首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of tissue cyclic AMP (cAMP) concentration, the activity of cAMP-dependent protein kinase and the level of the enzyme's thermostable, macromolecular inhibitor were made on preparations of rat epididymal fat pad from animals fed high fat or high carbohydrate diets. The cAMP concentration from rats adapted to a high lard diet for 14-15 days was 153 +/- 17.8 pmoles/mg protein as opposed to 76 +/- 6.0 found with high glucose diet. No significant difference in total cAMP-dependent protein kinase activity was observed among rats fed high glucose, high lard or laboratory chow, although the enzyme's activity ratio (-cAMP)(+cAMP) was significantly elevated with lard feeding (0.49 +/- 0.02) as opposed to glucose feeding (0.43 +/- 0.01). Crude preparations from lard and glucose fed animals were equivalent in inhibitory activity when tested with enzyme from chow fed animals. Agarose column chromatography separated holoenzyme and C subunit forms of the protein kinase when 500 mM NaCl was present in the elution buffer. Absence of the salt allowed subunit reassociation to occur. Direct addition of NaCl greater than or equal to 75 mM significantly inhibited protein kinase activity. The results indicate that the adipose tissue of rats fed a high lard diet has a higher concentration of cAMP and an increased protein kinase activity ratio than tissue from rats fed a fat free, high glucose diet. Total cAMP-dependent protein kinase activity and the level of a thermostable macromolecular inhibitor remained unchanged.  相似文献   

2.
Calphobindins (CPBs, placental annexins) are intracellular Ca(2+)- and phospholipid-dependent proteins like protein kinase C [EC 2.7.1.37]. We investigated the inhibitory effects of calphobindins on the protein kinase C activity in vitro. CPB I inhibited the protein kinase C activity for both histone phosphorylation and lipocortin phosphorylation, but CPB II and CPB III inhibited only the protein kinase C activity for histone phosphorylation. In the case of histone phosphorylation, all CPBs inhibited the protein kinase C activity in a concentration-dependent manner, and the IC50 (concentration required for 50% inhibition) value of CPB I was 70 nM. The inhibition of protein kinase C by CPB I was Ca(2+)-dependent, and did not disappear upon increasing the concentration of phosphatidyl-serine. Kinetic analysis by double-reciprocal plots indicated that CPB I interacted not only with phosphatidylserine but also with protein kinase C. Although CPB I partially interacts with phospholipid, it is conceivable that the inhibitory action of CPB I on protein kinase C results from direct interaction of CPB I with protein kinase C. Since CPBs are mainly present under the plasma membrane, it is presumed that CPB I is an endogenous inhibitor of protein kinase C, and according to intracellular circumstances, CPB II and CPB III may also be endogenous inhibitors.  相似文献   

3.
E D Fraser  M P Walsh 《FEBS letters》1991,294(3):285-289
A crude cytosolic fraction prepared from bovine brain contained protein kinase C, as shown by immunoblotting, but its activity was undetectable, suggesting the presence of interfering factors. Phosphatase, ATPase and protease activities did not account for the absence of detectable protein kinase C activity. The major contributing factor was found to be a heat-labile protein which was separated from the kinase by ion-exchange chromatography. The contribution to the total inhibitory activity of heat-stable proteins was relatively minor, suggesting that they may not function physiologically as protein kinase C inhibitors.  相似文献   

4.
Calphostin C (UCN-1028C), a newly isolated compound from Cladosporium cladosporioides, is a potent and specific inhibitor of protein kinase C, because it was 1000 times more inhibitory to protein kinase C (IC50, 0.05 microM) than other protein kinases such as cAMP-dependent protein kinase and tyrosine-specific protein kinase (IC50, greater than 50 microM). Calphostin C did not inhibit calcium activated neutral protease (calpain)-digested protein kinase C, indicating that it interacts with the regulatory domain of protein kinase C. In addition this compound showed inhibitory effects on the binding of [3H]PDBu to protein kinase C. The potent cytotoxic activity and antitumor activity of calphostin C might be due to the inhibition of protein kinase C, and thus it may be potentially useful for the therapeutic application.  相似文献   

5.
Regucalcin, a calcium-binding protein isolated from rat liver cytosol, inhibited Ca2(+)- and phospholipid-dependent protein kinase (protein kinase C) activity in hepatic cytosol. With the increasing concentrations of Ca2+ or phosphatidylserine in the medium, regucalcin caused a remarkable inhibition of protein kinase C activity. Moreover, regucalcin significantly inhibited dioctanoylglycerol-activated protein kinase C. Regucalcin itself did not have protein kinase activity in either the presence or the absence of Ca2+ and phospholipids. These findings clearly indicate that regucalcin has an inhibitory effect on protein kinase C in hepatic cytosol. This inhibitory effect of regucalcin may be due to the regucalcin-induced Ca2+ binding and/or the direct binding of regucalcin to protein kinase C.  相似文献   

6.
We recently proposed that arachidonic acid serves as a second messenger within granulosa cells from the largest preovulatory follicle of the hen. The present studies were conducted to determine whether the inhibitory effects of arachidonic acid on LH-induced cAMP accumulation and on the ability of cells to convert 25-hydroxycholesterol to progesterone are mediated via the protein kinase C pathway. Furthermore, we determined the effects of arachidonic acid on plasminogen activator activity in granulosa cells. In the first experiment, the putative protein kinase C inhibitor, staurosporine, completely reversed the inhibitory effects of phorbol 12-myristate 13-acetate (PMA) on LH-promoted cAMP formation, but failed to overcome the inhibitory effects of arachidonic acid. Prolonged pretreatment (18 h) with 1.6 microM PMA depleted granulosa cells of both cytosolic and membrane-associated protein kinase C, and subsequently attenuated the inhibitory effects of PMA on LH-induced progesterone production; however, such depletion did not alter the inhibitory effects of phospholipase A2 (PLA2; an agent that increases intracellular levels of arachidonic acid). PMA, but not arachidonic acid, caused a rapid (within 2 min) translocation of protein kinase C from the cytosol to the membrane (a characteristic of agents that activate protein kinase C). Finally, both arachidonic acid and PLA2 inhibit plasminogen activator (PA) activity in a dose-dependent fashion, whereas activation of protein kinase C with PMA stimulates PA activity. Taken together, the data suggest that the effects of arachidonic acid in granulosa cells can occur independently of protein kinase C activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The activity and steroidogenic action of protein kinase C were evaluated in small and large steroidogenic ovine luteal cells. Protein kinase C activity (per mg protein) was threefold greater in large than in small luteal cells, whereas protein kinase A activity was similar in the two cell types. Phorbol 12-myristate 13-acetate (PMA) activated protein kinase C in luteal cells as demonstrated by membrane association of 91% of available protein kinase C within 15 min of PMA treatment. Longer treatments with PMA produced cells with low protein kinase C activity (protein kinase C-deficient cells) but did not affect cellular viability or protein kinase A activity. Activation of protein kinase C caused an acute, dose-dependent inhibition of progesterone production in unstimulated large and luteinizing hormone (LH)-stimulated small luteal cells. This inhibition by PMA appeared to be specific for protein kinase C since it was greatly attenuated in protein kinase C-deficient cells and since an inactive phorbol ester, 4 alpha-phorbol, had no effect on luteal progesterone production. The inhibitory locus of protein kinase C action in small luteal cells appeared to be distal to the adenylate cyclase enzyme because progesterone production was inhibited similarly in cells stimulated with LH, forskolin, or dibutyryl cyclic adenosine 3',5'-monophosphate. Cholesterol side-chain cleavage activity, as measured by metabolism of 25-hydroxycholesterol, was inhibited by PMA in large, but not in small, luteal cells. These data indicate that activation of protein kinase C specifically inhibits progesterone production in both large and small ovine luteal cells, although the intracellular mechanisms invoked appear to differ in the two cell types.  相似文献   

8.
The stimulatory and inhibitory activities in the crude preparation of protein kinase modulator from dog heart were separated by Sephadex G-100 gel filtration, and the stimulatory modulator was further purified by DEAE-cellulose chromatography. The isolated stimulatory modulator, as the crude modulator preparation, stimulated the activity of the purified guanosine 3':5'-monophosphate (cGMP)-dependent protein kinases of both mammalian and arthropod origins in the presence of cGMP. The cGMP-dependent protein kinases were not activated by cGMP in the absence of either the isolated stimulatory modulator or the crude modulator. The stimulatory modulator, unlike the crude modulator had no effect on the activity of adenosine 3':5'-monophosphate (cAMP)-dependent protein kinase. The stimulatory modulator was a protein since its activity was destroyed by trypsin but was resistant to hydrolysis by DNase, RNase, phospholipase C, and lysozyme. The isolated inhibitory modulator, presumably the same as the protein inhibitor of cAMP-dependent protein kinase reported by Walsh et al. (Wash. D.A., Ashby, C.D., Gonzalez, C., Calkins, D., Fischer. E.H., and Krebs, E.G. (1971) J. Biol. Chem. 246, 1977-1985), depressed the cAMP-stimulated activity of cAMP-dependent protein kinase as did the crude preparation of protein kinase modulator. The isolated inhibitory modulator, unlike the crude preparation, was without effect on cGMP-dependent protein kinase. The present findings provide evidence to support that in mammals there are separate proteins for the stimulatory and the inhibitory activities of protein kinase modulator, in contrast to the modulator from an arthropod tissue (lobster tail muscle, Donnelly et al. (Donnelly, T.E., Jr., Kuo, J.F., Reyes, P.L., Liu, Y.P., and Greengard, P. (1973) J. Biol. Chem. 248, 190-198) which has been shown to possess both activities.  相似文献   

9.
A calcium- and phospholipid-dependent protein kinase of apparent molecular mass 54 kDa (designated ZmCPKp54) was partially purified from etiolated maize seedlings. Activity of ZmCPKp54 is stimulated by phosphatidylserine and phosphatidylinositol, but is not essentially affected by diolein and phorbol esters. The enzyme cross-reacts with polyclonal antibodies against the calmodulin like-domain of the calcium-dependent protein kinase, but not with antibodies against catalytic or regulatory domains of protein kinase C. ZmCPKp54 is not able to phosphorylate the specific substrates of protein kinase C (MARCKS peptide and protein kinase C substrate peptide derived from pseudosubstrate sequence) and its activity is not inhibited by specific PKC inhibitors (bisindolylmaleimide, protein kinase C pseudosubstrate inhibitory peptide). The substrate specificity and sensitivity to the inhibitors of the maize enzyme resembles calcium-dependent protein kinase. The biochemical and immunological properties indicate that ZmCPKp54 belongs to the calcium-dependent protein kinase family.  相似文献   

10.
A protein kinase activity was identified in pig brain that co-purified with microtubules through repeated cycles of temperature-dependent assembly and disassembly. The microtubule-associated protein kinase (MTAK) phosphorylated histone H1; this activity was not stimulated by cyclic nucleotides. Ca2+ plus calmodulin, phospholipids or polyamines. MTAK did not phosphorylate synthetic peptides which are substrates for cyclic AMP-dependent protein kinase, cyclic GMP-dependent protein kinase. Ca2+/calmodulin-dependent protein kinase II, protein kinase C or casein kinase II. MTAK activity was inhibited by trifluoperazine [IC50 (median inhibitory concn.) = 600 microM] in a Ca2+-independent fashion. Ca2+ alone was inhibitory [IC50 = 4 mM). MTAK was not inhibited by heparin, a potent inhibitor of casein kinase II, nor a synthetic peptide inhibitor of cyclic AMP-dependent protein kinase. MTAK demonstrated a broad pH maximum (7.5-8.5) and an apparent Km for ATP of 45 microM. Mg2+ was required for enzyme activity and could not be replaced by Mn2+. MTAK phosphorylated serine and threonine residues on histone H1. MTAK is a unique cofactor-independent protein kinase that binds to microtubule structures.  相似文献   

11.
Transport of sugars across the cytoplasmic membranes of gram-positive bacteria appears to be regulated by the action of a metabolite-activated, ATP-dependent protein kinase that phosphorylates a seryl residue in the phosphocarrier protein of the phosphotransferase system, HPr. We have developed a quantitative assay for measuring the activity of this enzyme from Streptococcus pyogenes. The product of the in vitro protein kinase-catalyzed reaction was shown to be phosphoseryl-HPr by several independent criteria (rates of hydrolysis in the presence of various agents, detection of serine-phosphate in acid hydrolysates, immunological assay, and electrophoretic migration rates). HPrs isolated from four different gram-positive bacteria (S. pyogenes, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis) were shown to be phosphorylated by the kinase from S. pyogenes. In contrast, Escherichia coli HPr was not a substrate of this enzyme. The soluble kinase released from the particulate fraction of the cells with high salt in the presence of a protease inhibitor was shown to have an approximate molecular weight of 60,000 as estimated by gel filtration. Its activity was dependent on divalent cations, with Mg2+ and Mn2+ being most active. EDTA, Pi, and high concentrations of salt were strongly inhibitory. The enzyme was optimally active at pH 7.0, exhibited high affinity for its substrates, and was dependent on the presence of one of several metabolites. Of these compounds, fructose 1-6-diphosphate was most active, with gluconate 6-phosphate, 2-phosphoglycerate, 2,3-diphosphoglycerate, phosphoenolpyruvate, and pyruvate exhibiting moderate to low stimulatory activities. Other compounds tested, including a variety of sugar phosphates, pyridine nucleotides, and other metabolites were without effect. The ATP-dependent phosphorylation of HPr on the seryl residue was strongly inhibited by phosphoenolpyruvate-dependent phosphorylation of the active histidyl residue of this protein. Treatment of the kinase with diethyl pyrocarbonate strongly inhibited the ATP-dependent phosphorylation activity, although the sulfhydryl reagents N-ethylmaleimide, p-chloromercuribenzoate, and iodoacetate were without effect. These results serve to characterize the HPr (serine) kinase, which apparently regulates the rates of carbohydrate transport in streptococcal cells via the phosphotransferase system. A primary role of this kinase in the control of cellular inducer levels and carbohydrate metabolic rates is proposed.  相似文献   

12.
Certain lysophospholipids, lysophosphatidylcholine (lyso-PC) in particular, stimulated protein kinase C at low concentrations (less than 20 microM) but, conversely, inhibited it at high concentrations (greater than 30 microM). Protein kinase C stimulation by lyso-PC required the presence of phosphatidylserine (PS) and Ca2+ and was associated with a decreased Ka for PS and increased Ka for Ca2+ of the enzyme. Cardiolipin and phosphatidic acid could partially substitute for PS in supporting the stimulatory effect of lyso-PC. Lyso-PC also biphasically regulated protein kinase C activated by diolein. Of several synthetic lyso-PC preparations tested, the oleoyl, myristoyl and palmitoyl derivatives were most active. Data from the Triton X-100 mixed micellar assay indicated that 1.4 and 14.0 mol of lyso-PC/micelle produced a maximal stimulation and a complete abolishment of the stimulation of protein kinase C, respectively. Protein kinase C stimulation by lyso-PC, with a pH optimum of about 7.5, was observed for phosphorylation of histone H1, myelin basic protein, and the 35- and 47-kDa proteins from the rat brain, but not for that of other histone subfractions and protamine. Lyso-PC acted synergistically with diacylglycerol in stimulating protein kinase C, whereas the stimulation by lyso-PC was additive to that by oleic acid. Protein kinase C inhibitors (alkyllysophospholipid, sphingosine, tamoxifen, and polymyxin B) inhibited more potently the protein kinase C activity stimulated by PS/Ca2+/lyso-PC than that stimulated by PS/Ca2+. The stimulatory and inhibitory effects of lyso-PC were not observed for myosin light chain kinase and cAMP-dependent protein kinase, indicating a specificity of its actions. The present findings suggested that lyso-PC, likely derived from membrane PC by the action of phospholipase A2, might play a role in signal transduction via a dual regulation of protein kinase C, and that it could further modulate the enzyme and hence the cellular activity by interplaying with diacylglycerol and unsaturated fatty acid, the two other classes of cellular mediators also shown to be activators of protein kinase C.  相似文献   

13.
Other laboratories have reported biphasic effects of heavy metals on protein kinase C activity: stimulation followed by inhibition at higher concentrations. We demonstrate that these earlier findings most likely resulted from a combination of the effect of the heavy metals to liberate Ca2+ from Ca2+-EGTA buffer systems and the direct inhibitory effects of the metals on protein kinase C. Simulations of such interactions substantiate this conclusion. When soluble protein kinase C is prepared without the addition of Ca2+ or chelator, heavy metals (Cd2+, Cu2+, Hg2+, Zn2+, in the 10 microM range) inhibit the activity of, and the binding of regulatory ligands to, protein kinase C. Heavy metals inhibit the extent of [3H]phorbol dibutyrate binding without affecting the affinity of the interaction, an inhibition that is not surmounted by excess phospholipid. Heavy metals also inhibit the phospholipid-dependent catalytic activity of protein kinase C in a manner that excess phosphatidylserine can overcome. The inhibition of enzyme activity by heavy metals cannot be surmounted by excess Ca2+ or Mg2+. The inhibitory effects of heavy metals are not confined to protein kinase C. Heavy metals also inhibit cyclic AMP binding to cyclic AMP-dependent protein kinase and the catalytic activity of that kinase, but in a distinctly different pattern.  相似文献   

14.
The flavonoid quercetin exhibited a biphasic effect on calcium and phospholipid-dependent protein kinase (protein kinase C) activity from rat brain and pig thyroid. At a low concentration (10(-7) M) quercetin stimulated the enzyme activity whereas at higher concentrations quercetin was inhibitory. By contrast the synthetic penta-0-ethylquercetin stimulated protein kinase C activity in a dose-dependent manner. When fresly dispersed pig thyroid cells were treated with penta-0-ethylquercetin or 12-0-tetradecanoylphorbol 13-acetate (TPA), a 50% decrease of the cytosolic protein kinase C activity was observed. These results suggest that the lipophilicity as well as other structural determinants may be crucial for the ability of flavonoids to regulate (inhibit or activate) the enzyme activity.  相似文献   

15.
A synthetic peptide of 18 amino acids corresponding to the inhibitory domain of the heat-stable protein kinase inhibitor was synthesized and shown to inhibit both the C alpha and C beta isoforms of the catalytic (C) subunit of cAMP-dependent protein kinase. Extracts from cells transfected with expression vectors coding for the C alpha or the C beta isoform of the C subunit required 200 nM protein kinase inhibitor peptide for half-maximal inhibition of kinase activity in extracts from these cells. An affinity column was constructed using this synthetic peptide, and the column was incubated with protein extracts from cells overexpressing C alpha or C beta. Elution of the affinity column with arginine allowed single step isolation of purified C alpha and C beta subunits. The C alpha and C beta proteins were enriched 200-400-fold from cellular extracts by this single step of affinity chromatography. No residual inhibitory peptide activity could be detected in the purified protein. The purified C subunit isoforms were used to demonstrate preferential antibody reactivity with the C alpha isoform by Western blot analysis. Furthermore, preliminary characterization showed both isoforms have similar apparent Km values for ATP (4 microM) and for Kemptide (5.6 microM). These results demonstrate that a combination of affinity chromatography employing peptides derived from the heat-stable protein kinase inhibitor protein and the use of cells overexpressing C subunit related proteins may be an effective means for purification and characterization of the C subunit isoforms. Furthermore, this method of purification may be applicable to other kinases which are known to be specifically inhibited by small peptides.  相似文献   

16.
The crude protein kinase modulator preparations obtained from several rat tissues (aorta, brain heart, liver, lung, skeletal muscle, small intestine and testis) were separated into their stimulatory and inhibitory modulator components by Sephadex G-100 gel filtration. The isolated stimulatory modulator augmented the activity of guanosine 3':5'-monophosphate-dependent protein kinase. The isolated inhibitory modulator, on the other hand, depressed the activity of cyclic AMP-dependent protein kinase; it was without effect on the activity of cyclic GMP-dependent protein kinease. The present findings indicate that in the mammal, apparently in contrast to the arthropoda, separate proteins are responsibile for the stimulatory and the inhibitory activities of protein kinase modulator and that the two classes of cyclic nucleotide-dependent protein kinase are regulated in an opposing manner by these two types of modulators.  相似文献   

17.
Liver pyruvate kinase (L-type isozyme) was purified from the livers of rats fed a high carbohydrate, low protein diet for 4 days. The protein was homogeneous as judged by polyacrylamide-gel electrophoresis with and without added sodium dodecyl sulfate and as judged by high speed sedimentation and low speed equilibrium centrifugation. The specific activity of the purified protein was 190–220 international units (IU)/mg. A precipitating antiserum directed specifically against liver pyruvate kinase was obtained from rabbits and was used to determine the amount of liver pyruvate kinase protein present in the 80,000g supernatant fraction of rat liver homogenates in response to the dietary status of the animal. Rats maintained on a high carbohydrate, low protein diet for 4 days prior to sacrifice have at least 20 mg of precipitable liver pyruvate kinase protein per liver. Starvation of the animal results in a marked reduction in liver pyruvate kinase so that by 3 days of starvation less than 7 mg of liver pyruvate kinase protein per liver remains. Refeeding the animal a high carbohydrate, low protein diet results in a return of the liver pyruvate kinase protein to the prestarvation level of 20 mg per liver. The liver pyruvate kinase activity per liver varies in the same direction as does the liver pyruvate kinase protein but does not parallel the change in protein. Animals fed a high carbohydrate, low protein diet for 4 days have 60–70 IU/mg of liver pyruvate kinase protein whereas animals starved for periods exceeding 30 h have greater than 100 IU/mg of liver pyruvate kinase protein. Refeeding starved animals with a high carbohydrate, low protein diet initially causes a large increase in activity per milligram of liver pyruvate kinase protein followed by a return of this value to the prestarvation level. The observed rise in the ratio of activity per milligram of liver pyruvate kinase protein during starvation suggests a modification in the enzyme protein resulting either in an increase in the specific activity of the enzyme or in a decrease in the affinity of the enzyme for the antibody.  相似文献   

18.
Diacylglycerol generated from inositolphospholipid hydrolysis and tumor-promoting phorbol esters stimulate protein kinase C. The synthetic diacylglycerol 1-oleoyl-2-acetyl-rac-glycerol and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) have been used in pure rat peritoneal mast cells. Both caused histamine release associated with exocytosis. The release by the stimulation of protein kinase C alone in the absence of secretagogues was slow although up to 50% of the histamine content was released by TPA in 120 min. Remarkable potentiation of histamine release was observed when the mast cells were preincubated with TPA before exposure to the calcium ionophore A23187. The potentiation of histamine release corresponded with an intensification of exocytosis. The potentiation is consistent with a participation of protein kinase C in the secretory process. An inhibitory effect due to protein kinase C activity was also demonstrated using TPA and mast cells from sensitized rats. When sensitized mast cells preincubated with 50 nM TPA for 5 min were exposed to the antigen, the histamine release was substantially reduced compared to the sum of the release by the antigen and TPA or by the antigen alone. There was a corresponding decrease in exocytosis. The inhibition of exocytosis and histamine release seems to reflect a regulatory function of protein kinase C for the termination of the response, as demonstrated in other types of cells apparently acting through an inhibition of inositolphospholipid hydrolysis.  相似文献   

19.
A potent inhibitor of protein kinase C (PKC), inhibitor protein-1 (KCIP-1), isolated from sheep brain has been shown to consist of eight isoforms by reverse-phase HPLC. Direct protein sequence analysis has revealed these to be the same as those of 14-3-3 protein, described as an activator of tyrosine and tryptophan hydroxylases involved in neurotransmitter biosynthesis. The N-termini of KCIP-1 isoforms were shown to be acetylated, and secondary structure predictions revealed a high degree of alpha-helix with an amphipathic nature. KCIP-1 showed no inhibitory activity towards protein kinase M (the catalytic fragment of PKC) and had no effect on the activities of three other protein kinases, cAMP-dependent protein kinase, Ca2+/calmodulin-dependent protein kinase II and casein kinase 2. Four forms of KCIP-1 were shown to be substrates for PKC in vitro, but none were phosphorylated by the other protein kinases mentioned above.  相似文献   

20.
The relative potency with which phorbol esters inhibited histamine-stimulated aminopyrine accumulation (an index of acid secretion) paralleled that which has been established for the activation of purified protein kinase C. The inhibitory effect of 1-oleoyl-2-acetylglycerol on aminopyrine accumulation stimulated by various secretagogues was similar to that of 12-O-tetradecanoylphorbol 13-acetate. Protein kinase C activity was present in a parietal-cell-enriched fraction. In conclusion, protein kinase C could be involved in mechanisms regulating gastric acid secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号