposure to 5 °C. These results suggest that Hsp70a is involved in reception/transduction of the diapause-terminating (5 °C) signal via gene activation. The expression patterns of Hsp70a mRNA are discussed in relation to those of the cold-response gene Samui.  相似文献   

5.
The photoperiodic response is crucial for many insects to adapt to seasonal changes in temperate regions. It was recently shown that the circadian clock genes period (per) and cycle (cyc) are involved in the photoperiodic regulation of reproductive diapause in the bean bug Riptortus pedestris females. Here, we investigated the involvement of per and cyc both in the circadian rhythm of cuticle deposition and in the photoperiodic diapause of R. pedestris males using RNA interference (RNAi). RNAi of per and cyc disrupted the cuticle deposition rhythm and resulted in distinct cuticle layers. RNAi of per induced development of the male reproductive organs even under diapause-inducing short-day conditions, whereas RNAi of cyc suppressed development of the reproductive organs even under diapause-averting long-day conditions. Thus, the present study suggests that the circadian clock operated by per and cyc governs photoperiodism of males as that of females.  相似文献   

6.
Earlier experiments demonstrated a strong up-regulation of per mRNA in wild-type (Wt) females of Pyrrhocoris apterus reared under diapause-inducing short days, while per mRNA levels were low in females of two non-diapause mutant strains (Nd), irrespective of photoperiod. In the present study, different sequences of per DNA in two strains of geographically different origin enabled us to analyse genetic linkage between the per gene and the Nd phenotype. Crosses between Wt females originating from C. Budejovice (Czech Republic) and Nd males originating from Lyon (France) resulted in F(2) progeny where 411 females entered diapause under short days and 120 females were reproducing. Thus, the segregation was very close to the 3:1 ratio in favour of diapause females, suggesting that the Nd trait behaves as a single autosomal recessive. Analysis of DNA in 20 females of the F(2) progeny revealed that their phenotype was not linked to the per genotype. We conclude that the per gene is not primarily responsible for the block to diapause photoresponsiveness in Nd mutants and its role, if any, is downstream from other gene(s) controlling diapause. This is the first attempt at genetic linkage analysis between a bona fide circadian clock gene and photoperiodism in a "non-drosophilid" species.  相似文献   

7.
In the Ibaraki population (Japan) of Locusta migratoria, adult locusts produce diapause eggs under short-day (SD) conditions and non-diapause eggs under long-day (LD) conditions. The identity and titre of ecdysteroids in the ovaries and eggs from LD and SD adult females were investigated by RIA/HPLC. Maternal ecdysteroids accumulated in the developing ovaries represented about 90% polar conjugates, 5% free ecdysteroids and 5% non-hydrolyzable metabolites. Before oviposition the quantity of ecdysteroids reached 29.8±1.85 ng 20-hydroxyecdysone equiv. per mg tissue ovaries from LD females and 13.1±3.55 ng 20E equiv./mg in ovaries from SD females. The sum of RIA-positive materials in newly laid eggs was more than three times higher in non-diapause eggs than in diapause eggs. Ecdysteroids present in egg extracts comprised about 85% polar conjugates, 5% free ecdysteroids and 10% non-hydrolyzable metabolites. On the other hand, after diapause termination the amount of ecdysteroids increased drastically. Also, the composition of ecdysteroids differed from that observed during diapause and became comparable to that of non-diapause eggs. The significant differences in the ecdysteroids between non-diapause and diapause eggs may suggest the possible involvement of these compounds in the control of embryonic diapause of this locust.  相似文献   

8.
9.
Adults of the cabbage beetle Colaphellus bowringi display a summer diapause in response to the exposure of their larvae to long photoperiods. In the present study, the inheritance of the photoperiodic response controlling summer diapause in C. bowringi by crossing a high diapause strain (D strain) with a laboratory selected nondiapause strain (N strain) was investigated under different photoperiods at 22, 25 and 28 °C. The beetles in both reciprocal crosses and backcrosses showed a clear short-day response for the induction of diapause at all temperatures, similar to that of the D strain, suggesting that photoperiodic response of this beetle is heritable. The diapause incidences in the progeny from all the crosses under LD 15:9 or LD 12:12 at 25 °C suggest that genetic and genetic-environmental interactions are involved in diapause induction. The incidence of diapauses in F1 progeny was significantly lower than that in the D × D strain but significantly higher than that in the N × N strain, indicating that the diapause capability is inherited in an incomplete dominant manner. The incidence of diapause was greater among the offspring of hybrid females when those females had a D strain mother or grandmother rather than a N strain mother or grandmother, indicating that maternal effects on diapause induction are stronger than paternal effects. The laboratory selected nondiapause strain also showed a short-day photoperiodic response at a low temperature of 22 °C, indicating that the photoperiodic photoreceptor and photoperiodic clock still function in the nondiapause strain.  相似文献   

10.
Molecular studies revealed that autoregulatory negative feedback loops consisting of so-called “clock genes” constitute the circadian clock in Drosophila. However, this hypothesis is not fully supported in other insects and is thus to be examined. In the cricket Gryllus bimaculatus, we have previously shown that period (per) plays an essential role in the rhythm generation. In the present study, we cloned cDNA of the clock gene timeless (tim) and investigated its role in the cricket circadian oscillatory mechanism using RNA interference. Molecular structure of the cricket tim has rather high similarity to those of other insect species. Real-time RT-PCR analysis revealed that tim mRNA showed rhythmic expression in both LD and DD similar to that of per, peaking during the (subjective) night. When injected with tim double-stranded RNA (dstim), tim mRNA levels were significantly reduced and its circadian expression rhythm was eliminated. After the dstim treatment, however, adult crickets showed a clear locomotor rhythm in DD, with a free-running period significantly shorter than that of control crickets injected with Discosoma sp. Red2 (DsRed2) dsRNA. These results suggest that in the cricket, tim plays some role in fine-tuning of the free-running period but may not be essential for oscillation of the circadian clock.  相似文献   

11.
The present study examines how the circadian oscillators in the retina and the suprachiasmatic nucleus (SCN) respond to changes in photoperiod. Arylalkylamine N-acetyltransferase (aa-nat) gene expression studied by quantitative RT-PCR revealed that in adult Sprague-Dawley rats kept under different light-dark (LD) cycles for two weeks the temporal pattern of AA-NAT mRNA expression was identical in retina and pineal gland. In both tissues, the time span between the onset of darkness and the nocturnal rise in AA-NAT mRNA expression was 3 h under LD 20:4, 6 h under LD 12:12, and 15 h under LD 4:20. As aa-nat expression in the pineal gland is regulated by the circadian oscillator in SCN, the results suggest that the photoperiodic differences accompanying the seasons of the year are imprinted in more than one oscillator and that this may accentuate the important message regarding 'time of year.'  相似文献   

12.
Although circadian rhythms are found in many peripheral tissues in insects, the control mechanism is still to be elucidated. To investigate the central and peripheral relationships in the circadian organization, circadian rhythms outside the optic lobes were examined in the cricket Gryllus bimaculatus by measuring mRNA levels of period (per) and timeless (tim) genes in the brain, terminal abdominal ganglion (TAG), anterior stomach, mid-gut, testis, and Malpighian tubules. Except for Malpighian tubules and testis, the tissues showed a daily rhythmic expression in either both per and tim or tim alone in LD. Under constant darkness, however, the tested tissues exhibited rhythmic expression of per and tim mRNAs, suggesting that they include a circadian oscillator. The amplitude and the levels of the mRNA rhythms varied among those rhythmic tissues. Removal of the optic lobe, the central clock tissue, differentially affected the rhythms: the anterior stomach lost the rhythm of both per and tim; in the mid-gut and TAG, tim expression became arrhythmic but per maintained rhythmic expression; a persistent rhythm with a shifted phase was observed for both per and tim mRNA rhythms in the brain. These data suggest that rhythms outside the optic lobe receive control from the optic lobe to different degrees, and that the oscillatory mechanism may be different from that of Drosophila.  相似文献   

13.
The course of diapause induction as well as of diapause termination infemales of the predatory mite Euseius (Amblyseius)finlandicus Oudemans (Acari: Phytoseiidae) in Northern Greece wasdetermined by transferring females during winter and early spring from peachtrees to a short day (LD 8:16) or a long day (LD 16:8) photoperiod both at 20°C. The first diapause females were found in mid September andby the first week of October all the females were in diapause. The mean numberof days required for diapause termination under the short day photoperiod LD8:16 was gradually reduced from 93.7 days in the beginning of October to lessthan 20 days in mid February and early March. Under the long day photoperiod ofLD 16:8 diapause was terminated in less than 20 days irrespective of the dateof collection. These results indicate that by mid February photoperiodicsensitivity of females was lost and diapause was terminated. However, femaleswere found in their overwintering sites until the second half of March,probablybecause of the prevailing relatively low temperatures and lack of adequatefood.  相似文献   

14.
Suppression-subtractive hybridization was used to isolate cDNAs specifically expressed in the brain at the termination of pupal diapause in Agriusconvolvuli. One of the isolated clones shows similarity to the cytochrome c oxidase subunit 1 (COX1) gene. The full-length cDNA was obtained from brain mRNA by rapid amplification of cDNA ends (RACE). The insert is 1.65 kb in length and has an open reading frame of 1.46 kb which encodes a putative protein of 486 amino acid residues. RT-PCR reveals that the mRNA increases dramatically at an early stage of diapause termination. Activity of cytochrome c oxidase in the brain also increases at the same time. The up-regulation of this gene suggests that expression of the COX1 gene and ATP synthesis are initiated in the brain in association with diapause termination.  相似文献   

15.
16.
The rice stem borer, Chilo suppressalis, enters facultative diapause as fully grown larvae in response to short-day conditions during the autumn. Our results showed that the critical night length for diapause induction in C. suppressalis was between 10 h 22 min and 10 h 45 min at 22, 25 and 28 °C, 11 h 18 min at 31 °C, and between 10 h 5 min and 10 h 20 min under field conditions (average temperature ranged from 27.2 to 30.7 °C). The diapause incidence declined in ultra-long nights (18-22 h scotophases) and DD, and increased in ultra-short nights (2-6 h scotophases) and LL. Moreover, we found that the third instar was the stage most sensitive to the photoperiod, and night length played an essential role in the initiation of diapause. Night-interruption experiments with a 1-h light pulse at LD 12:12 (light 12:dark 12) exhibited two troughs of diapause inhibition, with one occurring in early scotophase and the other in late scotophase. Field observations for six years showed that most larvae entered winter diapause in August in response to declining day lengths, despite the high temperatures prevailing during August. By periodically transferring the field-collected overwintering larvae to different photoperiods and temperatures, the results showed that photoperiod had a significant influence on diapause development during the early phase of diapause, while high temperature significantly accelerated the termination of larval diapause.  相似文献   

17.
18.
Photoperiodic control of diapause induction was systematically investigated in the cabbage butterfly, Pieris melete, which enters summer and winter diapause as a pupa. Summer and winter diapause are induced principally by short and long scotophases, respectively; the intermediate scotophases (11-12 h) permit pupae to develop without diapause. Photoperiodic responses under 24-h light-dark cycles at 16.9, 18, 20 and 22 °C showed that the hibernation response was temperature compensated, whereas aestivation response was strongly temperature-dependent. The incidence of diapause for both aestivation and hibernation showed a decline at the ultra-short and ultra-long scotophases. Experiments using non-24-h light-dark cycles showed that the length of the scotophase played an essential role in the determination of diapause. The highest photosensitivity differed under hibernation and aestivation conditions. With a 3 × LD 12:12 interruption, a maximal inhibition of aestivation occurred in the L3/2 stage, and of hibernation it occurred in the L4/0 stage. A long-night of LD 10:14 induced hibernation diapause but inhibited aestivation diapause and, conversely, a short-night of LD 14:10 inhibited hibernation diapause but induced aestivation diapause. With a 1-h light pulse at LD 11:13, a maximal inhibition of hibernation occurred 3 h before lights-on (late scotophase), whereas, with a 1-h light pulse at LD 12.5:11.5, a maximal induction of aestivation occurred 2-3 h after the onset of darkness (early scotophase). Nanda-Hamner and Bünsow experiments failed to reveal the involvement of a circadian system, suggesting that the photoperiodic time measurement for diapause induction in this butterfly resembles an hourglass-like timer or a damped circadian oscillator.  相似文献   

19.
20.
Effects of photoperiod and cold exposure on diapause termination, post-diapause development and reproduction in Loxostege sticticalis were examined. Larvae were reared at diapause inducing condition (22 °C, L:D 12:12) consistently or transferred to long day photoperiod (L:D 16:8) and darkness (L:D 0:24) respectively, after entering into diapause. Diapause was terminated in approximately 40% of the larvae after 36 days, and no significant differences were observed between photoperiods, suggesting larval diapause was terminated spontaneously without being induced by photoperiods. Cold exposure significantly hastened diapause termination. The diapause termination incidence increased significantly with peaks of 98% at both 5 °C and 0 °C exposure for 30 days, as compared to 42% in controls not exposed to cold, while the mortality and number of days required for diapause termination decreased dramatically. The optimal low temperature exposure periods under 5 °C or 0 °C were 20 days and 30 days, showing a higher termination incidence and shorter time for diapause termination. This suggests that the low temperatures in winter play an important role in diapause termination under natural conditions. The threshold temperatures for post-diapause development in prepupae and pupae were 9.13 °C and 10.60 °C respectively, with corresponding accumulations of 125 and 200 degree-days. Adults that experienced larval diapause significantly delayed their first oviposition, oviposition period was prolonged, and the lifetime number of eggs laid was decreased, however both males and females have significantly longer longevity. The field validation of diapause termination, the degree-days model, and the relationship between diapause and migration in L. sticticalis were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号