首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Two S49 mouse lymphoma cell variants hemizygous for expression of mutant regulatory (R) subunits of type I cyclic AMP-dependent protein kinase were used to investigate functional consequences of lesions in the putative cAMP-binding sites of R subunit. Kinase activation properties of wild-type and mutant enzymes were compared using cAMP and six site-selective analogs of cAMP. Kinases from both mutant sublines were relatively resistant to cyclic nucleotide-dependent activation, but they were fully activable by at least some effectors. Relative resistances of the mutant kinases varied from about 5-fold for analogs selective for their nonmutated sites to as much as 700-fold for analogs selective for their mutated sites; resistance to cAMP was intermediate. Apparent affinities of wild-type and mutant R subunits for [3H]cAMP were not appreciably different, but competition experiments with site-selective analogs of cAMP suggested that binding of cAMP to mutant R subunits was primarily to their nonmutated sites. Analyses of cooperativity in cyclic nucleotide-dependent activation of mutant kinases, synergism between site I- and site II-selective analogs in activating the mutant enzymes, and dissociation of bound cAMP from mutant R subunits provided additional evidence that the mutations in these strains selectively inactivated single classes of cAMP-binding sites: phenomena attributable in wild-type enzyme to intrachain interactions between sites I and II were always absent or severely diminished in experiments with the mutant enzymes. These results confirm that R subunit sequences implicated in cAMP binding by homology with other cyclic nucleotide-binding proteins actually correspond to functional cAMP-binding sites. Furthermore, occupation of either cAMP-binding site I or II is apparently sufficient for activation of cAMP-dependent protein kinase. The presence of four functional cAMP-binding sites in wild-type kinase enhances the cooperativity and sensitivity of cAMP-mediated activation.  相似文献   

2.
The mouse wild type and four mutant regulatory type I (RI) subunits were expressed in Escherichia coli and subjected to kinetic analyses. The defective RI subunits had point mutations in either cAMP-binding site A (G200/E), site B (G324/D, R332/H), or in both binding sites. In addition, a truncated form of RI which lacked the entire cAMP-binding site B was generated. All of the mutant RI subunits which bound [3H]cAMP demonstrated more rapid rates of cAMP dissociation compared to the wild type RI subunit. Dissociation profiles showed only a single dissociation component, suggesting that a single nonmutated binding site was functional. The mutant RI subunits associated with purified native catalytic subunit to form chromatographically separable holoenzyme complexes in which catalytic activity was suppressed. Each of these holoenzymes could be activated but showed varying degrees of cAMP responsiveness with apparent Ka values ranging from 40 nM to greater than 5 microM. The extent to which the mutated cAMP-binding sites were defective was also shown by the resistance of the respective holoenzymes to activation by cAMP analogs selective for the mutated binding sites. Kinetic results support the conclusions that 1) Gly-200 of cAMP-binding site A and Gly-324 or Arg-332 of site B are essential to normal conformation and function, 2) activation of type I cAMP-dependent protein kinase requires that only one of the cAMP-binding sites be functional, 3) mutational inactivation of site B (slow exchange) has a much more drastic effect than that of site A on increasing the Ka of the holoenzyme for cAMP, as well as in altering the rate of cAMP dissociation from the remaining site of the free RI subunit. The strong dependence of one cAMP-binding site on the integrity of the other site suggests a tight association between the two sites.  相似文献   

3.
The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.  相似文献   

4.
To probe the functional significance of the two cAMP-binding sites (A and B) on each regulatory subunit (RI) of cAMP-dependent protein kinase I, the dissociation of cAMP was studied from wild type RI liganded on site A, site B, or both sites, in the absence and presence of catalytic subunit (C). C enhanced the dissociation of cAMP from RI monoliganded on site A or B more than from A,B-biliganded RI, the rate difference being several orders of magnitude in the absence of Mg/ATP and about 7-fold in the presence of Mg/ATP. The catalytically active site of C was involved, since substrates or pseudosubstrates completely and competitively inhibited the action of C in the absence or presence of Mg/ATP. There was no evidence that C, by binding to one monomer of the RI dimer, affected the binding of cAMP to the other monomer. Likewise, there was no evidence for stable complexes of C and cAMP bound to the same R monomer. C enhanced the dissociation of cAMP from R subunits mutated in site A (RIGlu200, which is mutant RI in which glycine 200 is replaced by glutamic acid) or site B (RITrp334, which is mutant RI in which arginine 334 is replaced by tryptophan) to the same extent as from wild type RI monoliganded with cAMP. This indicates that the properties of nonmutated cAMP-binding sites in RIGlu200 and RITrp334 are modulated in a normal manner by C. Mutant RI defective in site A (RIGlu200) had the same rate and equilibrium cAMP binding properties as did site B of RI with its A site unoccupied. This means that mutational inactivation of one cAMP-binding site of RI can occur without altering the other intrachain cAMP site. By all criteria tested, therefore, RIGlu200 appears to be a valid model for RI with a vacant or nonoccupiable site A. Cooperativity of cAMP binding to the two cAMP-binding sites (A and B) of RI was observed only in the presence of C, the apparent Hill coefficient of cAMP binding being about 2 in the presence of a constant, high concentration of free C. C did not induce cooperativity of cAMP binding to RIGlu200 but caused a dramatic decrease of the apparent cAMP affinity of RIGlu200 relative to wild type RI.  相似文献   

5.
Structural lesions in cAMP-binding sites of regulatory (R) subunit of cAMP-dependent protein kinase caused identical increases in apparent constants for cyclic nucleotide-dependent kinase activation in preparations from cells that were hemizygous or heterozygous for mutant R1 subunit expression. No wild-type kinase activation was observed in extracts from heterozygous mutant cells. This "dominance" was investigated by characterizing expression of wild-type and mutant R1 subunits and properties of protein kinase from S49 mouse lymphoma cell mutants heterozygous for expression of wild-type R1 subunits and R1 subunits with a lesion (Glu200) that inactivates cAMP-binding site A. By both studies of cAMP dissociation and two-dimensional gel analysis, wild-type R subunits comprised about 35% of total R1 subunits in heterozygous mutants. Synthesis of wild-type and mutant R1 subunits was equivalent, but wild-type subunits were degraded preferentially. Hydroxylapatite chromatography revealed a novel R1 subunit-containing species from heterozygous mutant preparations whose elution behavior suggested a trimeric kinase consisting of an R1 subunit dimer and one catalytic (C) subunit. Wild-type R1 subunit was found only in dimer and "trimer" peaks; the tetrameric kinase peak contained only mutant R1 subunit. It is concluded that C subunit binds preferentially to mutant R1 subunit in heterozygous cells forming either tetrameric kinase with mutant R1 subunit homodimers or trimeric kinase with R1 subunit heterodimers. This preferential binding results both in suppression of wild-type kinase activation and differential stabilization of mutant R1 subunits.  相似文献   

6.
Each regulatory subunit of cAMP-dependent protein kinase has two tandem cAMP-binding sites, A and B, at the carboxyl terminus. Based on sequence homologies with the cAMP-binding domain of the Escherichia coli catabolite gene activator protein, a model has been constructed for each cAMP-binding domain. Two of the conserved features of each cAMP-binding site are an arginine and a glutamic acid which interact with the negatively charged phosphate and with the 2'-OH on the ribose ring, respectively. In the type I regulatory subunit, this arginine in cAMP binding site A is Arg-209. Recombinant DNA techniques have been used to change this arginine to a lysine. The resulting protein binds cAMP with a high affinity and associates with the catalytic subunit to form holoenzyme. The mutant holoenzyme also is activated by cAMP. However, the mutant R-subunit binds only 1 mol of cAMP/R-monomer. Photoaffinity labeling confirmed that the mutant R-subunit has only one functional cAMP-binding site. In contrast to the native R-subunit which is labeled at Trp-260 and Tyr-371 by 8-N3cAMP, the mutant R-subunit is convalently modified at a single site, Tyr-371, which correlates with a functional cAMP-binding site B. The lack of functional cAMP-binding site A also was confirmed by activating the mutant holoenzyme with analogs of cAMP which have a high specificity for either site A or site B. 8-NH2-methyl cAMP which preferentially binds to site B was similar to cAMP in its ability to activate both mutant and wild type holoenzyme whereas N6-monobutyryl cAMP, a site A-specific analog, was a very poor activator of the mutant holoenzyme. The results support the conclusions that 1) Arg-209 is essential for cAMP binding to site A and 2) cAMP binding to domain A is not essential for dissociation of the mutant holoenzyme.  相似文献   

7.
Intact S49 mouse lymphoma cells were used as a model system to study the effects of cyclic AMP (cAMP) and its analogs on the phosphorylation of regulatory (R) subunit of type I cAMP-dependent protein kinase. Phosphorylation of R subunit was negligible in mutants deficient in adenylate cyclase; low levels of cAMP analogs, however, stimulated R subunit phosphorylation in these cells to rates comparable to those in wild-type cells. In both wild-type and adenylate cyclase-deficient cells, R subunit phosphorylation was inhibited by a variety of N6-substituted derivatives of cAMP; C-8-substituted derivatives were generally poor inhibitors. Two derivatives that were inactive as kinase activators (N6-carbamoylmethyl-5'-AMP and 2'-deoxy-N6-monobutyryl-cAMP) were also ineffective as inhibitors of R subunit phosphorylation. Preferential inhibition by N6-modified cAMP analogs could not be ascribed simply to selectivity for the more aminoterminal (site I) of the two cAMP-binding sites in R subunit: Analog concentrations required for inhibition of R subunit phosphorylation were always higher than those required for activation of endogenous kinase; 8-piperidino-cAMP, a C-8-substituted derivative that is selective for cAMP-binding site I, was relatively ineffective as in inhibitor; and, although thresholds for activation of endogenous kinase by site I-selective analogs could be reduced markedly by coincubation with low levels of site II-selective analogs, no such synergism was observed for the inhibitory effect. The uncoupling of cyclic nucleotide effects on R subunit phosphorylation from activation of endogenous protein kinase suggests that, in intact cells, activation of cAMP-dependent protein kinase requires more than one and fewer than four molecules of cyclic nucleotide.  相似文献   

8.
cAMP-dependent protein kinase (cAPK) contains a regulatory (R) subunit dimer bound to two catalytic (C) subunits. Each R monomer contains two cAMP-binding domains, designated A and B. The sequential binding of two cAMPs releases active C. We describe here the properties of RIIbeta and two mutant RIIbeta subunits, engineered by converting a conserved Arg to Lys in each cAMP-binding domain thereby yielding a protein that contains one intact, high affinity cAMP-binding site and one defective site. Structure and function were characterized by circular dichroism, steady-state fluorescence, surface plasmon resonance and holoenzyme activation assays. The Ka for RIIbeta is 610 nM, which is 10-fold greater than its Kd(cAMP) and significantly higher than for RIalpha and RIIalpha. The Arg mutant proteins demonstrate that the conserved Arg is important for both cAMP binding and organization of each domain and that binding to domain A is required for activation. The Ka of the A domain mutant protein is 21-fold greater than that of wild-type and the Kd(cAMP) is increased 7-fold, confirming that cAMP must bind to the mutated site to initiate activation. The domain B mutant Ka is 2-fold less than its Kd(cAMP), demonstrating that, unlike RIalpha, cAMP can access the A site even when the B site is empty. Removal of the B domain yields a Ka identical to the Kd(cAMP) of full-length RIIbeta, indicating that the B domain inhibits holoenzyme activation for RIIbeta. In RIalpha, removal of the B domain generates a protein that is more difficult to activate than the wild-type protein.  相似文献   

9.
Mutations in regulatory (R) subunit of cAMP-dependent protein kinase were analyzed from cAMP-resistant mutants of S49 mouse lymphoma cells by direct sequencing of amplified regions of mutant R subunit cDNAs. Eight distinct single base-change lesions were identified in 24 independent mutants that were hemizygous for expression of mutant R subunits with altered protein charge. CG----TA transitions predominated, but AT----GC transitions and GC----TA transversions were also observed. Four of five spontaneous mutants had identical C----T transitions at CG causing substitution of Trp for Arg-334. Sites mutated in isolates obtained after mutagenesis with ethyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine were more varied. Six of the lesions (two in binding site A and four in site B) were at amino acid residues that are highly conserved among cAMP-binding sites of R subunits and the Escherichia coli catabolite activator protein. These mutations all either prevented or strongly hindered binding of cyclic nucleotides to the mutated site. One of the remaining lesions (at Arg-242) also prevented cyclic nucleotide binding to the mutated binding site; the other (at Gly-170) had only minimal effects on binding of cyclic nucleotides but, nevertheless, increased the apparent constant for cAMP-dependent kinase activation. These results are discussed with reference to a model for the cAMP-binding sites of R subunit based on the crystal structure of the E. coli catabolite activator protein.  相似文献   

10.
cAMP sites of the cAMP-dependent protein kinase from the fungus Mucor rouxii have been characterized through the study of the effects of cAMP and of cAMP analogs on the phosphotransferase activity and through binding kinetics. The tetrameric holoenzyme, which contains two regulatory (R) and two catalytic (C) subunits, exhibited positive cooperativity in activation by cAMP, suggesting multiple cAMP-binding sites. Several other results indicated that the Mucor kinase contained two different cooperative cAMP-binding sites on each R subunit, with properties similar to those of the mammalian cAMP-dependent protein kinase. Under optimum binding conditions, the [3H]cAMP dissociation behavior indicated equal amounts of two components which had dissociation rate constants of 0.09 min-1 (site 1) and 0.90 min-1 (site 2) at 30 degrees C. Two cAMP-binding sites could also be distinguished by C-8 cAMP analogs (site-1-selective) and C-6 cAMP analogs (site-2-selective); combinations of site-1- and site-2-selective analogs were synergistic in protein kinase activation. The two different cooperative binding sites were probably located on the same R subunit, since the proteolytically derived dimeric form of the enzyme, which contained one R and one C component, retained the salient properties of the untreated tetrameric enzyme. Unlike any of the mammalian cyclic-nucleotide-dependent isozymes described thus far, the Mucor kinase was much more potently activated by C-6 cAMP analogs than by C-8 cAMP analogs. In the ternary complex formed by the native Mucor tetramer and cAMP, only the two sites 1 contained bound cAMP, a feature which has also not yet been demonstrated for the mammalian cAMP-dependent protein kinase.  相似文献   

11.
Each protomer of the regulatory subunit dimer of cAMP-dependent protein kinase contains two tandem and homologous cAMP-binding domains, A and B, and cooperative cAMP binding to these two sites promotes holoenzyme dissociation. Several amino acid residues in the type I regulatory subunit, predicted to lie in close proximity to each bound cyclic nucleotide based on affinity labeling and model building, were replaced using recombinant techniques. The mutations included replacement of 1) Glu-200, predicted to hydrogen bond to the 2'-OH of cAMP bound to site A, with Asp, 2) Tyr-371, the site of affinity labeling with 8-N3-cAMP in site B, with Trp, and 3) Phe-247, the position in site A that is homologous to Tyr-371 in site B, with Tyr. Each mutation caused an approximate 2-fold increase in both the Ka(cAMP) and Kd(cAMP); however, the off-rates for cAMP and the characteristic pattern of affinity labeling with 8-N3-cAMP differed markedly for each mutant protein. Furthermore, these mutations affect the cAMP binding properties not only of the site containing the mutation, but of the adjacent nonmutated site as well, thus confirming that extensive cross-communication occurs between the two cAMP-binding domains. Photoaffinity labeling of the native R-subunit results in the covalent modification of two residues, Trp-260 and Tyr-371, by 8-N3-cAMP bound to sites A and B, respectively, with a stoichiometry of 1 mol of 8-N3-cAMP incorporated per mol of R-monomer (Bubis, J., and Taylor, S. S. (1987) Biochemistry 26, 3478-3486). A stoichiometry of 1 mol of 8-N3-cAMP incorporated per R-monomer was observed for each mutant regulatory subunit as well, even when 2 mol of 8-N3-cAMP were bound per R-monomer; however, the major sites of covalent modification were altered as follows: R(Y371/W), Trp-371; R(E200/D), Tyr-371, and R(F247/Y), Tyr-371.  相似文献   

12.
Cànaves JM  Leon DA  Taylor SS 《Biochemistry》2000,39(49):15022-15031
The regulatory (R) subunit of cAMP-dependent protein kinase (cAPK) is a multidomain protein with two tandem cAMP-binding domains, A and B. The importance of cAMP binding on the stability of the R subunit was probed by intrinsic fluorescence and circular dichroism (CD) in the presence and absence of urea. Several mutants were characterized. The site-specific mutants R(R209K) and R(R333K) had defects in cAMP-binding sites A and B, respectively. R(M329W) had an additional tryptophan in domain B. Delta(260-379)R lacked Trp260 and domain B. The most destabilizing mutation was R209K. Both CD and fluorescence experiments carried out in the presence of urea showed a decrease in cooperativity of the unfolding, which also occurred at lower urea concentrations. Unlike native R, R(R209K) was not stabilized by excess cAMP. Additionally, CD revealed significant alterations in the secondary structure of the R209K mutant. Therefore, Arg209 is important not only as a contact site for cAMP binding but also for the intrinsic structural stability of the full-length protein. Introducing the comparable mutation into domain B, R333K, had a smaller effect on the integrity and stability of domain A. Unfolding was still cooperative; the protein was stabilized by excess cAMP, but the unfolding curve was biphasic. The R(M329W) mutant behaved functionally like the native protein. The Delta(260-379)R deletion mutant was not significantly different from wild-type RIalpha in its stability. Consequently, domain B and the interaction between Trp260 and cAMP bound to site A are not critical requirements for the structural stability of the cAPK regulatory subunit.  相似文献   

13.
Eighty different adenine-modified cAMP analogs were tested as activators of rabbit muscle protein kinase I (cAKI) in an in vitro phosphotransferase assay. All the analogs tested were able to activate completely the kinase. The affinities of the cAMP derivatives for the two types (A and B) of binding sites associated with the regulatory moiety of cAKI were determined under conditions similar to those used in the phosphotransferase assay. The potency of the cAMP analogs as cAKI activators was found to correlate with the mean affinity for sites A and B, rather than to the affinity for only one of the sites. This was true whether cAKI was assayed at low or near physiological ionic strength, whether the concentration of cAKI binding sites was 0.2 or 400 nM, and whether the kinase substrate was mixed histones or homogeneous phenylalanine-4-monooxygenase. Furthermore, site A-selective and site B-selective cAMP analogs activated cAKI synergistically. Finally, it was shown that the degree of synergism between cAMP analogs in activating cAKI correlated with their degree of site selectivity. It is concluded that cyclic nucleotides interact with both types of binding sites in the process of cAKI activation.  相似文献   

14.
A set of cAMP analogs were synthesized that combined exocyclic sulfur substitutions in the equatorial (Rp) or the axial (Sp) position of the cyclophosphate ring with modifications in the adenine base of cAMP. The potency of these compounds to inhibit the binding of [3H]cAMP to sites A and B from type I (rabbit skeletal muscle) and type II (bovine myocardium) cAMP-dependent protein kinase was determined quantitatively. On the average, the Sp isomers had a 5-fold lower affinity for site A and a 30-fold lower affinity for site B of isozyme I than their cyclophosphate homolog. The mean reduction in affinities for the equivalent sites of isozyme II were 20- and 4-fold, respectively. The Rp isomers showed a decrease in affinity of approximately 400-fold and 200-fold for site A and B, respectively, of isozyme I, against 200-fold and 45-fold for site A and B of isozyme II. The Sp substitutions therefore increased the relative preference for site A of isozyme I and site B of isozyme II. The Rp substitution, on the other hand, increased the relative preference for site B of both isozymes. These data show that the Rp and Sp substitutions are tolerated differently by the two intrachain sites of isozymes I and II. They also support the hypothesis that it is the axial, and not the previously proposed equatorial oxygen that contributes the negative charge for the ionic interaction with an invariant arginine in all four binding sites. In addition, they demonstrate that combined modifications in the adenine ring and the cyclic phosphate ring of cAMP can enhance the ability to discriminate between site A and B of one isozyme as well as to discriminate between isozyme I and II. Since Rp analogs of cAMP are known to inhibit activation of cAMP-dependent protein kinases, the findings of the present study have implications for the synthesis of analogs having a very high selectivity for isozyme I or II.  相似文献   

15.
Kinase-negative mutants of S49 mouse lymphoma cells are pleiotropically negative for all known cAMP-mediated responses of S49 cells and yield cell extracts which are deficient in cAMP binding activity and devoid of cAMP-dependent protein kinase activity. In hybrids between kinase-negative and wild-type cells, the mutant phenotype is dominant: the tetraploid hybrids have reduced cAMP-binding activity and undetectable cAMP-dependent kinase activity. The mutant phenotype is attributable to neither a soluble inhibitor of kinase catalytic subunit, nor a defective kinase regulatory subunit acting as an inhibitor, nor a defective catalytic subunit which sequesters regulatory subunits in inactive complexes. We propose that these mutants carry trans-dominant lesions in a regulatory locus responsible for setting intracellular levels of kinase expression.  相似文献   

16.
Discrimination between cAMP and cGMP is a critical feature of cAMP- and cGMP-dependent protein kinases. An alanine/threonine difference in the cyclic nucleotide-binding sites has been proposed to provide a structural basis for this functional distinction. Site-directed mutagenesis of this alanine to a threonine in a cAMP-binding site of cAMP kinase produced a mutant with markedly increased cGMP affinity as determined by cGMP binding and protein kinase activation assays. Studies of other mutants at this position support the role of the threonine hydroxyl group as the component that enhances cGMP binding affinity.  相似文献   

17.
Monomeric regulatory subunit (R) fragments of type II cAMP-dependent protein kinase were compared with the parent dimeric R. The monomeric fragments were generated by either endogenous proteolysis of rabbit muscle R or by trypsin treatment of bovine heart R in the holoenzyme form. During isolation of pure R from rabbit muscle, carboxyl-terminal fragments of Mr = 42,000 (42 K) and Mr = 37,000 by denaturing gels are generated by endogenous proteolysis. Although the autophosphorylation site is retained, the 42 K is not dimeric (as is its native 56 K precursor) but, in contrast to the monomeric 37 K product, actively reassociates with purified catalytic subunit (C). Several lines of evidence indicate a type II R origin of the 42 K. N-terminal sequence analysis of the 42 K shows some homology with known bovine RI, RII, and cGMP-dependent protein kinase sequences. Both cyclic nucleotide-binding sites (two/42 K or 37 K) and the site selectivity of cAMP analogs are retained in the monomeric fragments. When purified bovine heart holoenzyme, which contains a dimeric Mr = 56,000 R (denaturing gel analysis) and two C subunits, is treated with trypsin followed by separation procedures, the product is a fully recovered active enzyme with an unaltered ratio of cAMP binding to catalytic activity. From Mr considerations, the product is a dimer containing one intact C and a proteolyzed R of Mr = 48,000 on denaturing gels. This dimeric enzyme is not significantly different from the parent tetramer in cAMP concentration dependence (Hill constant = 1.63), [3H]cAMP dissociation behavior (both intrasubunit cAMP-binding sites are present), stimulation of [3H]cIMP binding by site-selective cAMP analogs, and synergism between two analogs in kinase activation. The data indicate that 1) proteolytic cleavage of the native R dimer can cause monomerization without appreciably affecting the inhibition of C and 2) essentially all of the cAMP binding cooperativity is an intrasubunit interaction.  相似文献   

18.
A mutant form of the type I regulatory subunit (RI) of cAMP-dependent protein kinase has been cloned and sequenced (Clegg, C. H., Correll, L. A., Cadd, G. C., and McKnight, G. S. (1987) J. Biol. Chem. 262, 13111-13119) which contains two point mutations in the site B cAMP-binding site, a Gly to Asp at position this report, the effect of each independent mutation on the rate of dissociation of cAMP from RI, the cAMP-mediated activation of holoenzyme and the inducibility of cAMP-responsive genes has been characterized. Dissociation of cAMP from either recombinant wild type RI or the B1 mutant demonstrated biphasic kinetics, indicating two sites with different affinities for cAMP. Dissociation from the B2 subunit, however, was monophasic and very rapid indicating that site B had been destroyed and that the rate of dissociation from site A was increased. The cAMP activation constants (Ka) of the wild type and B1 holoenzymes were 40 and 188 nM, respectively, and demonstrated positive cooperativity, with Hill coefficients of 1.61 for the wild type and 1.67 for B1. The B2 holoenzyme required much greater concentrations of cAMP, 4.7 microM, for half-maximal activation and did not display positive cooperativity. Constitutive expression in mouse AtT20 pituitary cells of the B1 mutant resulted in only a small shift in the Ka for kinase activation in these cells compared with B2 expression which increased the Ka by more than 100-fold. Transient expression of the B1 subunit in human JEG-3 choriocarcinoma cells inhibited forskolin activation of a cAMP-responsive promoter by 35% whereas similar expression of the B2 RI subunit inhibited the response by 90%. These results suggest that the Gly to Asp mutation at amino acid 324 completely blocks cAMP binding to site B whereas the Arg to His mutation at position 332 causes a more subtle alteration in cAMP binding. Expression of either mutant RI in animal cells results in a dominant repression of cAMP-dependent protein kinase activity and cAMP-dependent protein kinase-mediated processes.  相似文献   

19.
Cyclic adenosine 3',5'-monophosphate (cAMP) dependent protein kinase and proteins specifically binding cAMP have been extracted from calf thymus nuclei and analyzed for their abilities to bind to DNA. Approximately 70% of the cAMP-binding activity in the nucleus can be ascribed to a nuclear acidic protein with physical and biochemical characteristics of the regulatory (R) subunit of cAMP-dependent protein kinase. Several peaks of protein kinase activity and of cAMP-binding activity are resolved by affinity chromatography of nuclear acidic proteins on calf thymus DNA covalently linked to aminoethyl Sephrarose 4B. When an extensively purified protein kinase is subjected to chromatography on the DNA column in the presence of 10(-7) M cAMP, the R subunit of the kinase is eluted from the column at 0.05 M NaCl while the catalytic (C) subunit of the enzyme is eluted at 0.1-0.2 M NaCl. When chromatographed in the presence of histones, the R subunit is retained on the column and is eluted at 0.6-0.9 M NaCl. In the presence of cAMP, association of the C subunit with DNA is enhanced, as determined by sucrose density gradient centrifugation of DNA-protein kinase complexes. cAMP increases the capacity of the calf thymus cAMP-dependent protein kinase preparation to bind labeled calf thymus DNA, as determined by a technique employing filter retention of DNA-protein complexes. This protein kinase preparation binds calf thymus DNA in preference to salmon DNA, Escherichia coli DNA, or yeast RNA. Binding of protein kinases to DNA may be part of a mechanism for localizing cyclic nucleotide stimulated protein phosphorylation at specific sites in the chromatin.  相似文献   

20.
The regulatory (R) subunit of cAMP-dependent protein kinase I has been expressed in Escherichia coli, and oligonucleotide-directed mutagenesis was initiated in order to better understand structural changes that are induced as a consequence of cAMP-binding. Photoaffinity labeling of the type I holoenzyme with 8-azidoadenosine 3',5'-monophosphate (8-N3cAMP) leads to the covalent modification of two residues, Trp-260 and Tyr-371 [Bubis, J., & Taylor, S.S. (1987) Biochemistry 26, 3478-3486]. The site that was targeted for mutagenesis was Tyr-371. The intention was to establish whether the interactions between the tyrosine ring and the adenine ring of cAMP are primarily hydrophobic in nature or whether the hydroxyl group is critical for cAMP binding and/or for inducing conformational changes. A single base change converted Tyr-371 to Phe. This yielded an R subunit that reassociated with the catalytic subunit to form holoenzyme and bound 2 mol of cAMP/mol of R monomer. The cAMP binding properties of the holoenzyme that was formed with this mutant R subunit, however, were altered: (a) the apparent Kd(cAMP) was shifted from 16 to 60 nM; (b) Scatchard plots showed no cooperativity between the cAMP binding sites in the mutant in contrast to the positive cooperativity that is observed for the wild-type holoenzyme; (c) the Hill coefficient of 1.6 for the wild-type holoenzyme was reduced to 0.99. The Ka's for activation by cAMP were altered in the mutant holoenzyme in a manner that was proportional to the shift in Kd(cAMP).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号