首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

The NF-κB activating kinases, IKKα and IKKβ, are key regulators of inflammation and immunity in response to infection by a variety of pathogens. Both IKKα and IKKβ have been reported to modulate either pro- or anti- inflammatory programs, which may be specific to the infectious organism or the target tissue. Here, we analyzed the requirements for the IKKs in myeloid cells in vivo in response to Francisella tularensis Live Vaccine Strain (Ft. LVS) infection.

Methods and Principal Findings

In contrast to prior reports in which conditional deletion of IKKβ in the myeloid lineage promoted survival and conferred resistance to an in vivo group B streptococcus infection, we show that mice with a comparable conditional deletion (IKKβ cKO) succumb more rapidly to lethal Ft. LVS infection and are unable to control bacterial growth at sublethal doses. Flow cytometry analysis of hepatic non-parenchymal cells from infected mice reveals that IKKβ inhibits M1 classical macrophage activation two days post infection, which has the collateral effect of suppressing IFN-γ+ CD8+ T cells. Despite this early enhanced inflammation, IKKβ cKO mice are unable to control infection; and this coincides with a shift toward M2a polarized macrophages. In comparison, we find that myeloid IKKα is dispensable for survival and bacterial control. However, both IKKα and IKKβ have effects on hepatic granuloma development. IKKα cKO mice develop fewer, but well-contained granulomas that accumulate excess necrotic cells after 9 days of infection; while IKKβ cKO mice develop numerous micro-granulomas that are less well contained.

Conclusions

Taken together our findings reveal that unlike IKKα, IKKβ has multiple, contrasting roles in this bacterial infection model by acting in an anti-inflammatory capacity at early times towards sublethal Ft. LVS infection; but in spite of this, macrophage IKKβ is also a critical effector for host survival and efficient pathogen clearance.  相似文献   

3.
4.
Phosphorylation of α-synuclein (aSyn) on serine 129 is one of the major post-translation modifications found in Lewy bodies, the typical pathological hallmark of Parkinson’s disease. Here, we found that both PLK2 and PLK3 phosphorylate aSyn on serine 129 in yeast. However, only PLK2 increased aSyn cytotoxicity and the percentage of cells presenting cytoplasmic foci. Consistently, in mammalian cells, PLK2 induced aSyn phosphorylation on serine 129 and induced an increase in the size of the inclusions. Our study supports a role for PLK2 in the generation of aSyn inclusions by a mechanism that does not depend directly on serine 129 phosphorylation.  相似文献   

5.
6.
In the present study, we have studied the effect of melatonin (Mt) and melatonin derivative, i.e., melatonylvalpromide (Mtv), on cell viability, β-amyloid (Aβ) production, cell morphology, and expression and phosphorylation of neurofilament proteins in wild-type murine neuroblastoma N2a (N2a/wt) and N2a stably transfected with amyloid precursor protein (N2a/APP) cell lines. The study used MTT assay, Sandwich ELISA, immunocytochemistry and Western blots techniques. The results showed that both Mt and Mtv could increase cell viability, but Mtv did so more effectively. The N2a/APP showed shorter and less amount of cell processes than N2a/wt, and Mtv but not Mt slightly improved the morphological changes in N2A/APP. Both Mt and Mtv suppressed the Aβ level in cell lysates, but the effect of Mtv was stronger than Mt. The immunoreaction to the non-phosphorylated neurofilament proteins probed by SMI32 and SMI33 were remarkably weaker in N2a/APP than N2a/wt, while the immunoreaction to the phosphorylated neurofilament proteins at SMI34 epitopes was slightly stronger in N2a/APP than N2a/wt, suggesting higher phosphorylation level of neurofilament proteins in N2a/APP. Treatment of the cells with Mt and Mtv increased the immunoreaction at SMI32 and SMI33 epitopes, while only Mtv but not Mt decreased the staining at SMI34 epitope, suggesting both Mt and Mtv promote dephosphorylation of neurofilament at SMI32 and SMI33 epitopes, while Mtv stimulates dephosphorylation of neurofilament at SMI34 epitope. These results suggest that Mtv may be a better candidate in arresting the intracellular accumulation of Aβ and protecting the cells from Aβ-related toxicity. Xiao-Chuan Wang and Yin-Chun Zhang equally contributed to the work.  相似文献   

7.
The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd substitutions enhance YKD-KD interactions in vitro, whereas Gcn substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD.  相似文献   

8.
9.
The catalytic subunits of IκB kinase (IKK) complex, IKKα and IKKβ, are involved in activation of NF-κB and in mediating a variety of other biological functions. Though these proteins have a high-sequence homology, IKKα exhibits different functional characteristics as compared with IKKβ. Earlier, we have shown that cyclin D1 is overexpressed and predominantly localized in the nucleus of IKKα(-/-) cells, indicating that IKKα regulates turnover and subcellular distribution of cyclin D1, which is mediated by IKKα-induced phosphorylation of cyclin D1. Because cyclin D nuclear localization is implicated in tumor development, we examined whether the absence of IKKα leads to tumor development as well. In the current study, we show that IKKα plays a critical role in tumorigenesis. Though IKKα(-/-) MEF cells show a slower anchorage-dependent growth, they are clonogenic in soft agar. These cells are tumorigenic in nude mice. Microarray analysis of IKKα(-/-) cells indicates a differential expression of genes involved in proliferation and apoptosis. Furthermore, analysis of microarray data of human lung cancer cell lines revealed decreased IKKα RNA expression level as compared with cell lines derived from normal bronchial epithelium. These results suggest that IKKα may function as a tumor suppressor gene. Absence of IKKα may induce tumorigenicity by nuclear localization of cyclin D1 and modulating the expression of genes involved in neoplastic transformation.  相似文献   

10.
To contribute to the question of the putative role of cystatins in Alzheimer disease and in neuroprotection in general, we studied the interaction between human stefin B (cystatin B) and amyloid-β-(1–40) peptide (Aβ). Using surface plasmon resonance and electrospray mass spectrometry we were able to show a direct interaction between the two proteins. As an interesting new fact, we show that stefin B binding to Aβ is oligomer specific. The dimers and tetramers of stefin B, which bind Aβ, are domain-swapped as judged from structural studies. Consistent with the binding results, the same oligomers of stefin B inhibit Aβ fibril formation. When expressed in cultured cells, stefin B co-localizes with Aβ intracellular inclusions. It also co-immunoprecipitates with the APP fragment containing the Aβ epitope. Thus, stefin B is another APP/Aβ-binding protein in vitro and likely in cells.  相似文献   

11.
The aim of this study was to identify propolis compounds after incubation of normal and tumor cells (monocytes and HEp-2 cells, respectively) with Brazilian green propolis, in the lysate and supernatant of cell cultures and within these cells by gas chromatography-mass spectrometry (GC/MS). Cinnamic acid derivatives were generally localized in the lysate of both cell lines after incubation, suggesting these compounds are actively transported across the membrane into the cytoplasm. Terpenes were also found in the lysate. Artepillin C, in contrast, was localised only in the supernatant. Some constituents were unobservable after incubation, especially in monocytes, suggesting the compounds had been degraded. Our findings shed light on the possible sites of action (intracellular or via a cell membrane protein) and the bioavailability of various constituents of propolis, as well as possible modes of delivery of bioactive constituents.  相似文献   

12.
13.
14.
CD30 (TNFRSF8), a tumor necrosis factor receptor family protein, and CD30 variant (CD30v), a ligand-independent form encoding only the cytoplasmic signaling domain, are concurrently overexpressed in transformed human embryonic stem cells (hESCs) or hESCs cultured in the presence of ascorbate. CD30 and CD30v are believed to increase hESC survival and proliferation through NFκB activation, but how this occurs is largely unknown. Here we demonstrate that hESCs that endogenously express CD30v and hESCs that artificially overexpress CD30v exhibit increased ERK phosphorylation levels, activation of the canonical NFκB pathway, down-regulation of the noncanonical NFκB pathway, and reduced expression of the full-length CD30 protein. We further find that CD30v, surprisingly, resides predominantly in the nucleus of hESC. We demonstrate that alanine substitution of a single threonine residue at position 61 (T61) in CD30v abrogates CD30v-mediated NFκB activation, CD30v-mediated resistance to apoptosis, and CD30v-enhanced proliferation, as well as restores normal G2/M-checkpoint arrest upon H2O2 treatment while maintaining its unexpected subcellular distribution. Using an affinity purification strategy and LC-MS, we identified TRAF2 as the predominant protein that interacts with WT CD30v but not the T61A-mutant form in hESCs. The identification of Thr-61 as a critical residue for TRAF2 recruitment and canonical NFκB signaling by CD30v reveals the substantial contribution that this molecule makes to overall NFκB activity, cell cycle changes, and survival in hESCs.  相似文献   

15.
《Cell metabolism》2014,19(1):109-121
  1. Download : Download high-res image (211KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
Glioblastoma (GBM) is the most common and most aggressive central nervous system tumor in adults. Due to GBM cell invasiveness and resistance to chemotherapy, current medical interventions are not satisfactory, and the prognosis for GBM is poor. It is necessary to investigate the underlying mechanism of GBM metastasis and drug resistance so that more effective treatments can be developed for GBM patients. sushi repeat-containing protein, X-linked 2 (SRPX2) is a prognostic biomarker in many different cancer cell lines and is associated with poor prognosis in cancer patients. SRPX2 overexpression promotes interactions between tumor and endothelial cells, leading to tumor progression and metastasis. We hypothesize that SRPX2 also contributes to GBM chemotherapy resistance and metastasis. Our results revealed that GBM tumor samples from 42 patients expressed higher levels of SRPX2 than the control normal brain tissue samples. High-SRPX2 expression levels are correlated with poor prognosis in those patients, as well as resistance to temozolomide in cultured GBM cells. Up-regulating SRPX2 expression in cultured GBM cell lines facilitated invasiveness and migration of GBM cells, while down-regulating SRPX2 through RNA interference was inhibitory. These results suggest that SRPX2 plays an important role in GBM metastasis. Epithelial to mesenchymal transition (EMT) is one of the processes that facilitate GBM metastasis and resistance to chemotherapy. EMT marker expression was decreased in SRPX2 down-regulated GBM cells, and MAPK signaling pathway marker expression was also decreased when SRPX2 is knocked down in GBM-cultured cells. Blocking the MAPK signaling pathway inhibited GBM metastasis but did not inhibit cell invasion and migration in SRPX2 down-regulated cells. Our results indicate that SRPX2 facilitates GBM metastasis by enhancing the EMT process via the MAPK signaling pathway.  相似文献   

18.
Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are closely-related cell types with regeneration-promoting properties. Comparative gene expression analysis is particularly relevant since it may explain cell type-specific effects and guide the use of each cell type into special clinical applications. In the present study, we focused on β-tubulin isotype expression in primary adult canine glia as a translational large animal model. β-tubulins so far have been studied mainly in non-neuronal tumors and implied in tumorigenic growth. We show here that primary OECs and SCs expressed βII–V isotype mRNA. Interestingly, βIII-tubulin mRNA and protein expression was high in OECs and low in SCs, while fibroblast growth factor-2 (FGF-2) induced its down-regulation in both cell types to the same extent. This was in contrast to βV-tubulin mRNA which was similarly expressed in both cell types and unaltered by FGF-2. Immunocytochemical analysis revealed that OEC cultures contained a higher percentage of βIII-tubulin-positive cells compared to SC cultures. Addition of FGF-2 reduced the number of βIII-tubulin-positive cells in both cultures and significantly increased the percentage of cells with a multipolar morphology. Taken together, we demonstrate cell type-specific expression (βIII) and isotype-specific regulation (βIII, βV) of β-tubulin isotypes in OECs and SCs. While differential expression of βIII-tubulin in primary glial cell types with identical proliferative behaviour argues for novel functions unrelated to tumorigenic growth, strong βIII-tubulin expression in OECs may help to explain the specific properties of this glial cell type.  相似文献   

19.
20.
Cytoplasmic presence of Hsp60, which is principally a nuclear gene-encoded mitochondrial chaperonin, has frequently been stated, but its role in intracellular signaling is largely unknown. In this study, we demonstrate that the cytosolic Hsp60 promotes the TNF-α-mediated activation of the IKK/NF-κB survival pathway via direct interaction with IKKα/β in the cytoplasm. Selective loss or blockade of cytosolic Hsp60 by specific antisense oligonucleotide or neutralizing antibody diminished the IKK/NF-κB activation and the expression of NF-κB target genes, such as Bfl-1/A1 and MnSOD, which thus augmented intracellular ROS production and ASK1-dependent cell death, in response to TNF-α. Conversely, the ectopic expression of cytosol-targeted Hsp60 enhanced IKK/NF-κB activation. Mechanistically, the cytosolic Hsp60 enhanced IKK activation via upregulating the activation-dependent serine phosphorylation in a chaperone-independent manner. Furthermore, transgenic mouse study showed that the cytosolic Hsp60 suppressed hepatic cell death induced by diethylnitrosamine in vivo. The cytosolic Hsp60 is likely to be a regulatory component of IKK complex and it implicates the first mitochondrial factor that regulates cell survival via NF-κB pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号