首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The flowering plant pollen tube is the fastest elongating plant cell and transports the sperm cells for double fertilization. The highly dynamic formation and reorganization of the actin cytoskeleton is essential for pollen germination and pollen tube growth. To drive pollen-specific expression of fluorescent marker proteins, commonly the strong Lat52 promoter is used. Here we show by quantitative fluorescent analysis that the gametophyte-specific ARO1 promoter from Arabidopsis drives an about 3.5 times weaker transgene expression than the Lat52 promoter. In one third of the pollen of F-actin-labeled ARO1p:tagRFP-T-Lifeact transgenic lines we observed mobile ring-shaped actin structures in pollen grains and pollen tubes. Pollen tube growth, transgene transmission and seed production were not affected by tagRFP-T-Lifeact expression. F-actin rings were able to integrate into emerging actin filaments and they may reflect a particular physiological state of the pollen or a readily available storage form provided for rapid actin network remodeling.  相似文献   

9.
10.
11.
The Arabidopsis root epidermal cells decide their fates (root-hair cell and non-hair cell) according to their position. SCRAMBLED (SCM), an atypical leucine-rich repeat receptor-like kinase (LRR RLK) mediates the positional information to the epidermal cells enabling them to adopt the proper fate. Via feedback regulation, the SCM protein accumulates preferentially in cells adopting the root-hair cell fate. In this study, we determine that TRY, but not the related factor CPC, is responsible for this preferential SCM accumulation. We observed severe reduction of SCM::GUS expression in the try-82 mutant root, but not in the cpc-1 mutant. Furthermore, the overexpression of TRY by CaMV35S promoter caused an increase in the expression of SCM::GUS in the root epidermis. Intriguingly, the overexpression of CPC by CaMV35S promoter repressed the expression of SCM::GUS. Together, these results suggest that TRY plays a unique role in generating the appropriate spatial expression of SCM.  相似文献   

12.
13.
14.
The homeotic genes are essential to the patterning of the anterior-posterior axis along the developing Drosophila embryo. The expression timing and levels of these genes are crucial for the correct specification of segmental identity. The Abdominal-B (Abd-B) gene is first detected in the most posterior abdominal segments at high levels and gradually appears in progressively anterior abdominal segments in lower amounts. Regulatory mutations affecting this expression pattern produce homeotic transformations in the abdomen. The promoter targeting sequences (PTS) from Abd-B locus overcome the enhancer blocking effect of insulators and facilitate long-range enhancer-promoter interactions in transgenic flies (1, 2). In this study, we found that transgene activation by the IAB5 enhancer can be delayed by inserting a 9.5 kb 3′ Abd-B regulatory region containing the Frontabdominal-8 (Fab-8) insulator and the PTS element. We found that the delay is caused by the PTS and an insulator, and it is not specific to the enhancer or the promoter tested. Based on these findings, we hypothesize that the delay of remote enhancers is responsible for the Abd-B expression pattern, which is at least in part due to the regulatory activities of the PTS elements and chromatin boundaries.  相似文献   

15.
16.
17.
18.
19.
20.
The mechanism responsible for developmental stage-specific regulation of γ-globin gene expression involves DNA methylation. Previous results have shown that the γ-globin promoter is nearly fully demethylated during fetal liver erythroid differentiation and partially demethylated during adult bone marrow erythroid differentiation. The hypothesis that 5-hydroxymethylcytosine (5hmC), a known intermediate in DNA demethylation pathways, is involved in demethylation of the γ-globin gene promoter during erythroid differentiation was investigated by analyzing levels of 5-methylcytosine (5mC) and 5hmC at a CCGG site within the 5′ γ-globin gene promoter region in FACS-purified cells from baboon bone marrow and fetal liver enriched for different stages of erythroid differentiation. Our results show that 5mC and 5hmC levels at the γ-globin promoter are dynamically modulated during erythroid differentiation with peak levels of 5hmC preceding and/or coinciding with demethylation. The Tet2 and Tet3 dioxygenases that catalyze formation of 5hmC are expressed during early stages of erythroid differentiation and Tet3 expression increases as differentiation proceeds. In baboon CD34+ bone marrow-derived erythroid progenitor cell cultures, γ-globin expression was positively correlated with 5hmC and negatively correlated with 5mC at the γ-globin promoter. Supplementation of culture media with Vitamin C, a cofactor of the Tet dioxygenases, reduced γ-globin promoter DNA methylation and increased γ-globin expression when added alone and in an additive manner in combination with either DNA methyltransferase or LSD1 inhibitors. These results strongly support the hypothesis that the Tet-mediated 5hmC pathway is involved in developmental stage-specific regulation of γ-globin expression by mediating demethylation of the γ-globin promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号