首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The specificity of rat prostatic spermidine synthase and spermine synthase with respect to the amine acceptor of the propylamine group was studied. 2. Spermidine synthase could use cadaverine (1,5-diaminopentane) instead of putrescine, but the Km for cadaverine was much greater and the rate with 1mM-cadaverine was only 10% of that with putrescine. 1,3-Diaminopropane was even less active (2% of the rate with putrescine) and no other compound tested (including longer alpha,omega-diamines, spermidine and its homologues and monoacetyl derivatives) was active. 3. Spermine synthase was equally specific. The only compounds tested that showed any activity were 1,8-diamino-octane, sym-homospermidine, sym-norspermidine and N-(3-aminopropyl)-cadaverine, which at 1mM gave rates 2, 17, 3 and 4% of the rate with spermidine respectively. 4. The formation of polyamine derivatives of cadaverine and to a very small extent of 1,3-diaminopropane was confirmed by exposing transformed mouse fibroblasts to these diamines when synthesis of putrescine was prevented by alpha-difluoromethylornithine. Under these conditions the cells accumulated significant amounts of N-(3-aminopropyl)cadaverine and NN'-bis(3-aminopropyl)cadaverine when exposed to cadaverine and small amounts of sym-norspermidine and sym-norspermine when exposed to 1,3-diaminopropane.  相似文献   

2.
1. Injection of 2,2-difluoroputrescine (DFPut) into the yolk sac of chick embryos causes the formation of 6,6-difluorospermidine (6,6DFSpd) and 6,6-difluorospermine (6,6DFSpm), demonstrating that the difluoroanalogs of putrescine and spermidine are in vivo substrates of spermidine and spermine synthase, respectively. 2. Depletion of tissue putrescine and spermidine concentrations by administration of D,L-alpha-difluoromethylornithine (DFMO, Ornidyl) causes a very marked enhancement of difluoropolyamine formation from DFPut. 3. The major accumulation of 6,6DFSpd and 6,6DFSpm in DFMO-pretreated rodents occurs in small intestines and tumors, i.e. in tissues with high cell proliferation rates, which are also the most susceptible to polyamine depletion by inhibition of ornithine decarboxylase. 4. Their preferential accumulation in tumors and the fact that DFPut and its metabolites seem not to exert toxic effects, suggest DFPut as a serious candidate for the use as probe in 19F-NMR imaging of tissues with a high proliferation rate and a high rate of polyamine biosynthesis.  相似文献   

3.
Treatment of yolk-sac membranes of 4-day-old chick embryos with spermine or spermidine resulted in angiogenesis in the membranes. The angiogenic activity of spermine was stronger than that of spermidine. Putrescine, polylysine and histamine did not induce angiogenesis in the membranes. Administration of putrescine, spermidine and spermine increased their respective levels in yolk-sac membranes, but no interconversion of these amines was observed. The increases in spermidine and spermine levels in yolk-sac membranes preceded induction of angiogenesis. The angiogenesis induced by spermine was inhibited by tissue inhibitors of metalloproteinases, that is, TIMP and TIMP-2. These findings suggest that spermine and spermidine are angiogenesis factors in yolk-sac membranes of chick embryos and that matrix metalloproteinases represented by collagenase are involved in their action.  相似文献   

4.
The Escherichia coli mutant speE deficient in the gene encoding for spermidine synthase has no absolute requirement for spermidine but shows a retarded growth rate. This growth retardation could be unspecifically restored to the respective wild type level by exogenously supplied polyamines such as spermidine, spermine and homospermidine as well as the diamines putrescine and cadaverine. In comparison to the respective wild type, the mutant shows a two-fold increased level of endogenous putrescine but displays a reduced ability to accumulate the diamines putrescine and cadaverine. The ability to accumulate polyamines is not affected. The deleted spermidine synthase gene of the mutant was substituted by heterologous expression of the hss gene from Rhodopseudomonas viridis encoding homospermidine synthase.  相似文献   

5.
S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50) from most eukaryotic organisms is activated by putrescine whereas the corresponding enzyme from bacterial sources shows a stringent requirement for magnesium ions. Adenosylmethionine decarboxylase from lower eukaryotes such as protozoa, however, is not influenced by diamines, neither are any metals needed for its maximal activity. A common characteristic of those organisms containing putrescine-insensitive adenosylmethionine decarboxylase appeared to be either a total absence or very low intracellular content of spermine. While extracts of all organisms containing putrescine-activated adenosylmethionine decarboxylase (animal tissues and yeast) exhibited easily measurable spermine synthase activity, no such activity was detected in cells of Tetrahymena pyriformis, Escherichia coli or Pseudomonas aeruginosa all containing adenosylmethionine decarboxylase insensitive to putrescine and other diamines.The activation of adenosylmethionine decarboxylase by putrescine, the immediate precursor of spermidine, may thus assure the availability of sufficient amounts of decarboxylated adenosylmethionine (S-methyladenosyl-cysteamine) for the synthesis of spermidine even in the presence of a spermine synthesizing system competing for the same precursor (decarboxylated adenosylmethionine).  相似文献   

6.
The amounts of the polyamines putrescine, spermine and spermidine as well as the Na,K-ATPase activity have been determined in the developing chick brain. The amounts of spermine and spermidine per gram fresh weight do not change significantly, the amount of putrescine declines until the 17th day of incubation after which an increase takes place. Spermine is able to inhibit the Na,K-ATPase from chick brain competitively. Half maximal inhibition is achieved at 4 X 10(-5) mol/1 spermine. This polyamine functions as an allosteric inhibitor; the Hill coefficient is 2.2 +/- 0.3. A regulatory effect of spermine on the Na,K-ATPase from chick brain is discussed. In contrast to spermine 1 mmol/1 spermidine inhibits the Na,K-ATPase only slightly, while 1 mmol/1 putrescine does not inhibit the Na,K-ATPase at all.  相似文献   

7.
1. Ehrlich ascites-carcinoma cells contained relatively high concentrations of spermidine and spermine, but the putrescine content of the washed cells was less than 10% of that of higher polyamines. 2. Ascites-tumour cells likewise exhibited high activities of L-ornithine decarboxylase (EC 4.1.1.17), S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50), spermidine synthase (EC 2.5.1.16) and spermine synthase. 3. During the first days after the inoculation, the polyamine pattern of the ascites cells was characterized by a high molar ratio of spermidine to spermine, which markedly decreased on aging of the cells. 4. Various diamines injected into mice bearing ascites cells rapidly and powerfully decreased ornithine decarboxylase activity in the carcinoma cells, apparently through a mechanism that was not a direct inhibition of the enzyme in vitro. Cadaverine (1,5-diaminopentane) and 1,6-diaminohexane were the most potent inhibitors of ornithine decarboxylase among the amines tested. 5. Chronic treatment of the mice with diamines resulted in a virtually complete disappearance of ornithine decarboxylase activity, and after 24h a significant decline in spermidine accumulation. 6. Cadaverine appeared to be an especially suitable compound for use as an inhibitor of the synthesis of higher polyamines, at least in Ehrlich ascites cells, since this diamine also acted as a competitive inhibitor for putrescine in the spermidine synthase reaction without being incorporated into the higher polyamines.  相似文献   

8.
The metabolic fate of stable isotopically labeled polyamines was investigated after their first and second intraperitoneal injection in rats. Using gas chromatographic and mass fragmentographic analyses of acid-hydrolyzed 24-h urines, some aspects of the polyamine metabolism could be elucidated. After the injections with hexadeutero-1,3-diaminopropane, only labeled 1,3-diaminopropane was recovered from the urine samples. The rat injected with tetradeuteroputrescine excreted labeled putrescine, gamma-amino-n-butyric acid, 2-hydroxyputrescine and spermidine, while the urine samples of the rat after the injections with tetradeuterocadaverine contained labeled cadaverine and delta-aminovaleric acid. The injections of hexadeuterospermidine led to the appearance of labeled spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, gamma-amino-n-butyric acid, 1,3-diaminopropane, beta-alanine and spermine. After the injections with bis(2-carboxyethyl)-1,4-diaminobutane, spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, 1,3-diaminopropane, beta-alanine, 2-hydroxyputrescine and possibly gamma-amino-n-butyric acid were recovered. Clear differences between the metabolism after the first and second injection were noted for putrescine, spermidine and spermine, which is suggestive for enzyme induction and/or the existence of salvage pathways.  相似文献   

9.
A series of mono- and geminal difluorinated analogues of spermidine (4-azaoctane-1,8-diamine) have been tested as potential substrates of partially purified rat hepatoma (HTC) cell or pure bovine spleen spermine synthase (EC 2.5.1.22). Substitution of the hydrogen atoms of the methylene group at position 7 by one or two fluorine atoms decreases 8-fold and 160-fold the apparent Km values for the HTC cell enzyme respectively. Similarly, the Km values of 7-monofluoro and 7,7-difluorospermidine for the pure bovine enzyme are reduced 8-fold and 100-fold respectively, in comparison with spermidine. Di-, but not monofluoro substitution, in the 6-position causes a 5-fold reduction in the affinity for the HTC cell enzyme. Gem-fluorine substitution in the 2-position abolishes substrate capability. In addition to their high affinity for spermine synthase, 7-monofluorospermidine and 7,7-difluorospermidine cause substrate inhibition. This phenomenon, which is more pronounced in the case of the difluorinated analogues is pH-dependent. These enzymatic findings are discussed with regard to the protonation sites of the spermidine analogues, determined by potentiometric titration, which vary as a function of the number and position of the fluorine substituents relative to the basic amino groups.  相似文献   

10.
Spermidine synthase from rat ventral prostate was inhibited by 2-mercaptoethylamine (MEA). Inhibition of spermidine synthase by MEA was competitive with respect to one of the substrates putrescine, but not competitive with respect to the other substrate decarboxylated S-adenosylmethionine. MEA markedly depressed spermidine and spermine contents in human erythroid leukemia K562 cells, suggesting that these changes resulted from the inhibitory effect of MEA on spermidine synthase in situ.  相似文献   

11.
The enzyme catalysing the polyamine-stimulated modification of Physarum ornithine decarboxylase in vivo was partially purified and its activity on purified ornithine decarboxylase was examined with respect to its specificity for various amines. Spermidine, spermine and several polyamine analogues strongly promoted this reaction in vitro (apparent Km in the 0.1--0.5 mM range), whereas putrescine (apparent Km 5.33 mM) and several related diamines were not nearly as effective. In agreement with this, sensitivity studies performed in vivo also suggested that cellular spermidine, and not putrescine, is critical in modulating ornithine decarboxylase activity by this post-translational control. Unlike putrescine, or other diamines, 1,3-diaminopropane demonstrated a functional similarity to the polyamines in stimulating this reaction. This study has demonstrated a method whereby non-physiological amines capable of depressing ornithine decarboxylase activity by this natural feedback mechanism can be readily identified for further evaluation of their potential use in the experimental and medical control of polyamine biosynthesis.  相似文献   

12.
The metabolic fate of stable isotopically labeled polyamines was investigated after their first and second intraperitoneal injection in rats. Using gas chromatographic and mass fragmentographic analyses of acid-hydrolyzed 24-h urines, some aspects of the polyamine metabolism could be elucidated. After the injections with hexadeutero-1,3-diaminopropane, obly labeled 1,3-diaminopropane was recovered from the urine samples. The rat injected with tetradeuteroputrescine excreted labeled putrescine excreted labeled putrescine, γ-amino-n-butyric acid, 2-hydroxyputrescine and spermidine, while the urine samples of the rat after the injections with tetradeuterocadaverine contained labeled cadaverine and δ-aminovaleric acid. The injections of hexadeuterospermidine led to the appearance of labeled spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, γ-amino-n-butyric acid, 1,3-diaminopropane, β-alanine and spermine. After the injections with octadeuterospermine, labeled spermine, N-(3-aminopropyl)-N′-(2-carboxyethyl)-1,4-diaminobutane, N,N′-bis(2-carboxyethyl)-1,4-diaminobutane, spermidine, isoputreanine, putreanine, N-(2-carboxyethyl)-4-amino-n-butyric acid, putrescine, 1,3-diaminopropane, β-alanine, 2-hydroxyputrescine and possibly γ-amino-n-butyric acid were recovered. Clear differences between the metabolism after the first and second injection were noted for putrescine, spermidine and spermine, which is suggestive for enzyme induction and/or the existence of salvage pathways.  相似文献   

13.
The administration of bis-cyclohexylammonium sulfate (BCHS), a spermidine synthase inhibitor, to in vitro cultures of chick embryo fibroblasts caused a decrease in cellular spermidine levels and an increase in putrescine and spermine. Cell proliferation rate and DNA synthesis were also inhibited. As protein synthesis did not change, it would seem that low levels of cellular spermidine inhibit cell growth depressing DNA synthesis.  相似文献   

14.
Control of plant disease by perturbation of fungal polyamine metabolism   总被引:2,自引:0,他引:2  
The diamine putrescine and the polyamines spermidine and spermine are ubiquitous in nature and are essential for cell proliferation. Since polyamine biosynthesis in plants can start from either ornithine or arginine, while fungal polyamine biosynthesis appears to utilise only the ornithine route, it was suggested that specific inhibition of fungal polyamine biosynthesis should be lethal. Indeed, inhibitors of polyamine biosynthesis, e.g. the ornithine decarboxylase inhibitor α-difluoromethylornithine, have been shown to inhibit fungal growth in vitro and to control fungal infections on a variety of plants under glasshouse and field conditions. It is now known that polyamine analogues can perturb polyamine metabolism leading to powerful antiproliferative effects in cancer cells. This paper reviews the results of a research programme focused on the synthesis and evaluation of putrescine analogues as novel fungicides. A number of aliphatic, alicyclic and cyclic diamines have been shown to possess considerable fungicidal activity, but although many of these compounds perturb polyamine metabolism in fungal cells, such changes are not considered sufficient to account for the observed antifungal effects. More recent work on spermidine analogues is also described.  相似文献   

15.
Several Acetobacteria contained large amounts of spermine in addition to the putrescine and spermidine, which are the polyamines normally found in prokaryotes. A spermine synthase present in cell extracts of these Acetobacteria is the first example of this enzyme in prokaryotes. Dicyclohexylammonium sulphate inhibited both spermidine synthase and spermine synthase activities in Acetobacteria. Their ornithine decarboxylase was not stimulated by GTP nor inhibited by ppGpp and pppGpp (magic spots I and II) in contrast to ornithine decarboxylase of nearly all bacteria studied so far. However, their S-adenosyl-L-methionine decarboxylase resembled other prokaryotic adenosylmethionine decarboxylases in requiring Mg2+ ions in vitro for full activity.  相似文献   

16.
The diamines putrescine and cadaverine and the polyamines spermine and spermidine inhibited the senescence of nonphotosynthetic cultures of Paul's Scarlet rose. Response was observed when the media of stationary phase cultures was adjusted to either 1 mM of cadaverine or putrescine; or 0.1 μM of either spermine or spermidine along with 2% sucrose in all cases. Senescence of the cultures was followed by microscopic examination of cell aliquots removed at 10 day intervals and treated with the vital stain, fluorescein diacetate.  相似文献   

17.
Polyamines and nucleic acids during development of the chick embryo   总被引:5,自引:0,他引:5       下载免费PDF全文
1. A higher concentration of polyamines (spermine, spermidine, putrescine and cadaverine) during development of the chick embryo was observed between the fifth and tenth day of incubation; the concentrations of nucleic acids showed a parallel increase. 2. When spermine (5mumoles) was injected into the yolk sac of embryos at the tenth day of incubation, a high amine-oxidase activity was noted and the spermine and spermidine concentrations were decreased; also, there was a remarkable decrease in RNA and DNA concentrations and a parallel increase in that of total free nucleotides. 3. On the other hand, when iproniazid (16mumoles) was injected there was an inhibition of amine-oxidase activity and a similar increase in the concentrations of spermine and spermidine and of nucleic acids, whereas that of total free nucleotides decreased. 4. Another group of embryos injected with spermine and iproniazid together showed a remarkable increase in spermine and spermidine concentrations and a parallel increase in those of RNA and DNA, and a decrease in that of total free nucleotides.  相似文献   

18.
Polyamines as modulators of salt tolerance in rice cultivars   总被引:25,自引:1,他引:24       下载免费PDF全文
The effect of NaCl on the endogenous levels of diamine, putrescine and polyamines, spermidine and spermine, was studied in the shoot system of salt-tolerant and salt-sensitive lines of rice (Oryza sativa L.) cultivars during three growth stages. Salt stress increased the levels of diamine and polyamine in varying degrees among nine rice cultivars investigated. Salt tolerant AU1, Co43, and CSC1 were effective in maintaining high concentrations of spermidine and spermine, while the content of putrescine was not significantly altered in all the growth stages when plants were exposed to salinity. The salt sensitivity in rice was associated with excessive accumulation of putrescine and with low levels of spermidine and spermine in the shoot system of salt-sensitive cultivars Co36, CSC2, GR3, IR20, TKM4, and TKM9 under saline condition. One of the possible mechanisms of saline resistance was observed to be due to the highly increased polyamines against the low increase in diamines. Alternatively, the salt sensitivity could be due to high increase of diamines and an incapacity to maintain high levels of polyamines.  相似文献   

19.
Theiss C  Bohley P  Voigt J 《Plant physiology》2002,128(4):1470-1479
Polyamines are required for cell growth and cell division in eukaryotic and prokaryotic organisms. In the unicellular green alga Chlamydomonas reinhardtii, biosynthesis of the commonly occurring polyamines (putrescine, spermidine, and spermine) is dependent on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17) catalyzing the formation of putrescine, which is the precursor of the other two polyamines. In synchronized C. reinhardtii cultures, transition to the cell division phase was preceded by a 4-fold increase in ODC activity and a 10- and a 20-fold increase, respectively, in the putrescine and spermidine levels. Spermine, however, could not be detected in C. reinhardtii cells. Exogenous polyamines caused a decrease in ODC activity. Addition of spermine, but not of spermidine or putrescine, abolished the transition to the cell division phase when applied 7 to 8 h after beginning of the light (growth) phase. Most of the cells had already doubled their cell mass after this growth period. The spermine-induced cell cycle arrest could be overcome by subsequent addition of spermidine or putrescine. The conclusion that spermine affects cell division via a decreased spermidine level was corroborated by the findings that spermine caused a decrease in the putrescine and spermidine levels and that cell divisions also could be prevented by inhibitors of S-adenosyl-methionine decarboxylase and spermidine synthase, respectively, added 8 h after beginning of the growth period. Because protein synthesis was not decreased by addition of spermine under our experimental conditions, we conclude that spermidine affects the transition to the cell division phase directly rather than via protein biosynthesis.  相似文献   

20.
Exposure of rat L6 cells in culture to exogenous polyamines led to a very large increase in the activity of spermidine/spermine N1-acetyltransferase. Spermine was more potent than spermidine in bringing about this increase, but in both cases the elevated acetyltransferase activity increased the cellular conversion of spermidine into putrescine. The N1-acetyltransferase turned over very rapidly in the L6 cells, with a half-life of 9 min after spermidine and 18 min after spermine. A wide variety of synthetic polyamine analogues also brought about a substantial induction of spermidine/spermine N1-acetyltransferase activity. These included sym-norspermidine, sym-norspermine, sym-homospermidine, N4-substituted spermidine derivatives, 1,3,6-triaminohexane, 1,4,7-triaminoheptane and deoxyspergualin, which were comparable with spermidine in their potency, and N1N8-bis(ethyl)spermidine, N1N9-bis(ethyl)homospermidine, methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-amino-guanidine ), which were even more active than spermidine. It is suggested that these polyamine analogues may bring about a decrease in cellular polyamines not only by inhibiting biosynthesis but by stimulating the degradation of spermidine into putrescine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号