首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contribution of ammonia-oxidizing archaea (AOA) to nitrogen removal in wastewater treatment plants (WWTPs) remains unknown. This study investigated the abundance of archaeal (AOA) and bacterial (ammonia-oxidizing bacteria (AOB)) amoA genes in eight of Bangkok’s municipal WWTPs. AOA amoA genes (3.28 × 107 ± 1.74 × 107–2.23 × 1011 ± 1.92 × 1011 copies l−1 sludge) outnumbered AOB amoA genes in most of the WWTPs even though the plants’ treatment processes, influent and effluent characteristics, removal efficiencies, and operation varied. An estimation of the ammonia-oxidizing activity of AOA and AOB suggests that AOA involved in autotrophic ammonia oxidation in the WWTPs. Statistical analysis shows that the numbers of AOA amoA genes correlated negatively to the ammonium levels in effluent wastewater, while no correlation was found between the AOA amoA gene numbers and the oxygen concentrations in aeration tanks. An analysis of the AOB sequences shows that AOB found in the WWTPs limited to only two AOB clusters which exhibit high or moderate affinity to ammonia. In contrast to AOB, AOA sequences of various clusters were retrieved, and they were previously recovered from a variety of environments, such as thermal and marine environments.  相似文献   

2.
In this study, the abundance and sequences of amoA genes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were determined in seven wastewater treatment plants (WWTPs) whose ammonium concentrations in influent and effluent wastewaters varied considerably (5.6-422.3 mgN l−1 and 0.2-29.2 mgN l−1, respectively). Quantitative real-time PCR showed that the comparative abundance of AOA and AOB amoA genes differed among the WWTPs. In all three industrial WWTPs, where the influent and effluent contained the higher levels of ammonium (36.1-422.3 mgN l−1 and 5.3-29.2 mgN l−1, respectively), more than four orders of magnitude higher numbers of AOB amoA genes than AOA amoA genes arose (with less than the limit of detection of AOA amoA genes). In contrast, significant numbers of AOA amoA genes occurred in all municipal WWTPs (with ammonium levels in the influent and effluent of 5.6-11.0 mgN l−1 and 0.2-3.0 mgN l−1, respectively). Statistical analysis suggested that compared to other plants’ parameters, the ammonium levels in the plants’ effluent showed correlation with the highest p value to the abundance of AOA amoA genes.  相似文献   

3.
Using ammonia monooxygenase α-subunit (amoA) gene and 16S rRNA gene, the community structure and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in a nitrogen-removing reactor, which was operated for five phases, were characterized and quantified by cloning, terminal restriction fragment length polymorphism (T-RFLP), and quantitative polymerase chain reaction (qPCR). The results suggested that the dominant AOB in the reactor fell to the genus Nitrosomonas, while the dominant AOA belonged to Crenarchaeotal Group I.1a in phylum Crenarchaeota. Real-time PCR results demonstrated that the levels of AOB amoA varied from 2.9 × 103 to 2.3 × 105 copies per nanogram DNA, greatly (about 60 times) higher than those of AOA, which ranged from 1.7 × 102 to 3.8 × 103 copies per nanogram DNA. This indicated the possible leading role of AOB in the nitrification process in this study. T-RFLP results showed that the AOB community structure significantly shifted in different phases while AOA only showed one major peak for all the phases. The analyses also suggested that the AOB community was more sensitive than that of AOA to operational conditions, such as ammonia loading and dissolved oxygen.  相似文献   

4.
The diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the sediment of the Pearl River Estuary were investigated by cloning and quantitative real-time polymerase chain reaction (qPCR). From one sediment sample S16, 36 AOA OTUs (3% cutoff) were obtained from three clone libraries constructed using three primer sets for amoA gene. Among the 36 OTUs, six were shared by all three clone libraries, two appeared in two clone libraries, and the other 28 were only recovered in one of the libraries. For AOB, only seven OTUs (based on 16S rRNA gene) and eight OTUs (based on amoA gene) were obtained, showing lower diversity than AOA. The qPCR results revealed that AOA amoA gene copy numbers ranged from 9.6 × 106 to 5.1 × 107 copies per gram of sediment and AOB amoA gene ranged from 9.5 × 104 to 6.2 × 105 copies per gram of sediment, indicating that the dominant ammonia-oxidizing microorganisms in the sediment of the Pearl River Estuary were AOA. The terminal restriction fragment length polymorphism results showed that the relative abundance of AOB species in the sediment samples of different salinity were significantly different, indicating that salinity might be a key factor shaping the AOB community composition.  相似文献   

5.
Increasing usage of nitrogen fertilizer for food production has resulted in severely environmental problems of nutrients enrichment. This study aimed to examine the response of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) to a long-term nitrogen fertilization in Tibetan alpine meadow. The abundance and composition of both AOB and AOA were assessed using quantitative real-time PCR, cloning and sequencing techniques based on amoA gene under different fertilization gradient (0, 30, 60, 90, and 120 g m?2 year?1). Our results showed that, abundances of AOA amoA genes (ranging from 1.48 × 109 to 2.00 × 109 copies per gram of dry soil) were significantly higher than those of AOB amoA genes (1.25 × 107 to 2.62 × 108 copies per gram of dry soil) under fertilization scenario. The abundance of AOB amoA genes increased with increasing nitrogen fertilization, whereas fertilization had little effect on AOA abundance. Sequences of clone libraries of the different treatments revealed that AOB communities were dominated by representatives of Cluster 4, constituting 48.94–64.44% in each clone library. Sequences of Clusters 9, 1 and 2 were prevalent in soils under higher fertilization. All archaeal amoA sequences recovered were affiliated with the soil/sediment clade and marine sediment clade, and no significant difference was observed on the community structure among different fertilization treatments. Variations in the AOB community structure and abundance were linked to ammonium-N and soil pH induced by different fertilization treatments. These results showed that the abundance and structure of the AOB community respond to the fertilization gradient, not AOA.  相似文献   

6.
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria (AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass.  相似文献   

7.
Ammonia-oxidizing archaea (AOA) represent an important group of ammonia-oxidizing microorganisms that are able to convert ammonia to nitrite, a function which is crucial for the removal of nitrogen from wastewater. In this study, we investigated the abundance and diversity of AOA in a full-scale wastewater treatment plant (WWTP) which used a biological aerated filter (BAF) as the main processing mode. According to the quantitative PCR results, AOA clearly outnumbered ammonia-oxidizing bacteria (AOB) during the whole process. The abundance of AOA amoA genes in the filter layer of BAF was highest with the value varied from 6.32 × 103 to 3.8 × 104 copies/ng DNA. The highest abundance of AOB amoA genes was 1.32 × 102 copies/ng DNA, recorded in the effluent of the ACTIFLO® settling tank. The ratios of AOA/AOB in the WWTP were maintained at two or three orders of magnitude. Most AOA obtained from the WWTP fell within the Nitrosopumilus cluster. The abundance of AOA and AOB was significantly correlated with ammonium nitrogen concentrations and pH value. The community structure of AOA was significantly influenced by dissolved oxygen concentrations, pH value and chemical oxygen demand.  相似文献   

8.
Changes of microbial characteristics in a full-scale submerged membrane bioreactor system (capacity, 60,000 m3 day−1) treating sewage were monitored over the start-up period (96 days). Fluorescence in situ hybridization analysis showed that the percentages of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (nitrobacter-related population) in total bacteria counted with DAPI staining increased significantly from 1.9% and 0.9% to 4.5% and 2.8%, corresponding to an increase of the specific ammonium oxidizing rate (from 0.06 to 0.12 kg N kg−1 mixed liquor suspended solids (MLSS) per day) and the specific nitrate forming rate (from 0.05 to 0.10 kg N kg−1 MLSS day−1). Both the denaturing gradient gel electrophoresis of polymerase chain reaction and clone library results showed that the AOB was dominated by the genus Nitrosomonas, the diversity of which increased markedly with operational time. Most of the day 2 clones were closely related with the uncultured Nitrosomonas sp. clone Ninesprings-49S amoA gene (AY356450.1) originated from activated sludge, while the day 96 clone library showed a more diverse distribution characterized by the appearance of the oligotrophic nitrifiers like the Nitrosomonas oligotropha- and Nitrosomonas ureae-like bacteria, perhaps due to the interception by membrane and the low food-to-microorganisms ratio environment. The above results show that the membrane bioreactor system was characterized by the increased diversity and percentage of nitrifiers, which made it possible to achieve a stable and high efficient nitrification. Ammonia-oxidizing archaea with the changing population structures were also detected, but their roles for ammonia oxidation in the system need further studies.  相似文献   

9.
【目的】系统评估全程氨氧化细菌(complete ammonia oxidizing bacteria, Comammox bacteria)、半程氨氧化细菌(AOB)和古菌(AOA)在典型水稻土剖面的垂直分异规律。2015年发现的"全程"氨氧化细菌(Comammox Nitrospira)可将氨分子一步氧化为硝酸盐,实现硝化作用。而经典的"半程"氨氧化细菌(AOB)或古菌(AOA)将氨分子氧化为亚硝酸盐后,再由系统发育完全不同的硝化细菌将其氧化为硝酸盐。全程氨氧化细菌实现了一步硝化全过程,根本改变了学术界对2类微生物分步硝化的经典认知,但相关研究仍处于初步阶段。【方法】选择重庆北碚地区2017年典型水稻土并采集5、10、20和40 cm不同深度土壤(剖面采样点的上下误差不超过1cm),提取水稻土总DNA后,利用标靶功能基因amoA,通过实时荧光定量PCR技术分析全程氨氧化细菌(Comammox)、半程氨氧化细菌(AOB)和古菌(AOA)在水稻土不同深度的数量变异规律。【结果】半程氨氧化细菌AOB和古菌AOA均随土壤深度增加呈显著下降趋势。然而,全程氨氧化细菌的两大类微生物则表现出相反的规律,Comammox Clade A的丰度随着土壤剖面的加深而显著增加(P0.05),但Clade B并未有类似规律。Clade A在水稻土不同层次的土层中均比Clade B高出1个数量级,在5 cm和40 cm处的最低和最高值分别为3.42×10~7、8.46×10~7 copies/g。AOA与AOB的丰度大致相当,5cm剖面处数量最高分别为1.23×10~7、1.83×10~5copies/g,但其平均丰度远低于全程氨氧化细菌,Comammox与AOA、AOB amoA功能基因拷贝数之比为10–2000。【结论】全程氨氧化细菌(Comammox bacteria)广泛分布于水稻土不同土层中,且数量远高于"半程"氨氧化细菌和古菌,意味着Comammox可能在水稻土硝化作用中起重要作用。  相似文献   

10.
We investigated the diversity, spatial distribution, and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in sediment samples of different depths collected from a transect with different distances to mangrove forest in the territories of Hong Kong. Both the archaeal and bacterial amoA genes (encoding ammonia monooxygenase subunit A) from all samples supported distinct phylogenetic groups, indicating the presences of niche-specific AOA and AOB in mangrove sediments. The higher AOB abundances than AOA in mangrove sediments, especially in the vicinity of the mangrove trees, might indicate the more important role of AOB on nitrification. The spatial distribution showed that AOA had higher diversity and abundance in the surface layer sediments near the mangrove trees (0 and 10 m) but lower away from the mangrove trees (1,000 m), and communities of AOA could be clustered into surface and bottom sediment layer groups. In contrast, AOB showed a reverse distributed pattern, and its communities were grouped by the distances between sites and mangrove trees, indicating mangrove trees might have different influences on AOA and AOB community structures. Furthermore, the strong correlations among archaeal and bacterial amoA gene abundances and their ratio with NH4+, salinity, and pH of sediments indicated that these environmental factors have strong influences on AOA and AOB distributions in mangrove sediments. In addition, AOA diversity and abundances were significantly correlated with hzo gene abundances, which encodes the key enzyme for transformation of hydrazine into N2 in anaerobic ammonium-oxidizing (anammox) bacteria, indicating AOA and anammox bacteria may interact with each other or they are influenced by the same controlling factors, such as NH4+. The results provide a better understanding on using mangrove wetlands as biological treatment systems for removal of nutrients.  相似文献   

11.
The long-term performance and stability of Pseudomonas putida mt-2 cultures, a toluene-sensitive strain harboring the genes responsible for toluene biodegradation in the archetypal plasmid pWW0, was investigated in a chemostat bioreactor functioning under real case operating conditions. The process was operated at a dilution rate of 0.1 h−1 under toluene loading rates of 259 ± 23 and 801 ± 78 g m−3 h−1 (inlet toluene concentrations of 3.5 and 10.9 g m−3, respectively). Despite the deleterious effects of toluene and its degradation intermediates, the phenotype of this sensitive P. putida culture rapidly recovered from a 95% Tol population at day 4 to approx. 100% Tol+ cells from day 13 onward, sustaining elimination capacities of 232 ± 10 g m−3 h−1 at 3.5 g Tol m−3 and 377 ± 13 g m−3 h−1 at 10.9 g Tol m−3, which were comparable to those achieved by highly tolerant strains such as P. putida DOT T1E and P. putida F1 under identical experimental conditions. Only one type of Tol variant, harboring a TOL-like plasmid with a 38.5 kb deletion (containing the upper and meta operons for toluene biodegradation), was identified.  相似文献   

12.
Population dynamics of ammonia-oxidizing bacteria (AOB) in a full-scale aerated submerged biofilm reactor for micropolluted raw water pretreatment was investigated using molecular techniques for a period of 1 year. The ammonia monooxygenase (amoA) gene fragments were amplified from DNA and RNA extracts of biofilm samples. Denaturing gradient gel electrophoresis (DGGE) profile based on the amoA messenger RNA approach exhibited a more variable pattern of temporal dynamics of AOB communities than the DNA-derived approach during the study. Phylogenetic analysis of excised DGGE bands revealed three AOB groups affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage, and an unknown Nitrosomonas group. The population size of betaproteobacterial AOB, quantified with 16S ribosomal RNA gene real-time polymerase chain reaction assay, ranged from 6.63 × 105 to 2.67 × 109 cells per gram of dry biofilm and corresponded to 0.23–1.8% of the total bacterial fraction. Quantitative results of amoA gene of the three specific AOB groups revealed changes in competitive dominance between AOB of the N. oligotropha lineage and N. communis lineage. Water temperature is shown to have major influence on AOB population size in the reactor by the statistic analysis, and a positive correlation between AOB cell numbers and ammonia removal efficiency is suggested (r = 0.628, P < 0.05).  相似文献   

13.
Community structures of ammonia-oxidizing microorganisms were investigated using PCR primers designed to specifically target the ammonia monooxygenase α-subunit (amoA) gene in the sediment of Jinshan Lake. Relationships between the abundance and diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), and physicochemical parameters were also explored. The AOA abundance decreased sharply from west to east; however, the AOB abundance changed slightly with AOB outnumbering AOA in two of the four sediment samples (JS), JS3 and JS4. The AOA abundance was significantly correlated with the NH4–N, NO3–N, and TP. No significant correlations were observed between the AOB abundance and environmental variables. AOB had a higher diversity and richness of amoA genes than AOA. Among the 76 archaeal amoA sequences retrieved, 57.89, 38.16, and 3.95 % fell within the Nitrosopumilus, Nitrososphaera, and Nitrososphaera sister clusters, respectively. The 130 bacterial amoA gene sequences obtained in this study were grouped with known AOB sequences in the Nitrosomonas and Nitrosospira genera, which occupied 72.31 % and 27.69 % of the AOB group, respectively. Compared to the other three sample sites, the AOA and AOB community compositions at JS4 showed a large difference. This work could enhance our understanding of the roles of ammonia-oxidizing microorganisms in freshwater lake environment.  相似文献   

14.
The abundance and diversity of amoA genes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in ten wastewater treatment systems (WTSs) by polymerase chain reaction (PCR), cloning, sequencing, and quantitative real-time PCR (qPCR). The ten WTSs included four full-scale municipal WTSs, three full-scale industrial WTSs, and three lab-scale WTSs. AOB were present in all the WTSs, whereas AOA were detected in nine WTSs. QPCR data showed that AOB amoA genes (4.625?×?104–9.99?×?109 copies g?1 sludge) outnumbered AOA amoA genes (<limit of detection–1.90?×?107 copies g?1 sludge) in each WTS, indicating that AOB may play an important role than AOA in ammonia oxidization in WTSs. Interestingly, it was found that AOA and AOB coexisted with anaerobic ammonia oxidation (anammox) bacteria in three anammox WTSs with relatively higher abundance. In a full-scale industrial WTS where effluent ammonia was higher than influent ammonia, both AOA and AOB showed higher abundance. The phylogenetic analysis of AOB amoA genes showed that genera Nitrosomonas was the most dominant species in the ten WTSs; Nitrosomonas europaea cluster was the dominant major cluster, followed by Nitrosomonas-like cluster and Nitrosomonas oligotropha cluster; and AOB species showed higher diversity than AOA species. AOA were found to be affiliated with two major clusters: Nitrososphaera cluster and Nitrosopumilus cluster. Nitrososphaera cluster was the most dominant species in different samples and distributed worldwide.  相似文献   

15.
An annual investigation into the abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fresh water aquaculture ponds was performed by quantitative PCR of the amoA gene. The results showed that AOB were the main ammonia-oxidizing microorganisms in water, and significantly higher copy numbers of the AOB amoA gene were observed in the summer (Aug 2012), while no significant differences were detected among the other three seasons. AOA showed low abundances throughout the year. The predominance of AOB in aquaculture water was suggested to be related to photoinhibition. Both the AOB and AOA amoA genes in aquaculture pond sediments showed typical seasonal patterns. The maximum density of AOB was observed in the autumn (Nov 2012) and winter (Jan 2013), while the maximum density of AOA was observed in winter. The minimum densities of both AOA and AOB occurred in the summer. The concentration of the AOA amoA gene was higher than that of the AOB amoA gene in sediments by almost one order of magnitude, which indicates that AOA are the dominant ammonia-oxidizing microorganisms in the aquaculture pond sediments. Dissolved oxygen is suggested to be the key factor determining the predominance of AOA in pond sediments.  相似文献   

16.
Mounting evidence suggests that ammonia-oxidizing archaea (AOA) may play important roles in nitrogen cycling in geothermal environments. In this study, the diversity, distribution and ecological significance of AOA in terrestrial hot springs in Kamchatka (Far East Russia) were explored using amoA genes complemented by analysis of glycerol dialkyl glycerol tetraethers (GDGTs) of archaea. PCR amplification of functional genes (amoA) from AOA and ammonia-oxidizing bacteria (AOB) was performed on microbial mats/streamers and sediments collected from three hot springs (42°C to 87°C and pH 5.5-7.0). No amoA genes of AOB were detected. The amoA genes of AOA formed three distinct phylogenetic clusters with Cluster 3 representing the majority (~59%) of OTUs. Some of the sequences from Cluster 3 were closely related to those from acidic soil environments, which is consistent with the predominance of low pH (<7.0) in these hot springs. Species richness (estimated by Chao1) was more frequently higher at temperatures below 75°C than above it, indicating that AOA may be favored in the moderately high temperature environments. Quantitative PCR of 16S rRNA genes showed that crenarchaeota counted for up to 80% of total archaea. S-LIBSHUFF separated all samples into two phylogenetic groups. The profiles of GDGTs were well separated among the studied springs, suggesting a spatial patterning of archaeal lipid biomarkers. However, this patterning did not correlate significantly with variation in archaeal amoA, suggesting that AOA are not the predominant archaeal group in these springs producing the observed GDGTs.  相似文献   

17.
The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested.  相似文献   

18.
Autotrophic growth of nitrifying community in an agricultural soil   总被引:8,自引:0,他引:8  
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.  相似文献   

19.
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.  相似文献   

20.
In a previous study, ammonia-oxidizing bacteria (AOB)-like sequences were detected in the fragmentation layer of acid Scots pine (Pinus sylvestris L.) forest soils (pH 2.9–3.4) with high nitrification rates (>11.0 μg g−1 dry soil week−1), but were not detected in soils with low nitrification rates (<0.5 μg g−1 dry soil week−1). In the present study, we investigated whether this low nitrification rate has a biotic cause (complete absence of AOB) or an abiotic cause (unfavorable environmental conditions). Therefore, two soils strongly differing in net nitrification were compared: one soil with a low nitrification rate (location Schoorl) and another soil with a high nitrification rate (location Wekerom) were subjected to liming and/or ammonium amendment treatments. Nitrification was assessed by analysis of dynamics in NH4 +-N and NO3 -N concentrations, whereas the presence and composition of AOB communities were assessed by polymerase chain reaction–denaturing gradient gel electrophoresis and sequencing of the ammonia monooxygenase (amoA) gene. Liming, rather than ammonium amendment, stimulated the growth of AOB and their nitrifying activity in Schoorl soil. The retrieved amoA sequences from limed (without and with N amendment) Schoorl and Wekerom soils exclusively belong to Nitrosospira cluster 2. Our study suggests that low nitrification rates in acidic Scots pine forest soils are due to pH-related factors. Nitrosospira cluster 2 detected in these soils is presumably a urease-positive cluster type of AOB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号