首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Downy mildew caused by the fungus Peronospora parisitica is a serious threat to members of the Brassicaceae family. Annually, a substantial loss of yield is caused by the widespread presence of this disease in warm and humid climates. The aim of this study was to localize the genetic factors affecting downy mildew resistance in Chinese cabbage (Brassica rapa ssp. pekinensis). To achieve this goal, we improved a preexisting genetic map of a doubled-haploid population derived from a cross between two diverse Chinese cabbage lines, 91-112 and T12-19, via microspore culture. Microsatellite simple sequence repeat (SSR) markers, isozyme markers, sequence-related amplified polymorphism markers, sequence-characterized amplified region markers and sequence-tagged-site markers were integrated into the previously published map to construct a composite Chinese cabbage map. In this way, the identities of linkage groups corresponding to the Brassica A genome reference map were established. The new map contains 519 markers and covers a total length of 1,070 cM, with an average distance between markers of 2.06 cM. All markers were designated as A1–A10 through alignment and orientation using 55 markers anchored to previously published B. rapa or B. napus reference maps. Of the 89 SSR markers mapped, 15 were newly developed from express sequence tags in Genbank. The phenotypic assay indicated that a single major gene controls seedling resistance to downy mildew, and that a major QTL was detected on linkage group A8 by both interval and MQM mapping methods. The RAPD marker K14-1030 and isozyme marker PGM flanked this major QTL in a region spanning 2.9 cM, and the SSR marker Ol12G04 was linked to this QTL by a distance of 4.36 cM. This study identified a potential chromosomal segment and tightly linked markers for use in marker-assisted selection to improve downy mildew resistance in Chinese cabbage.  相似文献   

2.
The genic multiple-allele inherited male-sterile gene Ms in Chinese cabbage (Brassica rapa L.) was identified as a spontaneous mutation. Applying this gene to hybrid seed production, several B. rapa cultivars have been successfully bred in China. A BC1 population (244 plants) was constructed for mapping the Ms gene. Screening 268 simple sequence repeat (SSR) markers which cover the entire genome of Chinese cabbage was performed with bulked segregant analysis (BSA). On the basis of linkage analysis, the Ms gene was located on linkage group R07. In addition, through the amplified fragment length polymorphism (AFLP) and the sequence-characterized amplified region (SCAR) techniques combining BSA, two SCAR markers which were converted from corresponding AFLP markers flanked the Ms gene. Finally, a genetic map of the Ms gene was constructed covering a total interval of 9.0 cM. Two SCAR markers, syau_scr01 and syau_scr04, flanked the Ms gene at distances of 0.8 and 2.5 cM, respectively. All the SSR markers (cnu_m273, cnu_m030, cnu_m295, and syau_m13) were mapped on the same side of the gene as syau_scr04, the nearest one of which, syau_m13, was mapped at a distance of 3.3 cM. These SSR and SCAR markers may be useful in marker-assisted selection and map-based cloning. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Orange head Chinese cabbage accumulates significant amounts of carotenoids with enhanced nutritional quality. To develop molecular markers for breeding of Chinese cabbage lines with high carotenoid content and to isolate the candidate gene underlying carotenoid synthesis, we performed fine mapping of the orange locus in a F2S4 mapping population. Genetic analysis revealed that the phenotype of the orange head trait was controlled by a single recessive gene, Br-or. The F2S4 mapping population consisting of 1,724 individuals was developed from the cross between parental lines 11J16 and 11S39-2 by continuous selfing of a single heterozygous individual. Twenty-one tightly linked simple sequence repeat (SSR) and insertion/deletion polymorphism (InDel) markers were obtained. High-resolution genetic mapping of these markers in the F2S4 mapping population placed Br-InDel2 and Br-InDel1 at genetic distances of 0.1 and 0.2 cM, respectively, on either side of the Br-or locus. Based on comparison of these two marker sequences with the fully sequenced Brassica rapa genome, the Br-or locus was delimited to a 16.7 kb genomic region. Three open reading frames (ORFs) were predicted in the target region. ORF1 encoded carotenoid isomerase, which is involved in the isomerization of carotenoids. ORF1 was found to be co-segregated with the Br-or locus and was thus the most likely candidate gene for Br-or. The information obtained here will facilitate the breeding of nutrient-enriched Chinese cabbage through marker-assisted selection and provide a platform for gaining a better understanding of the regulation of carotenoid biosynthesis in these plants.  相似文献   

4.
Genetic analysis established that Aitaiyin3, a dwarf rice variety derived from a semidwarf cultivar Taiyin1, carries two recessive semidwarf genes. By using simple sequence repeat (SSR) markers, we mapped the two semidwarf genes, sd-1 and sd-t2 on chromosomes 1 and 4, respectively. Sd-t2 was thus named because the semidrawf gene sd-t has already been identified from Aitaiyin 2 whose origin could be traced back to Taiyin1. The result of the molecular mapping of sd-1 gene revealed it is linked to four SSR markers found on chromosome 1. These markers are: RM297, RM302, RM212, and OSR3 spaced at 4.7 cM, 0 cM, 0.8cM and 0 cM, respectively. Sd-t2 was found to be located on chromosome 4 using five SSR markers: two markers, SSR332 and RM1305 located proximal to sd-t2 are spaced 11.6 cM, 3.8 cM, respectively, while the three distally located primers, RM5633, RM307, and RM401 are separated by distances of 0.4 cM, 0.0 cM, and 0.4 cM, respectively. __________ Translated from Acta Genetica Sinica, 2005, 32 (2) [译自: 遗传学报, 2005,32(2)]  相似文献   

5.
An integrated genetic linkage map of the medicinal and ornamental plant Catharanthus roseus, based on different types of molecular and morphological markers was constructed, using a F2 population of 144 plants. The map defines 14 linkage groups (LGs) and consists of 131 marker loci, including 125 molecular DNA markers (76 RAPD, 3 RAPD combinations; 7 ISSR; 2 EST-SSR from Medicago truncatula and 37 other PCR based DNA markers), selected from a total of 472 primers or primer pairs, and six morphological markers (stem pigmentation, leaf lamina pigmentation and shape, leaf petiole and pod size, and petal colour). The total map length is 1131.9 cM (centiMorgans), giving an average map length and distance between two markers equal to 80.9 cM and 8.6 cM, respectively. The morphological markers/genes were found linked with nearest molecular or morphological markers at distances varying from 0.7 to 11.4 cM. Linkage was observed between the morphological markers concerned with lamina shape and petiole size of leaf on LG1 and leaf, stem and petiole pigmentation and pod size on LG8. This is the first genetic linkage map of C. roseus.  相似文献   

6.
A genetic linkage map of grapevine was constructed using a pseudo-testcross strategy based upon 138 individuals derived from a cross of Vitis vinifera Cabernet Sauvignon × Vitis riparia Gloire de Montpellier. A total of 212 DNA markers including 199 single sequence repeats (SSRs), 11 single strand conformation polymorphisms (SSCPs) and two morphological markers were mapped onto 19 linkage groups (LG) which covered 1,249 cM with an average of 6.7 cM between markers. The position of SSR loci in the maps presented here is consistent with the genome sequence. Quantitative traits loci (QTLs) for several traits of inflorescence and flower morphology, and downy mildew resistance were investigated. Two novel QTLs for downy mildew resistance were mapped on linkage groups 9 and 12, they explain 26.0–34.4 and 28.9–31.5% of total variance, respectively. QTLs for inflorescence morphology with a large effect (14–70% of total variance explained) were detected close to the Sex locus on LG 2. The gene of the enzyme 1-aminocyclopropane-1-carboxylic acid synthase, involved in melon male organ development and located in the confidence interval of all QTLs detected on the LG 2, could be considered as a putative candidate gene for the control of sexual traits in grapevine. Co-localisations were found between four QTLs, detected on linkage groups 1, 14, 17 and 18, and the position of the floral organ development genes GIBBERELLIN INSENSITIVE1, FRUITFULL, LEAFY and AGAMOUS. Our results demonstrate that the sex determinism locus also determines both flower and inflorescence morphological traits.  相似文献   

7.
该研究以二倍体三色堇和角堇为亲本杂交产生的66株F2代分离群体为作图群体,采用SRAP标记技术进行基因分型,利用JoinMap4.0软件构建了首张三色堇与角堇的种间遗传连锁图谱。结果表明:(1)从256对SRAP引物组合中筛选获得50对多态性好、标记位点清晰且稳定的引物组合。(2)通过对三色堇F2代群体的PCR扩增,共获得118个SRAP多态性标记位点,其中偏分离标记率为24.6%,符合遗传作图需要。(3)成功构建了三色堇和角堇的种间分子遗传连锁图谱,该图谱有15个连锁群,67个SRAP标记,连锁群长度范围1.6~52.2 cM,覆盖基因组总长度327.9 cM,标记间平均图距为4.9 cM。研究结果为三色堇和角堇高密度遗传图谱构建和重要性状的基因定位及分子标记辅助选择育种奠定了基础。  相似文献   

8.
Pear scab (caused by Venturia nashicola) is one of the most harmful diseases of pears, especially Japanese and Chinese pear species. The molecular identification and early selection of resistant plants could greatly improve pear breeding. We have identified the position of the scab resistance gene, designated Vnk in an indigenous Japanese pear cultivar Kinchaku, within the pear genome by using simple sequence repeat (SSR) markers derived from pear and apple. The position of Vnk was identified in the central region of linkage group 1 of Kinchaku. Several amplified fragment length polymorphism (AFLP) markers linked to Vnk were obtained by bulked segregant analysis. Among them, the AFLP marker closest to Vnk was converted into a sequence tagged site (STS) marker. Four random amplified polymorphic DNA (RAPD) markers previously found to be loosely associated with Vnk (Iketani et al. 2001) were successfully converted into STS markers. Six markers (one SSR Hi02c07 and five STSs converted from AFLP and RAPD) showed tight linkages to Vnk, being mapped with distances ranging from 2.4 to 12.4 cM. The SSR CH-Vf2, which was isolated from a BAC clone of the contig containing the apple scab gene Vf, was mapped at the bottom of linkage group 1 in Kinchaku, suggesting that the Vnk and Vf loci are located in different genomic regions of the same homologous linkage group.  相似文献   

9.
The segregation of 141 polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers in an F1 intergeneric citrus population was studied to build the first extensive EST maps for the maternal sweet orange and paternal Poncirus genomes. Of these markers, 122 were found segregating in sweet orange, 59 in Poncirus, and 40 in both. Eleven linkage groups with 113 markers in sweet orange, 8 with 45 markers in Poncirus, and 13 with 123 markers in the cross pollinator (CP) consensus of both, were constructed. About 775.8 cM of sweet orange genome and 425.7 cM of Poncirus genome were covered. Through comparison of shared markers, three cases were found where two linkage groups in one map apparently were colinear with one group of the other map; Poncirus linkages Ar1a and Ar1b and consensus linkages CP1a and CP1b, were both collinear with one sweet orange linkage, Sa1, as were sweet orange Sa3a and Sa3b with Poncirus Ar3 and consensus CP3, and sweet orange Sa7a and Sa7b, and consensus CP7a and CP7b with Poncirus Ar7. These EST-SSR markers are particularly useful for constructing comparative framework maps for related genera because they amplify orthologous genes to provide anchor points across taxa. All SSR primers are freely available to the citrus community. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
A nuclear male-sterile mutant, NMS 360, induced by streptomycin from an inbred maintainer line HA 89, possesses a single recessive gene, ms9, controlling male sterility. The present study identified DNA markers linked to the ms9 gene in an F2 population derived from the cross of NMS 360 × RHA 271 and maps the ms9 gene to an existing sunflower SSR linkage map. Bulked segregant analysis was performed using the target region amplification polymorphism (TRAP) marker technique and the simple sequence repeats (SSR) technique. From 444 primer combinations, six TRAP markers linked with the ms9 gene were amplified. Two markers, Ts4p03-202 and Tt3p09-529, cosegregated with the ms9 gene. The other four markers, To3d14-310, Tt3p17-390, Ts4p23-300, and Tt3p09-531, linked with ms9 at a distance of 1.2, 3.7, 10.3, and 22.3 cM, respectively. Thirty SSR primers from 17 linkage groups of a PHA × PHB cultivated sunflower linkage map were screened among the two parents and the F2 population. SSR primer ORS 705 of linkage group 10 was tightly linked to ms9 at a distance of 1.2 cM. The ms9 gene was subsequently mapped to linkage group 10 of the public sunflower SSR linkage map. The markers that were tightly linked with the ms9 gene will be useful in marker-assisted selection of male-sterile plants among segregating populations, and will facilitate the isolation of the ms9 gene by map-based cloning.  相似文献   

11.
We describe the construction of a reference genetic linkage map for the Brassica A genome, which will form the backbone for anchoring sequence contigs for the Multinational Brassica rapa Genome Sequencing Project. Seventy-eight doubled haploid lines derived from anther culture of the F1 of a cross between two diverse Chinese cabbage (B. rapa ssp. pekinensis) inbred lines, ‘Chiifu-401-42’ (C) and ‘Kenshin-402-43’ (K) were used to construct the map. The map comprises a total of 556 markers, including 278 AFLP, 235 SSR, 25 RAPD and 18 ESTP, STS and CAPS markers. Ten linkage groups were identified and designated as R1–R10 through alignment and orientation using SSR markers in common with existing B. napus reference linkage maps. The total length of the linkage map was 1,182 cM with an average interval of 2.83 cM between adjacent loci. The length of linkage groups ranged from 81 to 161 cM for R04 and R06, respectively. The use of 235 SSR markers allowed us to align the A-genome chromosomes of B. napus with those of B. rapa ssp. pekinensis. The development of this map is vital to the integration of genome sequence and genetic information and will enable the international research community to share resources and data for the improvement of B. rapa and other cultivated Brassica species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The Pik m gene in rice confers a high and stable resistance to many isolates of Magnaporthe oryzae collected from southern China. This gene locus was roughly mapped to the long arm of rice chromosome 11 with restriction fragment length polymorphic (RFLP) markers in the previous study. To effectively utilize the resistance, a linkage analysis was performed in a mapping population consisting of 659 highly susceptible plants collected from four F2 populations using the publicly available simple sequence repeat (SSR) markers. The result showed that the locus was linked to the six SSR markers and defined by RM254 and RM144 with ≈13.4 and ≈1.2 cM, respectively. To fine map this locus, additional 10 PCR-based markers were developed in a region flanked by RM254 and RM144 through bioinformatics analysis (BIA) using the reference sequence of cv. Nipponbare. The linkage analysis with these 10 markers showed that the locus was further delimited to a 0.3-cM region flanked by K34 and K10, in which three markers, K27, K28, and K33, completely co-segregated with the locus. To physically map the locus, the Pik m -linked markers were anchored to bacterial artificial chromosome clones of the reference cv. Nipponbare by BIA. A physical map spanning ≈278 kb in length was constructed by alignment of sequences of the clones anchored by BIA, in which only six candidate genes having the R gene conserved structure, protein kinase, were further identified in an 84-kb segment.  相似文献   

13.
We report the molecular mapping of a gene for pollen fertility in A1 (milo) type cytoplasm of sorghum using AFLP and SSR marker analysis. DNA from an F2 population comprised of 84 individuals was screened with AFLP genetic markers to detect polymorphic DNAs linked to fertility restoration. Fifteen AFLP markers were linked to fertility restoration from the initial screening with 49 unique AFLP primer combinations (+3/+3 selective bases). As many of these AFLP markers had been previously mapped to a high-density genetic map of sorghum, the target gene (rf1) could be mapped to linkage group H. Confirmation of the map location of rf1 was obtained by demonstrating that additional linkage group-H markers (SSR, STS, AFLP) were linked to fertility restoration. The closest marker, AFLP Xtxa2582, mapped within 2.4 cM of the target loci while two SSRs, Xtxp18 and Xtxp250, flanked the rf1 locus at 12 cM and 10.8 cM, respectively. The availability of molecular markers will facilitate the selection of pollen fertility restoration in sorghum inbred-line development and provide the foundation for map-based gene isolation. Received: 22 August 2000 / Accepted: 18 October 2000  相似文献   

14.
The yellow color of the cocoon of the silkworm Bombyx mori is controlled by three genes, Y (Yellow haemolymph), I (Yellow inhibitor) and C (Outer‐layer yellow cocoon), which are located on linkage groups 2, 9 and 12, respectively. Taking advantage of a lack of crossing over in females, reciprocal backcrossed F1 (BC1) progeny were used for linkage analysis and mapping of the C gene using silkworm strains C108 and KY, which spin white and yellow cocoons, respectively. DNA was extracted from individual pupae and analyzed for simple sequence repeat (SSR) markers. The C gene was found to be linked to seven SSR markers. All the yellow cocoon individuals from a female heterozygous backcross (BC1 F) showed a heterozygous profile for SSR markers on linkage group 12, whereas individuals with light yellow cocoons showed the homozygous profile of the strain C108. Using a reciprocal heterozygous male backcross (BC1 M), we constructed a linkage map of 36.4 cM with the C gene located at the distal end, and the closest SSR marker at a distance of 13.9 cM.  相似文献   

15.
Melon necrotic spot virus (MNSV) is a member of the genus Carmovirus, which produces severe yield losses in melon and cucumber crops. The nsv gene is the only known natural source of resistance against MNSV in melon, and confers protection against all widespread strains of this virus. nsv has been previously mapped in melon linkage group 11, in a region spanning 5.9 cM, saturated with RAPD and AFLP markers. To identify the nsv gene by positional cloning, we started construction of a high-resolution map for this locus. On the basis of the two mapping populations, F2 and BC1, which share the same resistant parent PI 161375 (nsv/nsv), and using more than 3,000 offspring, a high-resolution genetic map has been constructed in the region around the nsv locus, spanning 3.2 cM between CAPS markers M29 and M132. The availability of two melon BAC libraries allowed for screening and the identification of new markers closer to the resistance gene, by means of BAC-end sequencing and mapping. We constructed a BAC contig in this region and identified the marker 52K20sp6, which co-segregates with nsv in 408 F2 and 2.727 BC1 individuals in both mapping populations. We also identified a single 100 kb BAC that physically contains the resistance gene and covers a genetic distance of 0.73 cM between both BAC ends. These are the basis for the isolation of the nsv recessive-resistance gene.  相似文献   

16.
Southern corn rust (SCR), Puccinia polysora Underw, is a destructive disease in maize (Zea mays L.). Inbred line Qi319 is highly resistant to SCR. Results from the inoculation test and genetic analysis of SCR in five F2 populations and five BC1F1 populations derived from resistant parent Qi319 clearly indicate that the resistance to SCR in Qi319 is controlled by a single dominant resistant gene, which was named RppQ. Simple sequence repeat (SSR) analysis was carried out in an F2 population derived from the cross Qi319×340. Twenty SSR primer pairs evenly distributed on chromosome10 were screened at first. Out of them, two primer pairs, phi118 and phi 041, showed linkage with SCR resistance. Based on this result, eight new SSR primer pairs surrounding the region of primers phi118 and phi 041 were selected and further tested regarding their linkage relation with RppQ. Results indicated that SSR markers umc1,318 and umc 2,018 were linked to RppQ with a genetic distance of 4.76 and 14.59 cM, respectively. On the other side of RppQ, beyond SSR markers phi 041 and phi118, another SSR marker umc1,293 was linked to RppQ with a genetic distance of 3.78 cM. Because the five linkage SSR markers (phi118, phi 041, umc1,318, umc 2,018 and umc1,293) are all located on chromosome 10, the RppQ gene should also be located on chromosome 10. In order to fine map the RppQ gene, AFLP (amplified fragment length polymorphism) analysis was carried out. A total 54 AFLP primer combinations were analyzed; one AFLP marker, AF1, from the amplification products of primer combination E-AGC/M-CAA, showed linkage with the RppQ gene in a genetic distance of 3.34 cM. Finally the RppQ gene was mapped on the short arm of chromosome 10 between SSR markers phi 041 and AFLP marker AF1 with a genetic distance of 2.45 and 3.34 cM respectively.Communicated by H. F. Linskens  相似文献   

17.
A framework genetic map based on genomic DNA-derived SSR, EST-derived SSR, EST-STS and EST-RFLP markers was developed using 181 genotypes generated from D8909-15 (female) × F8909-17 (male), the ‘9621’ population. Both parents are half siblings with a common female parent, Vitis rupestris ‘A. de Serres’, and different male parents (forms of V. arizonica). A total of 542 markers were tested, and 237 of them were polymorphic for the female and male parents. The female map was developed with 159 mapped markers covering 865.0 cM with an average marker distance of 5.4 cM in 18 linkage groups. The male map was constructed with 158 mapped molecular markers covering 1055.0 cM with an average distance of 6.7 cM in 19 linkage groups. The consensus ‘9621’ map covered 1154.0 cM with 210 mapped molecular markers in 19 linkage groups, with average distance of 5.5 cM. Ninety-four of the 210 markers on the consensus map were new. The ‘Sex’ expression locus segregated as single major gene was mapped to linkage group 2 on the consensus and the male map. PdR1, a major gene for resistance to Pierce’s disease, caused by the bacterium Xylella fastidiosa, was mapped to the linkage group 14 between markers VMCNg3h8 and VVIN64, located 4.3 and 2.7 cM away from PdR1, respectively. Differences in segregation distortion of markers were also compared between parents, and three clusters of skewed markers were observed on linkage groups 6, 7 and 14.  相似文献   

18.
Barley stripe rust, caused by Puccinia striiformis f. sp. hordei, is one of the most important barley (Hordeum vulgare) diseases in the United States. The disease is best controlled using resistant cultivars. Barley genotype Grannenlose Zweizeilige (GZ) has a recessive gene (rpsGZ) that is effective against all races of P. striiformis f. sp. hordei identified so far in the USA. To develop a molecular map for mapping the gene, F8 recombinant inbred lines (RILs) were developed from the Steptoe X GZ cross through single-seed descent. Seedlings of the parents and RILs were evaluated for resistance to races PSH-14 and PSH-54 of P. striiformis f. sp. hordei under controlled greenhouse conditions. Genomic DNA was extracted from the parents and 182 F8 RILs and used for linkage analysis. The resistance gene analog polymorphism (RGAP) technique was used to identify molecular markers for rpsGZ. A linkage group for the gene was constructed with 12 RGAP markers, of which two markers co-segregated with the resistance locus, and two markers were closely linked to the locus with a genetic distance of 0.9 and 2.0 cM, respectively. These four markers were present only in the susceptible parent. The closest marker to the resistance allele was 11.7 cM away. Analyses of two sets of barley chromosome addition lines of wheat with the two RGAP markers that were cosegregating with the susceptibility allele showed that rpsGZ and the markers were located on the long arm of barley chromosome 4H. Further, tests with four simple sequence repeat (SSR) markers confirmed the chromosomal location of the rpsGZ gene and also integrated the RGAP markers into the known SSR-based linkage map of barley. The closest SSR marker EBmac0679 had a genetic distance of 7.5 cM with the gene in the integrated linkage map constructed with the 12 RGAP markers and 4 SSR markers. The information on chromosomal location and molecular markers for rpsGZ should be useful for incorporating this gene into commercial cultivars and combining it with other resistance genes for durable resistance.  相似文献   

19.
Despite the paramount importance of pineapple (Ananas comosus L.) in world production and trade of tropical fruits, the genomics of this crop is still lagging behind that of other tropical fruit crops such as banana or papaya. A genetic map of pineapple was constructed using an F2 segregating population obtained from a single selfed F1 plant of a cross A. comosus var. comosus (cv. Rondon, clone BR 50) × A. comosus var. bracteatus (Branco do mato, clone BR 20). Multiple randomly amplified markers (RAPD, ISSR and AFLP) were brought together with SSR and EST-SSR markers identified among sequences uploaded to public databases and with sequence-specific markers (SCAR, SSR and CAPS) derived from random amplified markers. Sixty-three randomly amplified markers (RAPD, ISSR and AFLP) were selected and cloned, resulting in 71 sequences which were used to generate sequence-specific SCAR and CAPS markers. The present map includes 492 DNA markers: 57 RAPD, 22 ISSR, 348 AFLP, 20 SSR, 12 EST-SSR, 25 SCARs, 8 CAPS, and the morphological trait locus “piping”, gathered into 33 linkage groups that integrate markers inherited from both botanical varieties, four linkage groups with markers only from var. comosus and three linkage groups with markers exclusively from var. bracteatus. The relatively higher mapping efficiency of sequence-specific markers derived from randomly amplified markers (50.7%) versus SSR (31.4%) and EST-SSR (28.9%) markers is discussed. Spanning over 80% of the 2,470 cM estimated average length of the genome, the present map constitutes a useful research tool for molecular breeding and genomics projects in pineapple and other Bromeliaceae species.  相似文献   

20.
The inheritance of resistance to sunflower downy mildew (SDM) derived from HA-R5 conferring resistance to nine races of the pathogen has been determined and the new source has been designated as Pl 13 . The F2 individuals and F3 families of the cross HA-R5 (resistant) × HA 821 (susceptible) were screened against the four predominant SDM races 300, 700, 730, and 770 in separate tests which indicated dominant control by a single locus or a cluster of tightly linked genes. Bulked segregant analysis (BSA) was carried out on 116 F2 individuals with 500 SSR primer pairs that resulted in the identification of 10 SSR markers of linkage groups 1 (9 markers) and 10 (1 marker) of the genetic map (Tang et al. in Theor Appl Genet 105:1124–1136, 2002) that distinguished the bulks. Of these, the SSR marker ORS 1008 of linkage group 10 was tightly linked (0.9 cM) to the Pl 13 gene. Genotyping the F2 population and linkage analysis with 20 polymorphic primer pairs located on linkage group 10 failed to show linkage of the markers with downy mildew resistance and the ORS 1008 marker. Nevertheless, validation of polymorphic SSR markers of linkage group 1 along with six RFLP-based STS markers of linkage group 12 of the RFLP map of Jan et al. (Theor Appl Genet 96:15–22, 1998) corresponding to linkage group 1 of the SSR map, mapped seven SSR markers (ORS 965-1, ORS 965-2, ORS 959, ORS 371, ORS 716, and ORS 605) including ORS 1008 and one STS marker (STS10D6) to linkage group 1 covering a genetic distance of 65.0 cM. The Pl 13 gene, as a different source with its location on linkage group 1, was flanked by ORS 1008 on one side at a distance of 0.9 cM and ORS 965-1 on another side at a distance of 5.8 cM. These closely linked markers to the Pl 13 gene provide a valuable basis for marker-assisted selection in sunflower breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号