首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The largest part of the peripheral nervous system is the enteric nervous system (ENS). It consists of an intricate network of several enteric neuronal subclasses with distinct phenotypes and functions within the gut wall. The generation of these enteric phenotypes is dependent upon appropriate neurotrophic support during development. Glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor-2 (FGF2) play an important role in the differentiation and function of the ENS. A lack of GDNF or its receptor (Ret) causes intestinal aganglionosis in mice, while fibroblast growth factor receptor signaling antagonist is identified as regulating proteins in the GDNF/Ret signaling in the developing ENS. Primary myenteric plexus cultures and wholemount preparations of wild type (WT) and FGF2-knockout mice were used to analyze distinct enteric subpopulations. Fractal dimension (D) as a measure of self-similarity is an excellent tool to analyze complex geometric shape and was applied to classify the subclasses of enteric neurons concerning their individual morphology. As a consequence of a detailed analysis of subpopulation variations, wholemount preparations were stained for the calcium binding proteins calbindin and calretinin. The fractal analysis showed a reliable consistence of subgroups with different fractal dimensions (D) in each culture investigated. Seven different neuronal subtypes could be differentiated according to a rising D. Within the same D, the neurite length revealed significant differences between wild type and FGF2-knockout cultures, while the subclass distribution was also altered. Depending on the morphological characteristics, the reduced subgroup was supposed to be a secretomotor neuronal type, which could be confirmed by calbindin and calretinin staining of the wholemount preparations. These revealed a reduction up to 40 % of calbindin-positive neurons in the FGF2-knockout mouse. We therefore consider FGF2 playing a more important role in the fine-tuning of the ENS during development as previously assumed.  相似文献   

2.
RET is a member of the receptor tyrosine kinase (RTK) superfamily, which can transduce signalling by glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) in cultured cells. In order to determine whether in addition to being sufficient, RET is also necessary for signalling by these growth factors, we studied the response to GDNF and NTN of primary neuronal cultures (peripheral sensory and central dopaminergic neurons) derived from wild-type and RET-deficient mice. Our experiments show that absence of a functional RET receptor abrogates the biological responses of neuronal cells to both GDNF and NTN. Despite the established role of the RET signal transduction pathway in the development of the mammalian enteric nervous system (ENS), very little is known regarding its cellular mechanism(s) of action. Here, we have studied the effects of GDNF and NTN on cultures of neural crest (NC)-derived cells isolated from the gut of rat embryos. Our findings suggest that GDNF and NTN promote the survival of enteric neurons as well as the survival, proliferation and differentiation of multipotential ENS progenitors present in the gut of E12.5-13.5 rat embryos. However, the effects of these growth factors are stage-specific, since similar ENS cultures established from later stage embryos (E14. 5-15.5), show markedly diminished response to GDNF and NTN. To examine whether the in vitro effects of RET activation reflect the in vivo function(s) of this receptor, the extent of programmed cell death was examined in the gut of wild-type and RET-deficient mouse embryos by TUNEL histochemistry. Our experiments show that a subpopulation of enteric NC undergoes apoptotic cell death specifically in the foregut of embryos lacking the RET receptor. We suggest that normal function of the RET RTK is required in vivo during early stages of ENS histogenesis for the survival of undifferentiated enteric NC and their derivatives.  相似文献   

3.
Mutations in genes encoding members of the GDNF and endothelin-3 (Et-3) signaling pathways can cause Hirschsprung's disease, a congenital condition associated with an absence of enteric neurons in the distal gut. GDNF signals through Ret, a receptor tyrosine kinase, and Et-3 signals through endothelin receptor B (Ednrb). The effects of Gdnf, Ret, and ET-3 haploinsufficiency and a null mutation in ET-3 on spontaneous motility patterns in adult and developing mice were investigated. Video recordings were used to construct spatiotemporal maps of spontaneous contractile patterns in colon from postnatal and adult mice in vitro. In Ret(+/-) and ET-3(+/-) mice, which have normal numbers of enteric neurons, colonic migrating motor complexes (CMMCs) displayed similar properties under control conditions and following inhibition of nitric oxide synthase (NOS) activity to wild-type mice. In the colon of Gdnf(+/-) mice and in the ganglionic region of ET-3(-/-) mice, there was a 50-60% reduction in myenteric neuron number. In Gdnf(+/-) mice, CMMCs were present, but abnormal, and the proportion of myenteric neurons containing NOS was not different from that of wild-type mice. In the ganglionic region of postnatal ET-3(-/-) mice, CMMCs were absent, and the proportion of myenteric neurons containing NOS was over 100% higher than in wild-type mice. Thus impairments in spontaneous motility patterns in the colon of Gdnf(+/-) mice and in the ganglionic region of ET-3(-/-) mice are correlated with a reduction in myenteric neuron density.  相似文献   

4.
Formation of the enteric nervous system (ENS) from migratory neural crest-derived cells that colonize the primordial gut involves a complex interplay among different signaling molecules. The bone morphogenetic proteins (BMPs), specifically BMP2 and BMP4, play a particularly important role in virtually every stage of gut and ENS development. BMP signaling helps to pattern both the anterior-posterior axis and the radial axis of the gut prior to colonization by migratory crest progenitor cells. BMP signaling then helps regulate the migration of enteric neural crest-derived precursors as they colonize the fetal gut and form ganglia. BMP2 and -4 promote differentiation of enteric neurons in early fetal ENS development and glia at later stages. A major role for BMP signaling in the ENS is regulation of responses to other growth factors. Thus BMP signaling first regulates neurogenesis by modulating responses to GDNF and later gliogenesis through its effects on GGF-2 responses. Furthermore, BMPs promote growth factor dependency for survival of ENS neurons (on NT-3) and glia (on GGF-2) by inducing TrkC (neurons) and ErbB3 (glia). BMP signaling limits total neuron numbers, favoring the differentiation of later born neuronal phenotypes at the expense of earlier born ones thus influencing the neuronal composition of the ENS and the glia/neuron ratio. BMP2 and -4 also promote gangliogenesis via modification of neural cell adhesion molecules and promote differentiation of the circular and then longitudinal smooth muscles. Disruption of BMP signaling leads to defects in the gut and in ENS function commensurate with these complex developmental roles.  相似文献   

5.
Enteric neural crest cells (NCC) are multipotent progenitors which give rise to neurons and glia of the enteric nervous system (ENS) during fetal development. Glial cell line-derived neurotrophic factor (GDNF)/RET receptor tyrosine kinase (Ret) signaling is indispensable for their survival, migration and differentiation. Using microarray analysis and isolated NCCs, we found that 45 genes were differentially expressed after GDNF treatment (16 h), 29 of them were up-regulated including 8 previously undescribed genes. Prokineticin receptor 1 (PK-R1), a receptor for Prokineticins (Prok), was identified in our screen and shown to be consistently up-regulated by GDNF in enteric NCCs. Further, PK-R1 was persistently expressed at a lower level in the enteric ganglions of the c-Ret deficient mice when compared to that of the wild-type littermates. Subsequent functional analysis showed that GDNF potentiated the proliferative and differentiation effects of Prok-1 by up-regulating PK-R1 expression in enteric NCCs. In addition, expression analysis and gene knock-down experiments indicated that Prok-1 and GDNF signalings shared some common downstream targets. More importantly, Prok-1 could induce both proliferation and expression of differentiation markers of c-Ret deficient NCCs, suggesting that Prok-1 may also provide a complementary pathway to GDNF signaling. Taken together, these findings provide evidence that Prok-1 crosstalks with GDNF/Ret signaling and probably provides an additional layer of signaling refinement to maintain proliferation and differentiation of enteric NCCs.  相似文献   

6.
The glial cell line-derived neurotrophic factor (GDNF)/RET tyrosine kinase signaling pathway plays crucial roles in the development of the enteric nervous system (ENS) and the kidney. Tyrosine 1062 (Y1062) in RET is an autophosphorylation residue that is responsible for the activation of the PI3K/AKT and RAS/MAPK signaling pathways. Mice lacking signaling via Ret Y1062 show renal hypoplasia and hypoganglionosis of the ENS although the phenotype is milder than the Gdnf- or Ret-deficient mice. Sprouty2 (Spry2) was found to be an antagonist for fibroblast growth factor receptor (FGFR) and acts as an inhibitory regulator of ERK activation. Spry2-deficient mice exhibit hearing loss and enteric nerve hyperplasia. In the present study, we generated Spry2-deficient and Ret Y1062F knock-in (tyrosine 1062 is replaced with phenylalanine) double mutant mice to see if abnormalities of the ENS and kidney, caused by loss of signaling via Ret Y1062, are rescued by a deficiency of Spry2. Double mutant mice showed significant recovery of ureteric bud branching and ENS development in the stomach. These results indicate that Spry2 regulates downstream signaling mediated by GDNF/RET signaling complex in vivo.  相似文献   

7.
GDNF     
The identification of novel factors that promote neuronal survival could have profound effects on developing new therapeutics for neurodegenerative disorders. Glial cell line-derived neurotrophic factor (GDNF) is a novel protein purified and cloned based on its marked ability to promote dopaminergic neuronal function. GDNF, now known to be the first identified member of a family of factors, signals through the previously known receptor tyrosine kinase, Ret. Unlike most ligands for receptor tyrosine kinases, GDNF does not bind and activate Ret directly, but requires the presence of GPI-linked coreceptors. There are several coreceptors with differing affinities for the GDNF family members. The profile of coreceptors in a cell may determine which factor preferentially activates Ret. In vivo differences in localization of the GDNF family members, its coreceptors and Ret suggest this ligand/receptor interaction has extensive and multiple functions in the CNS as well as in peripheral tissues. GDNF promotes survival of several neuronal populations both in vitro and in vivo. Dopaminergic neuronal survival and function are preserved by GDNF in vivo when challenged by the toxins MPTP and 6-hydroxydopamine. Furthermore, GDNF improves the symptoms of pharmacologically induced Parkinson's disease in monkeys. Several motor neuron populations isolated in vitro are also rescued by GDNF. In vivo, GDNF protects these neurons from programmed cell death associated with development and death induced by neuronal transection. These experiments suggest that GDNF may provide significant therapeutic opportunities in several neurodegenerative disorders.  相似文献   

8.
The majority of neurones and glia of the enteric nervous system (ENS) are derived from the vagal neural crest. Shortly after emigration from the neural tube, ENS progenitors invade the anterior foregut and, migrating in a rostrocaudal direction, colonise in an orderly fashion the rest of the foregut, the midgut and the hindgut. We provide evidence that activation of the receptor tyrosine kinase RET by glial cell line-derived neurotrophic factor (GDNF) is required for the directional migration of ENS progenitors towards and within the gut wall. We find that neural crest-derived cells present within foetal small intestine explants migrate towards an exogenous source of GDNF in a RET-dependent fashion. Consistent with an in vivo role of GDNF in the migration of ENS progenitors, we demonstrate that Gdnf is expressed at high levels in the gut of mouse embryos in a spatially and temporally regulated manner. Thus, during invasion of the foregut by vagal-derived neural crest cells, expression of Gdnf was restricted to the mesenchyme of the stomach, ahead of the invading NC cells. Twenty-four hours later and as the ENS progenitors were colonising the midgut, Gdnf expression was upregulated in a more posterior region - the caecum anlage. In further support of a role of endogenous GDNF in enteric neural crest cell migration, we find that in explant cultures GDNF produced by caecum is sufficient to attract NC cells residing in more anterior gut segments. In addition, two independently generated loss-of-function alleles of murine Ret, Ret.k- and miRet51, result in characteristic defects of neural crest cell migration within the developing gut. Finally, we identify phosphatidylinositol-3 kinase and the mitogen-activated protein kinase signalling pathways as playing crucial roles in the migratory response of enteric neural crest cells to GDNF.  相似文献   

9.
Intestinal adaptation is an important compensatory response to massive small bowel resection (SBR) and occurs because of a proliferative stimulus to crypt enterocytes by poorly understood mechanisms. Recent studies suggest the enteric nervous system (ENS) influences enterocyte proliferation. We, therefore, sought to determine whether ENS dysfunction alters resection-induced adaptation responses. Ret+/- mice with abnormal ENS function and wild-type (WT) littermates underwent sham surgery or 50% SBR. After 7 days, ileal morphology, enterocyte proliferation, apoptosis, and selected signaling proteins were characterized. Crypt depth and villus height were equivalent at baseline in WT and Ret+/- mice. In contrast after SBR, Ret+/- mice had longer villi (Ret+/- 426.7 ± 46.0 μm vs. WT 306.5 ± 7.7 μm, P < 0.001) and deeper crypts (Ret+/- 119 ± 3.4 μm vs. WT 82.4 ± 3.1 μm, P < 0.001) than WT. Crypt enterocyte proliferation was higher in Ret+/- (48.8 ± 1.3%) than WT (39.9 ± 2.1%; P < 0.001) after resection, but apoptosis rates were similar. Remnant bowel of Ret+/- mice also had higher levels of glucagon-like peptide 2 (6.2-fold, P = 0.005) and amphiregulin (4.6-fold, P < 0.001) mRNA after SBR, but serum glucagon-like peptide 2 protein levels were equal in WT and Ret+/- mice, and there was no evidence of increased c-Fos nuclear localization in submucosal neurons. Western blot confirmed higher crypt epidermal growth factor receptor (EGFR) protein levels (1.44-fold; P < 0.001) and more phosphorylated EGFR (2-fold; P = 0.003) in Ret+/- than WT mice after SBR. These data suggest that Ret heterozygosity enhances intestinal adaptation after massive SBR, likely via enhanced EGFR signaling. Reducing Ret activity or altering ENS function may provide a novel strategy to enhance adaptation attenuating morbidity in patients with short bowel syndrome.  相似文献   

10.
This review discusses current knowledge about cell death in the developing enteric nervous system (ENS). It also includes findings about the molecular mechanisms by which such death is mediated. Additional consideration is given to trophic factors that contribute to survival of the precursors and neurons and glia of the ENS, as well to genes that, when mutated or deleted, trigger their death. Although further confirmation is needed, present observations support the view that enteric neural crest-derived precursor cells en route to the gut undergo substantial levels of apoptotic death, but that once these cells colonize the gut, there is relatively little death of precursor cells or of neurons and glia during the fetal period. There are also indications that normal neuron loss occurs in the ENS, but at times beyond the perinatal stage. Taken together, these findings suggest that ENS development is similar is some ways, but different in others from extra-enteric areas of the vertebrate central and peripheral nervous systems, in which large-scale apoptotic death of precursor neurons and glia occurs during the fetal and perinatal periods. Potential reasons for these differences are discussed such as a fetal enteric microenvironment that is especially rich in trophic support. In addition to the cell death that occurs during normal ENS development, this review discusses mechanisms of experimentally-induced ENS cell death, such as those that are associated with defective glial cell-line derived neurotrophic factor/Ret signaling, which are an animal model of human congenital megacolon (aganglionosis; Hirschsprung’s disease). Such considerations underscore the importance of understanding cell death in the developing ENS, not just from a curiosity-driven point of view, but also because the pathophysiology behind many disorders of human gastrointestinal function may originate in abnormalities of the mechanisms that govern cell survival and death during ENS development.  相似文献   

11.

The neurotrophin GDNF acts through its co-receptor RET to direct embryonic development of the intestinal nervous system. Since this continues in the post-natal intestine, co-cultures of rat enteric neurons and intestinal smooth muscle cells were used to examine how receptor activation mediates neuronal survival or axonal extension. GDNF-mediated activation of SRC was essential for neuronal survival and axon outgrowth and activated the major downstream signaling pathways. Selective inhibition of individual pathways had little effect on survival but JNK activation was required for axonal maintenance, extension or regeneration. This was localized to axonal endings and retrograde transport was needed for central JUN activation and subsequent axon extension. Collectively, GDNF signaling supports neuronal survival via SRC activation with multiple downstream events, with JNK signaling mediating structural plasticity. These pathways may limit neuron death and drive subsequent regeneration during challenges in vivo such as intestinal inflammation, where supportive strategies could preserve intestinal function.

  相似文献   

12.
The regulation of neuronal survival and death by neurotrophic factors plays a central role in the sculpting of the nervous system, but the identity of survival signals for developing enteric neurons remains obscure. We demonstrate here that conditional ablation of GFRalpha1, the high affinity receptor for GDNF, in mice during late gestation induces rapid and widespread neuronal death in the colon, leading to colon aganglionosis reminiscent of Hirschsprung's disease. Enteric neuron death induced by GFRalpha1 inactivation is not associated with the activation of common cell death executors, caspase-3 or -7, and lacks the morphological hallmarks of apoptosis, such as chromatin compaction and mitochondrial pathology. Consistent with these in vivo observations, neither caspase inhibition nor Bax deficiency blocks death of colon-derived enteric neurons induced by GDNF deprivation. This study reveals an essential role for GFRalpha1 in the survival of enteric neurons and suggests that caspase-independent death can be triggered by abolition of neurotrophic signals.  相似文献   

13.
Glial cell line-derived neurotrophic factor (GDNF) is expressed in the gastrointestinal tract of the developing mouse and appears to play an important role in the migration of enteric neuron precursors into and along the small and large intestines. Two other GDNF family members, neurturin and artemin, are also expressed in the developing gut although artemin is only expressed in the esophagus. We examined the effects of GDNF, neurturin, and artemin on neural crest cell migration and neurite outgrowth in explants of mouse esophagus, midgut, and hindgut. Both GDNF and neurturin induced neural crest cell migration and neurite outgrowth in all regions examined. In the esophagus, the effect of GDNF on migration and neurite outgrowth declined with age between E11.5 and E14.5, but neurturin still had a strong neurite outgrowth effect at E14.5. Artemin did not promote neural migration or neurite outgrowth in any region investigated. The effects of GDNF family ligands are mediated by the Ret tyrosine kinase. We examined the density of neurons in the esophagus of Ret-/- mice, which lack neurons in the small and large intestines. The density of esophageal neurons in Ret-/- mice was only about 4% of the density of esophageal neurons in Ret+/- and Ret+/+ mice. These results show that GDNF and neurturin promote migration and neurite outgrowth of crest-derived cells in the esophagus as well as the intestine. Moreover, like intestinal neurons, the development of esophageal neurons is largely Ret-dependent.  相似文献   

14.
The enteric nervous system (ENS) forms from migrating neural crest-derived precursors that differentiate into neurons and glia, aggregate into ganglion cell clusters, and extend neuronal processes to form a complex interacting network that controls many aspects of intestinal function. Bone morphogenetic proteins (BMPs) have diverse roles in development and influence the differentiation, proliferation, and survival of ENS precursors. We hypothesized that BMP signaling might also be important for the ENS precursor migration, ganglion cell aggregation, and neurite fasciculation necessary to form the enteric nervous system. We now demonstrate that BMP signaling restricts murine ENS precursors to the outer bowel wall during migration. In addition, blocking BMP signaling causes faster colonization of the murine colon, reduces ganglion cell aggregation, and reduces neurite fasciculation. BMP signaling also influences patterns of neurite extension within the developing bowel wall. These effects on ENS precursor migration and neurite fasciculation appear to be mediated at least in part by increased polysialic acid addition to neural cell adhesion molecule (Ncam1) in response to BMP. Removing PSA enzymatically reverses the BMP effects on ENS precursor migration and neurite fasciculation. These studies demonstrate several novel roles for BMP signaling and highlight new functions for sialyltransferases in the developing ENS.  相似文献   

15.
Neural crest cells (NCC) migrate, proliferate, and differentiate within the wall of the gastrointestinal tract to give rise to the neurons and glial cells of the enteric nervous system (ENS). The intestinal microenvironment is critical in this process and endothelin-3 (ET3) is known to have an essential role. Mutations of this gene cause distal intestinal aganglionosis in rodents, but its mechanism of action is poorly understood. We find that inhibition of ET3 signaling in cultured avian intestine also leads to hindgut aganglionosis. The aim of this study was to determine the role of ET3 during formation of the avian hindgut ENS. To answer this question, we created chick-quail intestinal chimeras by transplanting preganglionic quail hindguts into the coelomic cavity of chick embryos. The quail grafts develop two ganglionated plexuses of differentiated neurons and glial cells originating entirely from the host neural crest. The presence of excess ET3 in the grafts results in a significant increase in ganglion cell number, while inhibition of endothelin receptor-B (EDNRB) leads to severe hypoganglionosis. The ET3-induced hyperganglionosis is associated with an increase in enteric crest cell proliferation. Using hindgut explants cultured in collagen gel, we find that ET3 also inhibits neuronal differentiation in the ENS. Finally, ET3, which is strongly expressed in the ceca, inhibits the chemoattraction of NCC to glial-derived neurotrophic factor (GDNF). Our results demonstrate multiple roles for ET3 signaling during ENS development in the avian hindgut, where it influences NCC proliferation, differentiation, and migration.  相似文献   

16.
Neural crest cells (NCC) are a transient and multipotent cell population that originates from the dorsal neural tube and migrates extensively throughout the developing vertebrate embryo. In addition to providing peripheral glia and neurons, NCC generate melanocytes as well as most of the cranio-facial skeleton. NCC migration and differentiation is controlled by a combination of their axial origin along the neural tube and their exposure to regionally distinct extracellular cues. Such contribution of extracellular ligands is especially evident during the formation of the enteric nervous system (ENS), a complex interconnected network of neural ganglia that locally controls (among other things) gut muscle movement and intestinal motility. Most of the ENS is derived from a small initial pool of NCC that undertake a long journey in order to colonize - in a rostral to caudal fashion - the entire length of the prospective gut. Among several signaling pathways known to influence enteric NCC colonization, GDNF/RET signaling is recognized as the most important. Indeed, spatiotemporally controlled secretion of the RET ligand GDNF by the gut mesenchyme is chiefly responsible for the attraction and guidance of RET-expressing enteric NCC to and within the embryonic gut. Here, we describe an ex vivo cell migration assay, making use of a transgenic mouse line possessing fluorescently labeled NCC, which allows precise quantification of enteric NCC migration potential in the presence of various growth factors, including GDNF.  相似文献   

17.
In the developing enteric nervous system, there is a close association between migrating neural crest-derived cells and the axons of early differentiating neurons. We used pharmacological inhibitors of small GTPases to determine if crest cell migration and axon growth could be uncoupled in cultured intact explants of embryonic mouse gut and slices of embryonic gut grown on collagen gels containing GDNF. Inhibition of the Rho effectors, ROCKI/II, or Rac/Cdc42 inhibited both cell migration and neurite growth in intact explants of embryonic gut. The effects of both ROCKI/II and Rac/Cdc42 inhibitors were more severe on cell migration and axon extension in gut explants from Ret(+/-) mice than in explants from wildtype mice, indicating that Rho GTPases probably act downstream of the receptor tyrosine kinase, Ret. Inhibition of ROCKI/II had different effects on migration and axon extension in gut slices grown on collagen gels containing GDNF from that seen in intact explants of gut. We conclude that ROCKI/II and Rac/Cdc42 are required for both neural crest-derived cell migration and axon growth in the developing gut.  相似文献   

18.
Non-cell-autonomous effects of Ret deletion in early enteric neurogenesis   总被引:1,自引:0,他引:1  
Neural crest cells (NCCs) form at the dorsal margin of the neural tube and migrate along distinct pathways throughout the vertebrate embryo to generate multiple cell types. A subpopulation of vagal NCCs invades the foregut and colonises the entire gastrointestinal tract to form the enteric nervous system (ENS). The colonisation of embryonic gut by NCCs has been studied extensively in chick embryos, and genetic studies in mice have identified genes crucial for ENS development, including Ret. Here, we have combined mouse embryo and organotypic gut culture to monitor and experimentally manipulate the progenitors of the ENS. Using this system, we demonstrate that lineally marked intestinal ENS progenitors from E11.5 mouse embryos grafted into the early vagal NCC pathway of E8.5 embryos colonise the entire length of the gastrointestinal tract. By contrast, similar progenitors transplanted into Ret-deficient host embryos are restricted to the proximal foregut. Our findings establish an experimental system that can be used to explore the interactions of NCCs with their cellular environment and reveal a previously unrecognised non-cell-autonomous effect of Ret deletion on ENS development.  相似文献   

19.
20.
Glial cell line-derived neurotrophic factor (GDNF) plays a crucial role in rescuing neural crest cells from apoptosis during their migration in the foregut. This survival factor binds to the heterodimer GDNF family receptor alpha1/Ret, inducing the Ret tyrosine kinase activity. ret loss-of-function mutations result in Hirschsprung's disease, a frequent developmental defect of the enteric nervous system. Although critical to enteric nervous system development, the intracellular signaling cascades activated by GDNF and their importance in neuroectodermic cell survival still remain elusive. Using the neuroectodermic SK-N-MC cell line, we found that the Ret tyrosine kinase activity is essential for GDNF to induce phosphatidylinositol 3-kinase (PI3K)/Akt and ERK pathways as well as cell rescue. We demonstrate that activation of PI3K is mandatory for GDNF-induced cell survival. In addition, evidence is provided for a critical up-regulation of the ERK pathway by PI3K at the level of Raf-1. Conversely, Akt inhibits the ERK pathway. Thus, both PI3K and Akt act in concert to finely regulate the level of ERK. We found that Akt activation is indispensable for counteracting the apoptotic signal on mitochondria, whereas ERK is partially involved in precluding procaspase-3 cleavage. Altogether, these findings underscore the importance of the Ret/PI3K/Akt pathway in GDNF-induced neuroectodermic cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号