首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
胰腺或胰岛细胞移植是目前治疗Ⅰ型糖尿病和部分Ⅱ型糖尿病效果最理想的方法,但因来源组织短缺及需要终生服用免疫抑制剂等问题限制了它的广泛应用.利用胰腺或胰腺外的多能干细胞产生胰岛样细胞有望克服上述问题而用于治疗糖尿病.本文就将干细胞诱导分化为胰岛样细胞中所用的重要的转录因子和可溶性诱导因子及其作用以及胰岛素分泌细胞的来源做一综述.  相似文献   

2.
I型糖尿病(胰岛素依赖型糖尿病)主要是由于自身免疫反应导致胰岛β细胞损伤所致。目前,临床上主要通过口服降糖药物和胰岛素替代疗法等内科措施治疗I型糖尿病,但只能延缓疾病的发展,并不能彻底治愈。迄今为止,已有研究报道利用胚胎干细胞和成体干细胞成功诱导分化为产胰岛素细胞(IPCs),这给I型糖尿病的治疗带来了新的希望。从干细胞诱导成IPCs的诱导方法都是多阶段的,因干细胞来源不同,诱导所需时间从几天到几个月差异很大,不同诱导方法中所用诱导因子也有所不同,主要包括表皮生长因子、碱性成纤维细胞生长因子、激活素A、β细胞素、尼克酰胺、Exendin-4、肝细胞生长因子、胃泌素、葡萄糖和胎牛血清等。目前,尚无统一标准诱导方法可大量并稳定的获得IPCs,并使之分泌的胰岛素量可满足临床治疗。因此,在IPCs临床应用前,关于来源干细胞的选择、诱导方法和诱导所需因子的选用仍需进一步深入探讨。本文主要就干细胞诱导分化为产胰岛素细胞的研究进展进行了综述。  相似文献   

3.
1型糖尿病的干细胞治疗研究进展   总被引:2,自引:0,他引:2  
李宏丹  魏嘉  穆长征 《生命科学》2007,19(4):401-408
1型糖尿病是由于产生胰岛素的β细胞特征性的被破坏造成的自身免疫疾病.理想的治疗方法就是通过外源的或内源的移植使胰腺细胞再生.干细胞包括胚胎干细胞和成体干细胞,它们都有各自的特点.最近的数据显示这些干细胞能够在体外特定的培养条件下分化成为胰岛素产生细胞.虽然在很多的案例中,来源于干细胞的胰岛素产生细胞在实验中可以逆转糖尿病模型动物的高血糖,但是,要想达到明确的应用于临床,仍然存在几个问题:主要有与胰岛β细胞相似细胞系的获得、移植后的免疫相容性问题和肿瘤的形成.本文综述了从胚胎干细胞和成体干细胞获得胰岛素产生细胞的不同方法、分化后的细胞移植治疗情况以及干细胞治疗1型糖尿病存在的主要问题和可能解决的办法.  相似文献   

4.
1型糖尿病是一种由于自体免疫细胞破坏分泌胰岛素的?细胞而引起胰岛素绝对缺乏的自体免疫病。疾病患者需要依靠外源性途径来补给胰岛素,但胰岛素注射治疗不能根治病症,也不能有效地预防糖尿病并发症。多能性干细胞以及体细胞重编程产生胰岛素分泌细胞为根治1型糖尿病提供了可能。编程性的细胞能被用来进行移植治疗和药物筛选,为1型糖尿病的治疗带来了新的希望。当前,通过相关转录调节因子重编程终末分化细胞为胰岛?细胞已经取得了很大进展。文章对胰腺早期发育、胰腺相关转录调控因子及目前利用终末分化细胞重编程产生胰岛?细胞的研究内容进行了综述。  相似文献   

5.
糖尿病是严重危害人类健康的一类疾病,注射胰岛素和胰岛移植虽能用于治疗糖尿病,但都存在一定的局限性。大量研究表明,间充质干细胞(mesenchymal stem cell,MSC)可以在化学以及生物因子的作用下,或通过基因转染的方式在体外被诱导分化为胰岛素分泌细胞,且移植后对糖尿病鼠模型有一定降血糖效果,因而成为糖尿病治疗领域的研究热点。文章综述了不同来源的MSC诱导分化为胰岛分泌细胞(insulin—producing cells,IPC)的方法及诱导分化后用于治疗1型糖尿病的研究进展。  相似文献   

6.
利用成体干细胞治疗糖尿病   总被引:1,自引:0,他引:1  
糖尿病是一类严重的代谢疾病, 正危害着世界上越来越多人口的健康。胰岛移植是一种治疗糖尿病的有效方法,却因供体缺乏和移植后免疫排斥问题制约了其广泛应用。干细胞为具有强增殖能力和多向分化潜能的细胞, 是利用细胞替代疗法治疗重大疾病的细胞来源之一, 其中成体干细胞因不存在致瘤性及伦理道德问题而被人们寄予厚望。成体胰腺干细胞在活体损伤及离体培养条件下均能产生胰岛素分泌细胞, 肝干细胞、骨髓干细胞和肠干细胞等在特定离体培养条件下或经过遗传改造后也均可产生胰岛素分泌细胞, 将这些干细胞来源的胰岛素分泌细胞移植到模型糖尿病小鼠中可以治疗糖尿病。因而, 成体干细胞可以为细胞替代疗法治疗糖尿病提供丰富的胰岛供体来源。  相似文献   

7.
新华网报道 :以色列研究人员已成功地将人类胚胎干细胞转化为能制造胰岛素的细胞 ,在研究开发幼年型糖尿病治疗方法上取得了突破。干细胞由受精后数日的人类胚胎萃取。在培养皿中转为大量细胞 ,而这些细胞都具有分泌胰岛素的肾脏细胞的重要特征 ,这种细胞称为胰小岛细胞 ,或是贝他细胞。这项发现代表着在以胚胎干细胞治疗第一型糖尿病 ,也就是幼年型糖尿病方面迈出了重要一步。胚胎干细胞有能力转化为任何一种类型的细胞 ,科学家希望将这些干细胞移植到患者体内 ,产生健康的胰小岛细胞 ,分泌与控制胰岛素 ,用来治疗糖尿病。研究人员表示 ,这…  相似文献   

8.
姚艳丽  冯凭 《生命的化学》2005,25(4):316-317
近年来研究表明,胰高血糖素样肽-1(GLP-1)对胰岛β细胞的分化、增殖均起重要作用,包括抑制β细胞凋亡、刺激β细胞增生、诱导干细胞分化为胰腺内分泌细胞,从而使被破坏的胰岛细胞恢复分泌胰岛素的功能,这些作用为其治疗Ⅰ型糖尿病提供了证据,使其成为Ⅰ型糖尿病治疗领域研究的热点。  相似文献   

9.
干细胞具有多向分化潜能,可以被小分子化合物诱导分化为胰岛素分泌细胞,进而移植到体内代替受损的胰岛β细胞,从根本上治愈糖尿病。小分子化合物种类繁多,具有无免疫原性、可控性强等优点,因此,利用小分子化合物诱导干细胞分化为胰岛素分泌细胞来治疗糖尿病是将来比较有前景的治疗方案。该综述主要分类概述了化学诱导法中经常使用的小分子化合物及其在相应阶段发挥的作用。  相似文献   

10.
糖尿病被列为对人类健康威胁最大的三类疾病之一,是全球重点关注的公共卫生问题.目前的药物治疗无法从根源上恢复血糖的自主调节.异体胰岛移植能够有效控制糖尿病患者的血糖,但由于尸体胰岛的来源有限,如何在体外获得大量胰岛素分泌细胞是糖尿病移植治疗的关键.近年来,类器官(organoid)培养技术日益发展,给再生医学研究和疾病治疗带来了新思路.胰岛类器官不仅为探究胰岛发育、糖尿病发病机制和治疗策略提供了体外模型,也为糖尿病的细胞治疗提供了新的细胞来源.本文综述了胚胎干细胞、诱导性多能干细胞、转分化细胞和成体干细胞等不同来源的胰岛类器官的研究进展,并探讨如何优化胰岛类器官的培养条件以助力糖尿病的研究与治疗.  相似文献   

11.
12.
Murine embryonic stem (ES) cells are cell lines established from blastocyst which can contribute to all adult tissues, including the germ-cell lineage, after reincorporation into the normal embryo. ES cell pluripotentiality is preserved in culture in the presence of LIF. LIF withdrawal induces ES cell differentiation to nervous, myocardial, endothelial and hematopoietic tissues. The model of murine ES cell hematopoietic differentiation is of major interest because ES cells are non transformed cell lines and the consequences of genomic manipulations of these cells are directly measurable on a hierarchy of synchronized in vitro ES cell-derived hematopoietic cell populations. These include the putative hemangioblast (which represents the emergence of both hematopoietic and endothelial tissues during development), myeloid progenitors and mature stages of myeloid lineages. Human ES cell lines have been recently derived from human blastocyst in the USA. Their manipulation in vitro should be authorized in France in a near future with the possibility of developing a model of human hematopoietic differentiation. This allows to envisage in the future the use of ES cells as a source of human hematopoietic cells.  相似文献   

13.
14.
Ischemic diseases are characterized by the presence of pro-apoptotic stimuli, which initiate a cascade of processes that lead to cell injury and death. Several molecules and events represent detectable indicators of the different stages of apoptosis. Among these indicators is phosphatidylserine (PS) translocation from the inner to the outer leaflet of the plasma membrane, which can be detected by annexinV (ANXA5) conjugation. This is a widely used in vivo and in vitro assay marking the early stages of apoptosis. We report here on an original method that employs PS-ANXA5 conjugation to target stem cells to apoptotic cells. Mesenchymal stem cells (MSCs) from GFP-positive transgenic rats were biotinylated on membrane surfaces with sulfosuccinimidyl-6-(biotinamido) hexanoate (sulfo-NHS-LC-biot) and then bound to avidin. The avidin-biotinylated MSCs were labeled with biotin conjugated ANXA5. Bovine aortic endothelial cells (BAE-1 cells) were exposed to UVC to induce caspasedependent apoptosis. Finally, we tested the ability of ANXA5-labeled MSCs to bind BAE-1 apoptotic cells: suspended ANXA5-labeled MSCs were seeded for 1 hour on a monolayer of UV-treated or control BAE-1 cells. After washing, the number of MSCs bound to BAE-1 cells was evaluated by confocal microscopy. Statistical analysis demonstrated a significant increase in the number of MSCs tagged to apoptotic BAE-1 cells. Therefore, stem cell ANXA5 tagging via biotin-avidin bridges could be a straightforward method of improving homing to apoptotic tissues. A. Gerasimou, R. Ramella and A. Brero contributed equally to this paper.  相似文献   

15.
Transdifferentiation of mouse BM cells into hepatocyte-like cells   总被引:6,自引:0,他引:6  
Chen Y  Dong XJ  Zhang GR  Shao JZ  Xiang LX 《Cytotherapy》2006,8(4):381-389
BACKGROUND: During the past few years multiple studies have revealed that adult stem cells, including BM origin stem cells, can be transdifferentiated into various cell types, including hepatocyte-like cells, under proper treatments or in a suitable microenvironment. However, little is known about the mechanism of the transdifferentiation, and the treatments employed seem to be very complicated and require simplification. It is important to determine the suitable conditions in which BM cells would be efficiently differentiated into hepatocytes. METHODS: Mouse BM cells were isolated from femurs and tibias and cultured in IMDM supplemented with 10% FBS. Hepatic differentiation was induced in a differentiation medium containing 20 ng/mL HGF, 10 ng/mL FGF-4, 10 ng/mL Oncostatin M (OSM) and different concentrations of liver-injured mouse sera. The differentiated hepatic cells were characterized by the expression of liver-associated mRNA and proteins and morphologic and functional features. RESULTS: BM cell-derived polygonal cell colonies appeared after several days of culture, and these hepatocyte-like cells expressed AFP, HNF-3beta, CK19, CK18, ALB, TAT and G-6-Pase at mRNA and protein levels, and the cells also had some hepatic cellular functions, such as glycogen storage and urea production. Interestingly, suitable concentrations of sera from liver-injured mice added to this system showed strong stimulation on the in vitro transdifferentiation of mouse BM cells into hepatocytes. DISCUSSION: In the present study we have established an effective hepatic differentiation system by a combination of HGF, FGF-4, OSM and liver-injured mouse sera in vitro. Accordingly, it will be a useful resource not only for understanding the mechanisms of transdifferentiation but also for efficient amplification of hepatocyte progenitor cells of BM origin.  相似文献   

16.
Progenitor cells of the testosterone-producing Leydig cells revealed   总被引:1,自引:0,他引:1  
The cells responsible for production of the male sex hormone testosterone, the Leydig cells of the testis, are post-mitotic cells with neuroendocrine characteristics. Their origin during ontogeny and regeneration processes is still a matter of debate. Here, we show that cells of testicular blood vessels, namely vascular smooth muscle cells and pericytes, are the progenitors of Leydig cells. Resembling stem cells of the nervous system, the Leydig cell progenitors are characterized by the expression of nestin. Using an in vivo model to induce and monitor the synchronized generation of a completely new Leydig cell population in adult rats, we demonstrate specific proliferation of vascular progenitors and their subsequent transdifferentiation into steroidogenic Leydig cells which, in addition, rapidly acquire neuronal and glial properties. These findings, shown to be representative also for ontogenetic Leydig cell formation and for the human testis, provide further evidence that cellular components of blood vessels can act as progenitor cells for organogenesis and repair.  相似文献   

17.
Phosphatidylserine (PS) was exposed at the surface of human umbilical vein endothelial cells (HUVECs) and cultured cell lines by agonists that increase cytosolic Ca(2+), and factors governing the adhesion of T cells to the treated cells were investigated. Thrombin, ionophore A23187 and the Ca(2+)-ATPase inhibitor 2, 5-di-tert-butyl-1,4-benzohydroquinone each induced a PS-dependent adhesion of Jurkat T cells. A23187, which was the most effective agonist in releasing PS-bearing microvesicles, was the least effective in inducing the PS-dependent adhesion of Jurkat cells. Treatment of ECV304 and EA.hy926 cells with EGTA, followed by a return to normal medium, resulted in an influx of Ca(2+) and an increase in adhering Jurkat cells. Oxidised low-density lipoprotein induced a procoagulant response in cultured ECV304 cells and increased the number of adhering Jurkat cells, but adhesion was not inhibited by pretreating ECV304 cells with annexin V. PS was not significantly exposed on untreated Jurkat cells, as determined by flow cytometry with annexin V-FITC. However, after adhesion to thrombin-treated ECV304 cells for 10 min followed by detachment in 1 mM EDTA, there was a marked exposure of PS on the Jurkat cells. Binding of annexin V-FITC to the detached cells was inhibited by pretreating them with unlabelled annexin V. Contact with thrombin-treated ECV304 cells thus induced the exposure of PS on Jurkat cells and, as Jurkat cells were unable to adhere to thrombin-treated ECV304 cells in the presence of EGTA, the adhesion of the two cell types may involve a Ca(2+) bridge between PS on both cell surfaces. The number of T cells from normal, human peripheral blood that adhered to ECV304 cells was not increased by treating the latter with thrombin. However, findings made with several T cell lines were generally, but not completely, consistent with the possibility that adhesion to surface PS on endothelial cells may be a feature of T cells that express both CD4(+) and CD8(+) antigens. Possible implications for PS-dependent adhesion of T cells to endothelial cells in metastasis, and early in atherogenesis, are discussed.  相似文献   

18.
Human antibody-forming cells were demonstrated by a plaque in agar technique following in vitro stimulation with either pokeweed mitogen or Cowan I strain of protein A-positive Staphylococcus aureus bacteria. We evaluated the effects on this antibody formation caused by the addition of cells which had been stimulated with PH A or Con A. Both Con A and PHA cells harvested after 3 days showed strong inhibition of pokeweed-induced plaque formation. The majority of the suppression could be accounted for by a blast fraction separated on 1g sedimentation gradients from the Con A or PHA cultures. Small cells from such cultures showed inhibition of PFC when added at high ratios (1:2), but this suppressive activity diluted out much more rapidly than that of the blast cells. No helper activity was noted with either small cells or blasts. Our studies indicate a T-cell blast as the suppressive fraction in Con A- or PHA-stimulated human lymphoid cells. While this T-cell suppression applies to T-dependent responses such as antibody stimulation with pokeweed mitogen, it does not have a substantial effect on Cowan I-induced plaque-forming responses. The finding that Cowan I-induced plaques could not be inhibited by Con A or PHA blasts indicates the T independence of this response.  相似文献   

19.
Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy.Apoptosis, also known as programmed cell death, is central to homoeostasis and normal development and physiology in multicellular organisms, including humans.1 The dysregulation of apoptosis can lead to the destruction of normal tissues in a variety of disorders, including autoimmune and neurodegenerative diseases (increased apoptosis) or cancer (reduced apoptosis). In addition, effective therapy of tumors requires the iatrogenic induction of apoptosis by radiation, chemotherapy or both. In particular, many antineoplasic drugs such as campothecin, a topoisomerase I inhibitor, kill tumor cells by inducing apoptosis.Apoptosis is thought to be physiologically advantageous because apoptotic cells are removed by phagocytosis before they lose their permeability barrier, thus preventing induction of an inflammatory response to the dying cells and potential harmful secondary effects. However, when massive cell death overwhelms macrophage clearance, as for example in early postchemotherapy or viral infection,2 apoptotic cells may progress to secondary necrosis characterized by cell membrane degradation with spillage of intracellular contents to the extracellular milieu.3 Similarly, cells undergoing apoptosis in vitro cannot usually be cleared by phagocytes and undergo a late process of secondary necrosis.4In the execution phase of apoptosis, effector caspases cleave vital cellular proteins, leading to the morphological changes that characterize apoptosis. These changes include destruction of the nucleus and other organelles, DNA fragmentation, chromatin condensation, cell shrinkage, cell detachment and membrane blebbing.5 In apoptosis, all the degradative processes are isolated from the extracellular space by the plasma membrane that remains impermeable. However, the mechanisms involved in plasma membrane and associated protein protection from the action of caspases are not completely understood. In contrast, necrosis is accompanied by disruption of plasma membrane integrity with the subsequent release of all intracellular compounds to the intercellular space, thus inducing inflammation and more toxic effects to adjacent cells.6, 7To allow the dramatic morphological changes that accompany the execution phase, an apoptotic cell undergoes a series of profound cytoskeletal breakdowns/rearrangements. Previous evidence suggests that the actomyosin cytoskeleton plays an essential role in apoptotic cell remodeling during the early events of the execution phase, whereas all other cytoskeleton elements (microtubules and intermediate filaments) are dismantled.8 However, during the course of the execution phase and after actininomyosin ring contraction, the actomyosin filaments are also depolymerized by a caspase-dependent mechanism. In this situation, the apoptotic cell forms a network of apoptotic microtubules that becomes the main cytoskeleton element of the apoptotic cell. The presence of microtubules in apoptotic cells has previously been reported.9, 10 Moreover, more recent results indicate that microtubules during apoptosis assist in the dispersal of nuclear and cellular fragments,11, 12 and may help to preserve the integrity of plasma membrane of the dying cell.13Reactive oxygen species (ROS) are also important mediators of apoptosis. ROS have been shown to play a major role in apoptosis signaling.14, 15, 16 Electron leak in the presence of oxygen during the process of oxidative phosphorylation make mitochondria the major endogenous source of ROS in the cell. Although mitochondria have been identified as a key player, the mechanism connecting ROS and apoptosis remains unclear.17 It has been debated whether increased ROS during apoptosis is a cause or a consequence of impaired mitochondrial function, and whether ROS are a death signal to the mitochondria or are produced as effector molecules by the mitochondria in response to apoptosis signal.18, 19 Hyperproduction of ROS in execution stages of apoptosis is thought to be caused by the disruption of the mitochondrial respiratory chain after release of cytochrome c into the cytosol.20The main objective of this work was to develop a method for the stabilization of apoptotic cells for proper apoptosis detection or safer potential therapeutic applications. Our results show that apoptotic cells can be stabilized by a cocktail of a microtubule stabilizer (taxol), a caspase inhibitor such (Zn2+) and an antioxidant (coenzyme Q10 (CoQ)).  相似文献   

20.
Arase H  Shiratori I 《Uirusu》2004,54(2):153-160
NK cells show cytotoxicity against virus-infected cells and tumor cells and play an important role in host defense. Although mecheanism of target cell recognition by NK cells have been unclear for a long time, it has recently been elucidated that certain NK cell receptors specifically recognize virus products. Furthermore, expression pattern of NK cell receptors, which consist of activating and inhibitory receptors, determines susceptibility to virus-infection. Here, we review recent progress of mechanism of recognition of virus-infected by NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号