首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
This study investigates the pro-oxidant activity of 3′- and 4′-O-methylquercetin, two relevant phase II metabolites of quercetin without a functional catechol moiety, which is generally thought to be important for the pro-oxidant activity of quercetin. Oxidation of 3′- and 4′-O-methylquercetin with horseradish peroxidase in the presence of glutathione yielded two major metabolites for each compound, identified as the 6- and 8-glutathionyl conjugates of 3′- and 4′-O-methylquercetin. Thus, catechol-O-methylation of quercetin does not eliminate its pro-oxidant chemistry. Furthermore, the formation of these A-ring glutathione conjugates of 3′- and 4′-O-methylquercetin indicates that quercetin o-quinone may not be an intermediate in the formation of covalent quercetin adducts with glutathione, protein and/or DNA. In additional studies, it was demonstrated that covalent DNA adduct formation by a mixture of [4-14C]-3′- and 4′-O-methylquercetin in HepG2 cells amounted to only 42% of the level of covalent adducts formed by a similar amount of [4-14C]-quercetin. Altogether, these results reveal the effect of methylation of the catechol moiety of quercetin on its pro-oxidant behavior. Methylation of quercetin does not eliminate but considerably attenuates the cellular implications of the pro-oxidant activity of quercetin, which might add to the mechanisms underlying the apparent lack of in vivo carcinogenicity of this genotoxic compound. The paper also presents a new mechanism for the pro-oxidant chemistry of quercetin, eliminating the requirement for formation of an o-quinone, and explaining why methylation of the catechol moiety does not fully abolish formation of reactive DNA binding metabolites.  相似文献   

2.
It has been suggested that β-carotene itself is unstable under certain conditions and that a combination of antioxidants may prevent the pro-oxidative effects of β-carotene. Thus, the present study aimed to investigate the interaction of β-carotene with three flavonoids—naringin, rutin and quercetin—on DNA damage induced by ultraviolet A (UVA) in C3H10T1/2 cells, a mouse embryo fibroblast. The cells were preincubated with β-carotene and/or flavonoid for 1 h followed by UVA irradiation, and DNA damage was measured using comet assay. We showed that β-carotene at 20 μM enhanced DNA damage (by 35%; P<.05) induced by UVA (7.6 kJ/m2), whereas naringin, rutin and quercetin significantly decreased UVA-induced DNA damage. When each flavonoid was combined with β-carotene during preincubation, UVA-induced cellular DNA damage was significantly suppressed and the effects were in the order of naringin≥rutin>quercetin. The flavonoids decreased UVA-induced oxidation of preincorporated β-carotene in the same order. Using electron spin resonance spectroscopy, we showed that the ability of these flavonoids to quench singlet oxygen was consistent with protection against DNA damage and β-carotene oxidation. All three flavonoids had some absorption at the UVA range (320–380 nm), but the effects were opposite to those on DNA damage and β-carotene oxidation. Taken together, this cell culture study demonstrates an interaction between flavonoids and β-carotene in UVA-induced DNA damage, and the results suggest that a combination of β-carotene with naringin, rutin or quercetin may increase the safety of β-carotene.  相似文献   

3.
Three acylated flavonol diglucosides, kaempferol 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; quercetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; isorhamnetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside were isolated from the whole plant aqueous alcohol extract of Lotus polyphyllos. The known 3,7-di-O-glucosides of the aglycones kaempferol, quercetin and isorhamnetin were also characterized. All structures were established on the basis of chemical and spectral evidence.  相似文献   

4.
The effect of the nature of the sugar moiety on quercetin absorption has been investigated in rats. Four groups of rats received an experimental meal containing 20 mg of quercetin equivalents, supplied as quercetin, quercetin 3-O-β-glucoside, quercetin 3-O-β-rhamnoside or rutin. Four hours after the meal, the metabolites identified in hydrolysed plasma were identical in all groups (3'- and 4'-methylquercetin). However, the total concentration of metabolites was markedly different: 11.2±1.8, 2.5±2.0 and 33.2±3.5 μM for the quercetin, rutin, and quercetin 3-glucoside meals respectively. After quercetin 3-rhamnoside consumption, we failed to detect any metabolites in the plasma. These data suggest that the 3-O-glucosylation improves the absorption of quercetin in the small intestine, whereas the binding of a rhamnose to the aglycone markedly depresses it. Additional experiments have shown that the higher plasma levels measured after quercetin 3-glucoside meal compared to the quercetin meal were maintained throughout the 24-hour period following the meal. Using a multi-electrode coulometric detection, together with suitable chromatographic conditions, we were able to distinguish between the conjugated and the glycosylated forms. Thus, we clearly showed the absence of quercetin 3-O-β-glucoside in the plasma from rats fed a diet containing this glucoside. This result suggests that quercetin 3-O-β-glucoside is hydrolysed before or during its intestinal absorption.  相似文献   

5.
Carbon isotope ratios (13C/12C) were measured for the leaves of the seagrass Thalassia testudinum Banks ex König and carbonates of shells collected at the seagrass beds from seven sites along the coast of southern Florida, U.S.A. The δ13C values of seagrass leaves ranged from −7.3 to −16.3‰ among different study sites, with a significantly lower mean value for seagrass leaves from those sites near mangrove forests (−12.8 ± 1.1‰) than those far from mangrove forests (−8.3 ± 0.9‰; P < 0.05). Furthermore, seagrass leaves from a shallow water area had significantly lower δ13C values than those found in a deep water area (P < 0.01). There was no significant variation in δ13C values between young and mature leaves (P = 0.59) or between the tip and base of a leaf blade (P = 0.46). Carbonates of shells also showed a significantly lower mean δ13C value in the mangrove areas (−2.3 ± 0.6‰) than in the non-mangrove areas (0.6 ± 0.3‰; P <0.025). In addition, the δ13C values of seagrass leaves were significantly correlated with those of shell carbonates (δ13C seagrass leaf = −9.1 + 1.3δ13C shell carbonate (R2 = 0.83, P < 0.01)). These results indicated that the input of carbon dioxide from the mineralization of mangrove detritus caused the variation in carbon isotope ratios of seagrass leaves among different sites in this study.  相似文献   

6.
To study the biological effects of quercetin, authentic products of quercetin metabolism are required as standards. The synthesis of quercetin sulfate standards is thus described. Quercetin was reacted with a 10-fold molar excess of sulfur trioxide-N-triethylamine, and the products were analyzed by HPLC and mass spectrometry. Four monosulfates and three disulfates were identified, and structural inferences were drawn by 1H NMR spectrometry of HPLC peak isolates. Analysis of the urine of rats that had received quercetin (1.9 g/kg po) yielded a single peak, which by comparison with the products of the reaction between quercetin and sulfur trioxide-N-triethylamine was identified as quercetin 3′-O-sulfate.  相似文献   

7.
Kim YW  Chen H  Withers SG 《Carbohydrate research》2005,340(18):2735-2741
The application of the hyperactive glycosynthase derived from Agrobacterium sp. β-glucosidase (AbgE358G-2F6) to the synthesis of xylo-oligosaccharides by using -d-xylopyranosyl fluoride as donor represents the first successful use of glycosynthase technology for xylosyl transfer. Transfer to p-nitrophenyl β-d-glucopyranoside yields di- and trisaccharide products with β-(1→4) linkages in 63% and 35% yields, respectively. By contrast, transfer to p-nitrophenyl β-d-xylopyranoside yielded the β-(1→3) linked disaccharide and β-d-Xyl-(1→4)-β-d-Xyl-(1→3)-β-d-Xyl-pNP as major products in 42% and 30% yields, respectively. Transfer of xylose to β-d-Xyl-(1→4)-β-d-Xyl-pNP yielded the β-(1→4) linked trisaccharide in 98% yield, thereby indicating that transfers to xylo-disaccharides occur with formation of β-(1→4) bonds. Xylosylation of carbamate-protected deoxyxylonojirimycin produced a mixture of di- and tri-‘saccharide’ products in modest yields.  相似文献   

8.
Three new quercetin 3,3',4'-tri-O-beta-D-glucopyranosides isolated from leaves of Eruca sativa (Mill.) were identified as quercetin 3,3',4'-tri-O-beta-D-glucopyranoside, quercetin 3'-(6-sinapoyl-O-beta-D-glucopyranosyl)-3,4'-di-O-beta-D-glucopyranoside and quercetin 3-(2-sinapoyl-O-beta-D-glucopyranosyl)-3'-(6-sinapoyl-O-beta-D-glucopyranosyl)-4'-O-beta-D-glucopyranoside. The structures were established by one- and two-dimensional 1H and 13C NMR spectra as well as b  相似文献   

9.
10.
Leaves of Virola pavonis yielded a (7,7′β,8β,8′)-4,4′-dihydroxy-3,3′5,5′-tetramethoxy-7,7′-epoxyligna (−)-di-de-O-methylgrandisin.  相似文献   

11.
The reaction of whey proteins (WP) with quercetin and rutin (quercetin-3-O-rhamnosylglucoside) is influenced by the glycosidic bound sugar moiety. The protein derivatives formed showed a blocking of tryptophan (max. 49%), free amino (max. 32%) and thiol groups (max. 24%). The amount of quercetin and rutin bound covalently (up to 94 and 31 nmol mg−1, respectively) was estimated by their characteristic absorbance between 300 and 340 nm. At least one molecule of the phenolic reactant was covalently bound to a β-lactoglobulin molecule (β-Lg). High molecular protein fractions were detected by SDS-PAGE (cross-linking with quercetin). All results confirm that quercetin is more reactive than rutin. The pH-dependent solubility of the derivatives decreased, although their hydrophilic character increased. The structural changes (circular dichroism (CD)) showed that especially rutin causes perturbation of the secondary (decrease of -helix elements accompanied by an increase in random coil) and tertiary structure. The in vitro proteolytic digestibility, especially of the rutin derivatives was elevated, due to an increase in denaturation of the derivatives.  相似文献   

12.
Prostate cancer PC3 cells expressed constitutive protein kinase C (PKC) activity that under basal conditions suppressed neurotensin (NT) receptor function. The endogenous PKC activity, assessed using a cell-based PKC substrate phosphorylation assay, was diminished by PKC inhibitors and enhanced by phorbol myristic acid (PMA). Accordingly, PKC inhibitors (staurosporine, Go-6976, Go-6983, Ro-318220, BIS-1, chelerythrine, rottlerin, quercetin) enhanced NT receptor binding and NT-induced inositol phosphate (IP) formation. In contrast, PMA inhibited these functions. The cells expressed conventional PKCs (, βI) and novel PKCs (δ, ε), and the effects of PKC inhibitors on NT binding were blocked by PKC downregulation. The inhibition of NT binding by PMA was enhanced by okadaic acid and blocked by PKC inhibitors. However, when some PKC inhibitors (rottlerin, BIS-1, Ro-318220, Go-69830, quercetin) were used at higher concentrations (> 2 μM), they had a different effect characterized by a dramatic increase in NT binding and an inhibition of NT-induced IP formation. The specificity of the agents implicated novel PKCs in this response and indeed, the inhibition of NT-induced IP formation was reproduced by PKCδ or PKCε knockdown. The inhibition of IP formation appeared to be specific to NT since it was not observed in response to bombesin. Scatchard analyses indicated that the PKC-directed agents modulated NT receptor affinity, not receptor number or receptor internalization. These findings suggest that PKC participates in heterologous regulation of NT receptor function by two mechanisms: a) — conventional PKCs inhibit NT receptor binding and signaling; and b) — novel PKCs maintain the ability of NT to stimulate PLC. Since NT can activate PKC upon binding to its receptor, it is possible that NT receptor is also subject to homologous regulation by PKC.  相似文献   

13.
Oligomeric procyanidins were isolated from the leaves and flowers of hawthorn (Crataegus laevigata). A trimer, epicatechin-(4β→8)-epicatechin-(4β→6)-epicatechin, and a pentamer consisting of (−)-epicatechin units linked through C-4β/C-8 bonds have been isolated from hawthorn for the first time, in addition to known procyanidins including dimers B-2, B-4 and B-5, trimers C-1 and epicatechin-(4β→6)-epicatechin-(4β→8)-epicatechin, and tetramer D-1. A fraction containing a hexamer was also found.  相似文献   

14.
An affinity chromatography method for purification of β-amylase from cytoledons of whit mustard seedlings (Sinapsi alba L.) is described. β-Amylase is bound to starch column, while other contaminating proteins are eluted with the binding buffer. The bound β-amylase is eluted by including dextrin (1%, w/v) in binding buffer. This method yielded a homogenous preparation of β-amylase enzyme, which migrated as a single polypetide band in SDS electrophoresis.  相似文献   

15.
Chalconoid and stilbenoid glycosides from Guibourtia tessmanii   总被引:2,自引:0,他引:2  
Phytochemical studies on the stem bark of Guibourtia tessmanii yielded a dihydrochalcone glucoside, 2′,4-dihydroxy-4′-methoxy-6′-O-β-glucopyranoside dihydrochalcone and a new stilbene glycoside, 3,5-dimethoxy-4′-O-(β-rhamnopyranosyl-(1→6)-β- glucopyranoside) stilbene besides the known pterostilbene. Their structures were established on the basis of one and two dimensional NMR spectroscopic techniques, FABMS and chemical evidence.  相似文献   

16.
Flavonoids in needles of Scots pine planted in 1912–1914 in Poland from seeds originating from different parts of Europe, were isolated, chemically characterised and analysed by HPLC. It was shown that flavonoid profiles were similar in all tested populations and were different from those previously reported for Scots pine seedlings. They included taxifolin, taxifolin 3′-O-glucoside, quercetin as well as quercetin 3-O-glucoside and 3′-O-glucoside. The quercetin 3-O-glucoside could be found only in a trace amount in all samples and quercetin 3′-O-glucoside appeared in all samples regardless their origin. The relative concentration of taxifolin 3′-O-glucoside, quercetin, taxifolin and total flavonoids showed dependence on the origin of seeds; needles from high latitude populations contained smaller amounts of these compounds. Presented data clearly indicate that Scots pine contain glycosidases specific for glycosylation at C-3′ rather than at C-3. Besides, they indicate that long lasting influence of similar environmental factors is not able to change genetic regulatory systems responsible for flavonoid biosynthesis.  相似文献   

17.
A malonic acid ester derivative of the flavanone naringin was abundant in the young leaves and fruits of grapefruit plants, but not in the mature leaves and fruits. After isolation, the structure of this compound was established as naringin 6″-malonate (naringenin 72″-O-- -rhamnosyl)-β- -glucoside 6″-malonate).  相似文献   

18.
E. K. Desoky 《Phytochemistry》1995,40(6):1769-1772
From the cyclohexane extract of the leaves of Murraya exotica, five novel phytosterols: (23S)-23-ethyl-24-methyl-cycloart-24(241)-en-3β-ol; 3β-methoxy-(23S)-23-ethyl-24-methyl-cycloart-24(241)-en-3β-ol; (23 S)-23-ethyl-24-methyl-cycloart-24(241)-3β-yl acetate; (23ξ)-23-isopropyl-24-methyl-cycloart-25-en-3β-ol and (23ξ)-23-isopropyl-24-methyl-cycloart-25-en-3β-yl acetate have been isolated. Structural elucidation of the isolated compounds is based on physical, chemical and spectral analysis including IR, 1H and 13CNMR and mass spectrometry.  相似文献   

19.

Background

Chronic oral quercetin reduces blood pressure and restores endothelial dysfunction in hypertensive animals. However, quercetin (aglycone) is usually not present in plasma, because it is rapidly metabolized into conjugated, mostly inactive, metabolites. The aim of the study is to analyze whether deconjugation of these metabolites is involved in the blood pressure lowering effect of quercetin.

Methodology/Principal Findings

We have analyzed the effects on blood pressure and vascular function in vitro of the conjugated metabolites of quercetin (quercetin-3-glucuronide, Q3GA; isorhamnetin-3-glucuronide, I3GA; and quercetin-3′-sulfate, Q3''S) in spontaneously hypertensive rats (SHR). Q3GA and I3GA (1 mg/kg i.v.), but not Q3''S, progressively reduced mean blood pressure (MBP), measured in conscious SHR. The hypotensive effect of Q3GA was abolished in SHR treated with the specific inhibitor of β-glucuronidase, saccharic acid 1,4-lactone (SAL, 10 mg/ml). In mesenteric arteries, unlike quercetin, Q3GA had no inhibitory effect in the contractile response to phenylephrine after 30 min of incubation. However, after 1 hour of incubation Q3GA strongly reduced this contractile response and this effect was prevented by SAL. Oral administration of quercetin (10 mg/Kg) induced a progressive decrease in MBP, which was also suppressed by SAL.

Conclusions

Conjugated metabolites are involved in the in vivo antihypertensive effect of quercetin, acting as molecules for the plasmatic transport of quercetin to the target tissues. Quercetin released from its glucuronidated metabolites could be responsible for its vasorelaxant and hypotensive effect.  相似文献   

20.
以美乐葡萄(Vitis vinifera cv. ‘Merlot’)幼苗为试材, 对叶片进行霜冻胁迫的同时控制土壤降温过程, 造成根系冷胁迫(2°C)和冻胁迫(0°C)。测定霜冻胁迫后和恢复期间叶片的快速叶绿素荧光参数, 并分析低温胁迫不同根系对叶片霜冻害程度的影响。结果表明, 根系在不同低温胁迫下会影响叶片对霜冻的反应, 根系冻胁迫造成叶片严重的霜冻伤害, 光系统II (PSII)反应中心活性难以得到恢复; 根系冷胁迫能避免叶片严重的低温伤害, 低温胁迫后PSII的活性也能很快恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号