首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important aspect of the catalytic mechanism of microsomal glutathione transferase (MGST1) is the activation of the thiol of bound glutathione (GSH). GSH binding to MGST1 as measured by thiolate anion formation, proton release, and Meisenheimer complex formation is a slow process that can be described by a rapid binding step (K(GSH)d = 47 +/- 7 mM) of the peptide followed by slow deprotonation (k2 = 0.42 +/- 0.03 s(-1). Release of the GSH thiolate anion is very slow (apparent first-order rate k(-2) = 0.0006 +/- 0.00002 s(-)(1)) and thus explains the overall tight binding of GSH. It has been known for some time that the turnover (kcat) of MGST1 does not correlate well with the chemical reactivity of the electrophilic substrate. The steady-state kinetic parameters determined for GSH and 1-chloro-2,4-dinitrobenzene (CDNB) are consistent with thiolate anion formation (k2) being largely rate-determining in enzyme turnover (kcat = 0.26 +/- 0.07 s(-1). Thus, the chemical step of thiolate addition is not rate-limiting and can be studied as a burst of product formation on reaction of halo-nitroarene electrophiles with the E.GS- complex. The saturation behavior of the concentration dependence of the product burst with CDNB indicates that the reaction occurs in a two-step process that is characterized by rapid equilibrium binding ( = 0.53 +/- 0.08 mM) to the E.GS- complex and a relatively fast chemical reaction with the thiolate (k3 = 500 +/- 40 s(-1). In a series of substrate analogues, it is observed that log k3 is linearly related (rho value 3.5 +/- 0.3) to second substrate reactivity as described by Hammett sigma- values demonstrating a strong dependence on chemical reactivity that is similar to the nonenzymatic reaction (rho = 3.4). Microsomal glutathione transferase 1 displays the unusual property of being activated by sulfhydryl reagents. When the enzyme is activated by N-ethylmaleimide, the rate of thiolate anion formation is greatly enhanced, demonstrating for the first time the specific step that is activated. This result explains earlier observations that the enzyme is activated only with more reactive substrates. Taken together, the observations show that the kinetic mechanism of MGST1 can be described by slow GSH binding/thiolate formation followed by a chemical step that depends on the reactivity of the electrophilic substrate. As the chemical reactivity of the electrophile becomes lower the rate-determining step shifts from thiolate formation to the chemical reaction.  相似文献   

2.
Ethylbenzene dehydrogenase (EbDH) catalyzes the initial step in anaerobic degradation of ethylbenzene in denitrifying bacteria, namely, the oxygen-independent hydroxylation of ethylbenzene to (S)-1-phenylethanol. In our study we investigate the kinetic properties of 46 substrate analogs acting as substrates or inhibitors of the enzyme. The apparent kinetic parameters of these compounds give important insights into the function of the enzyme and are consistent with the predicted catalytic mechanism based on a quantum chemical calculation model. In particular, the existence of the proposed substrate-derived radical and carbocation intermediates is substantiated by the formation of alternative dehydrogenated and hydroxylated products from some substrates, which can be regarded as mechanistic models. In addition, these results also show the surprisingly high diversity of EbDH in hydroxylating different kinds of alkylaromatic and heterocyclic compounds to the respective alcohols. This may lead to attractive industrial applications of ethylbenzene dehydrogenase for a new process of producing alcohols via hydroxylation of the corresponding aromatic hydrocarbons rather than the customary procedure of reducing the corresponding ketones.  相似文献   

3.
The initial enzyme of ethylbenzene metabolism in denitrifying Azoarcus strain EbN1, ethylbenzene dehydrogenase, was purified and characterized. The soluble periplasmic enzyme is the first known enzyme oxidizing a nonactivated hydrocarbon without molecular oxygen as cosubstrate. It is a novel molybdenum/iron-sulfur/heme protein of 155 kDa, which consists of three subunits (96, 43, and 23 kDa) in an alphabetagamma structure. The N-terminal amino acid sequence of the alpha subunit is similar to that of other molybdenum proteins such as selenate reductase from the related species Thauera selenatis. Ethylbenzene dehydrogenase is unique in that it oxidizes the hydrocarbon ethylbenzene, a compound without functional groups, to (S)-1-phenylethanol. Formation of the product was evident by coupling to an enantiomer-specific (S)-1-phenylethanol dehydrogenase from the same organism. The apparent K(m) of the enzyme for ethylbenzene is very low at <2 microm. Oxygen does not affect ethylbenzene dehydrogenase activity in extracts but inactivates the purified enzyme, if the heme b cofactor is in the reduced state. A variant of ethylbenzene dehydrogenase exhibiting significant activity also with the homolog n-propylbenzene was detected in a related Azoarcus strain (PbN1).  相似文献   

4.
The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the activation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modification but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.  相似文献   

5.

Steroid C25 dehydrogenase (S25DH) from Sterolibacterium denitrificans Chol-1S is a molybdenum oxidoreductase belonging to the so-called ethylbenzene dehydrogenase (EBDH)-like subclass of DMSO reductases capable of the regioselective hydroxylation of cholesterol or cholecalciferol to 25-hydroxy products. Both products are important biologically active molecules: 25-hydroxycholesterol is responsible for a complex regulatory function in the immunological system, while 25-hydroxycholecalciferol (calcifediol) is the activated form of vitamin D3 used in the treatment of rickets and other calcium disorders. Studies revealed that the optimal enzymatic synthesis proceeds in fed-batch reactors under anaerobic conditions, with 6–9 % (w/v) 2-hydroxypropyl-β-cyclodextrin as a solubilizer and 1.25–5 % (v/v) 2-methoxyethanol as an organic co-solvent, both adjusted to the substrate type, and 8–15 mM K3[Fe(CN)6] as an electron acceptor. Such thorough optimization of the reaction conditions resulted in high product concentrations: 0.8 g/L for 25-hydroxycholesterol, 1.4 g/L for calcifediol and 2.2 g/L for 25-hydroxy-3-ketosterols. Although the purification protocol yields approximately 2.3 mg of pure S25DH from 30 g of wet cell mass (specific activity of 14 nmol min−1 mg−1), the non-purified crude extract or enzyme preparation can be readily used for the regioselective hydroxylation of both cholesterol and cholecalciferol. On the other hand, pure S25DH can be efficiently immobilized either on powder or a monolithic silica support functionalized with an organic linker providing NH2 groups for enzyme covalent binding. Although such immobilization reduced the enzyme initial activity more than twofold it extended S25DH catalytic lifetime under working conditions at least 3.5 times.

  相似文献   

6.
A study of the kinetics of a heterodimeric variant of glutathione transferase (GST) A1-1 has led to the conclusion that, although the wild-type enzyme displays all-of-the-sites reactivity in nucleophilic aromatic substitution reactions, it demonstrates half-of-the-sites reactivity in addition reactions. The heterodimer, designed to be essentially catalytically inactive in one subunit due to a single point mutation (D101K), and the two parental homodimers were analyzed with seven different substrates, exemplifying three types of reactions catalyzed by glutathione transferases (nucleophilic aromatic substitution, addition, and double-bond isomerization reactions). Stopped-flow kinetic results suggested that the wild-type GST A1-1 behaved with half-of-the-sites reactivity in a nucleophilic aromatic substitution reaction, but steady-state kinetic analyses of the GST A1-D101K heterodimer revealed that this was presumably due to changes to the extinction coefficient of the enzyme-bound product. In contrast, steady-state kinetic analysis of the heterodimer with three different substrates of addition reactions provided evidence that the wild-type enzyme displayed half-of-the-sites reactivity in association with these reactions. The half-of-the-sites reactivity was shown not to be dependent on substrate size, the level of saturation of the enzyme with glutathione, or relative catalytic rate.  相似文献   

7.
The p21-activated kinase 2 (PAK2) is activated by binding of small G proteins, Cdc42 and Rac, or through proteolytic cleavage by caspases or caspase-like proteases. Activation by both small G protein and caspase requires autophosphorylation at Thr-402 of PAK2. Although activation of PAK2 has been investigated for nearly a decade, the mechanism of PAK2 downregulation is unclear. In this study, we have applied the kinetic theory of substrate reaction during modification of enzyme activity to study the regulation mechanism of PAK2 activity by the catalytic subunit of protein phosphatase 1 (PP1α). On the basis of the kinetic equation of the substrate reaction during the reversible phosphorylation of PAK2, all microscopic kinetic constants for the free enzyme and enzyme-substrate(s) complexes have been determined. The results indicate that (1) PP1α can act directly on phosphorylated Thr-402 in the acti-vation loop of PAK2 and down-regulate its kinase activity; (2) binding of the exogenous protein/peptide substrates at the active site of PAK2 decreases both the rates of PAK2 autoactivation and inactivation. The present method provides a novel approach for studying reversible phosphorylation reactions. The advantage of this method is not only its usefulness in study of substrate effects on enzyme modifica-tion but also its convenience in study of modification reaction directly involved in regulation of enzyme activity. This initial study should provide a foundation for future structural and mechanistic work of protein kinases and phosphatases.  相似文献   

8.
The epoxidation reaction catalyzed by an enzyme system of Pseudomonas oleovorans exhibits a substrate specificity different from that expected on the basis of chemical reactivity in non-enzymatic epoxidation reactions. Cyclic and internal olefins, aromatic compounds and styrene are not epoxidated. The reactivity of straight chain diolefins is maximal for octadiene and falls off rapidly as the carbon chain is shortened, but decreases only slightly as the chain is lengthened. In contrast, methyl group hydroxylation is less sensitive to decreasing chain length. As a consequence, propylene and 1-butene are hydroxylated but not epoxidated by this enzyme system. With the substrate 1-decene, which is capable of undergoing both epoxidation and hydroxylation, the former reaction predominates. Methyl imidoesters were found to be inhibitors of enzymatic epoxidation, and the potency of a homologous series of imidoester inhibitors was examined. The results parallel the substrate specificity patterns observed, and support the conclusion that the mode of substrate binding severely moderates the inherent chemical reactivity of the activated oxygen in this system. The effect of the bifunctional imidoester, dimethyladipimidate, was also examined and the results compared with those obtained in other investigations.  相似文献   

9.
Born TL  Franklin M  Blanchard JS 《Biochemistry》2000,39(29):8556-8564
The first unique step in bacterial and plant methionine biosynthesis involves the acylation of the gamma-hydroxyl of homoserine. In Haemophilus influenzae, acylation is accomplished via an acetyl-CoA-dependent acetylation catalyzed by homoserine transacetylase. The activity of this enzyme regulates flux of homoserine into multiple biosynthetic pathways and, therefore, represents a critical control point for cell growth and viability. We have cloned homoserine transacetylase from H. influenzae and present the first detailed enzymatic study of this enzyme. Steady-state kinetic experiments demonstrate that the enzyme utilizes a ping-pong kinetic mechanism in which the acetyl group of acetyl-CoA is initially transferred to an enzyme nucleophile before subsequent transfer to homoserine to form the final product, O-acetylhomoserine. The maximal velocity and V/K(homoserine) were independent of pH over the range of values tested, while V/K(acetyl)(-)(CoA) was dependent upon the ionization state of a single group exhibiting a pK value of 8.6, which was required to be protonated. Solvent kinetic isotope effect studies yielded inverse effects of 0.75 on V and 0.74 on V/K(CoA) on the reverse reaction and effects of 1.2 on V and 1.7 on V/K(homoserine) on the forward reaction. Direct evidence for the formation of an acetyl-enzyme intermediate was obtained using rapid-quench labeling studies. On the basis of these observations, we propose a chemical mechanism for this important member of the acyltransferase family and contrast its mechanism with that of homoserine transsuccinylase.  相似文献   

10.
Born TL  Blanchard JS 《Biochemistry》1999,38(43):14416-14423
The first unique step in bacterial and plant methionine biosynthesis involves the activation of the gamma-hydroxyl of homoserine. In Escherichia coli, this activation is accomplished via a succinylation reaction catalyzed by homoserine transsuccinylase. The activity of this enzyme is closely regulated in vivo and therefore represents a critical control point for cell growth and viability. We have cloned homoserine transsuccinylase from E. coli and present the first detailed enzymatic study of this enzyme. Steady-state kinetic experiments demonstrate that the enzyme utilizes a ping-pong kinetic mechanism in which the succinyl group of succinyl-CoA is initially transferred to an enzyme nucleophile before subsequent transfer to homoserine to form the final product, O-succinylhomoserine. The maximal velocity, V/K(succinyl)(-)(CoA), and V/K(homoserine) all exhibited a bell-shaped pH dependence with apparent pK's of 6.6 and approximately 7.9. The enzyme was inhibited by iodoacetamide in a pH-dependent manner, with an apparent pK of the group being inactivated of 6.4. This suggests the presence of an active site cysteine which forms a succinyl-cysteine intermediate during enzymatic turnover. Solvent kinetic isotope effect studies yielded inverse effects of 0.7 on V and 0.61 on V/K in the reverse reaction only. On the basis of these observations, we propose a detailed chemical mechanism for this important member of the acyltransferase family.  相似文献   

11.
Microsomal glutathione transferase 1 is a homotrimeric detoxication enzyme protecting against electrophiles. The enzyme can also react with electrophiles, and when modification occurs at a unique Cys49 the reaction often results in activation. Here we describe the characterization of the chemical properties of this sulfhydryl (kinetic pK(a) was 8.8 +/- 0.3 and 9.0 +/- 0.1 with two different reagents) and we conclude that the protein environment does not lower the pK(a). Upon a direct comparison of the reactivity of Cys49 and low molecular weight thiols [L-Cys and glutathione (GSH)], the protein sulfhydryl displayed a 10-fold lower reactivity. The reactivity was correlated to reagent concentration in a linear fashion with a polar reagent, whereas the reactivity toward a hydrophobic reagent displayed saturation behavior (at low concentrations). This finding indicates that Cys49 is situated in a hydrophobic binding pocket. In a series of related quinones, activation occurs with the more reactive and less sterically hindered compounds. Thus, activation can be used to detect reactive intermediates during the metabolism of foreign compounds but certain intermediates can (and will) escape undetected. The reactivities of the three cysteines in the homotrimer were shown not to differ dramatically as the reaction of the protein with 4, 4'-dithiodipyridine could be fitted to a single exponential. On the basis of this result, a probabilistic expression could be used to relate the overall degree of modification to fractional activation. When N-ethylmaleimide activation (determined by the 1-chloro-2, 4-dinitrobenzene assay) was plotted against modification (determined with 4,4'-dithiodipyridine), a nonlinear relation was obtained, clearly showing that subunits do not function independently. The contribution to activation by single-, double-, and triple-modified trimers, were 0 +/- 0.06, 0.74 +/- 0.09, and 0.97 +/- 0.06, respectively. The double-modified enzyme appears partly activated, but this conclusion is more uncertain due to the possibility of independent modification of the purified enzyme upon storage. It is, however, clear that the single-modified enzyme is not activated whereas the triple-modified enzyme is fully activated. These observations together with the fact that MGST1 homotrimers bind only one substrate molecule (GSH) strongly support the view that subunits must interact in a functional manner.  相似文献   

12.
Farnesyl protein transferase (FPT) is an alpha/beta heterodimeric zinc enzyme that catalyzes posttranslational farnesylation of many key cellular regulatory proteins, including oncogenic Ras. On the basis of the recently reported crystal structure of FPT complexed with a CVIM peptide and alpha-hydroxyfarnesylphosphonic acid, site-directed mutagenesis of the FPT active site was performed so key residues that are responsible for substrate binding and catalysis could be identified. Eight single mutants, including K164N alpha, Y166F alpha, Y166A alpha, Y200F alpha, H201A alpha, H248A beta, Y300F beta, and Y361F beta, and a double mutant, H248A beta/Y300F beta, were prepared. Steady-state kinetic analysis along with structural evidence indicated that residues Y200 alpha, H201 alpha, H248 beta, and Y361 beta are mainly involved in substrate binding. In addition, biochemical results confirm structural observations which show that residue Y166 alpha plays a key role in stabilizing the active site conformation of several FPT residues through cation-pi interactions. Two mutants, K164N alpha and Y300F beta, have moderately decreased catalytic constants (kcat). Pre-steady-state kinetic analysis of these mutants from rapid quench experiments showed that the chemical step rate constant was reduced by 41- and 30-fold, respectively. The product-releasing rate for each dropped approximately 10-fold. In pH-dependent kinetic studies, Y300F beta was observed to have both acidic and basic pKa values shifted 1 log unit from those of the wild-type enzyme, consistent with a possible role for Y300 beta as an acid-base catalyst. K164N alpha had a pKa shift from 6.0 to 5.3, which suggests it may function as a general acid. On the basis of these results along with structural evidence, a possible FPT reaction mechanism is proposed with both Y300 beta and K164 alpha playing key catalytic roles in enhancing the reactivity of the farnesyl diphosphate leaving group.  相似文献   

13.
Brassinin oxidase, a fungal detoxifying enzyme that mediates the conversion of the phytoalexin brassinin into indole-3-carboxaldehyde, is the first enzyme described to date that catalyzes the transformation of a dithiocarbamate group into an aldehyde equivalent. Brassinin is an essential phytoalexin due to its antifungal activity and its role as biosynthetic precursor of other phytoalexins produced in plants of the family Brassicaceae (common name crucifer). In this report, the isolation, structure determination and synthesis of the elusive co-product of brassinin transformation by brassinin oxidase, S-methyl dithiocarbamate, the syntheses of dideuterated and (R) and (S) monodeuterated brassinins, kinetic analyses of isotope effects and chemical modifications of brassinin oxidase are described. The reaction of [1'-(2)H(2)]brassinin was found to be slowed by a kinetic isotope effect of 5.3 on the value of k(cat)/K(m). This result indicates that the hydride/hydrogen transfer step preceding brassinin transformation is rate determining in the overall reaction. In addition, the use of (R) and (S)-[1'-(2)H]brassinins as substrates indicated that the hydride/hydrogen transfer step is ca. 88% stereoselective for the pro-R hydrogen. A detailed chemical mechanism of the enzymatic transformation of brassinin is proposed.  相似文献   

14.
R M Raushel  W W Cleland 《Biochemistry》1977,16(10):2176-2181
Isotope exchange studies show that beef liver fructokinase has a random kinetic mechanism in which release of fructose from the enzyme is slower than that catalytic reaction. The stickiness of fructose in the presence of MgATP is confirmed by isotope partition studies, which show it to be released 0.53 times as fast as V1/Et in the presence, and 80--130 times as fast in the absence of MgATP. Fructose-1-P release from it binary complex is not at all rate limiting in the forward direction since no exchange of MgADP back into MgATP could be observed during the forward reaction. Failure to find any isotope effect by the equilibrium perturbation method with [1-18O]fructose (upper limit, 1.003, shows that P--O bond cleavage or formation is not rate limiting. The pH profiles for the forward reaction show a group (probably carboxyl with pK 5.7-6.0 and deltaHion = 0) that must be ionized and a group (perhaps lysine, with pK 9--10, and deltaHion 5-9 kcal/mol) which must be protonated for activity. The profile for the back reaction shows only a group with pK 5.5--6 that must be protonated for activity. A chemical mechanism is proposed in which a carboxyl group on the enzyme accepts a proton from the 1-hydroxyl of fructose during the forward reaction and donates it back during the reverse reaction.  相似文献   

15.
Chemical modification of p-chloromercuribenzoate (PCMB) on beta-N-acetyl-d-glucosaminidase (NAGase, EC 3.2.1.52) from green crab (Scylla serrata) has been studied. The results show that sulfhydryl group is essential for the activity of the enzyme. Inhibitory kinetics of the enzyme by mercuric chloride (HgCl2) has been studied using the kinetic method of the substrate reaction during inhibitor of enzyme. The kinetic results show that the inhibition of the enzyme by mercuric ion (Hg2+) at lower than 1.0 microM is a reversible reaction with residual activity and the inhibition belongs to be competitive. The inhibition kinetics model of Hg2+ on the enzyme was set up and the microscopic rate constants were determined and the data obtained were well fitted with the model. It was also turned out that only one molecule of HgCl2 binds to the enzyme molecule to lead the enzyme lose its activity. The above results suggest that the cysteine residue is essential for activity and is situated at the active site of the enzyme.  相似文献   

16.
A sarcosine oxidase (sarcosine: oxygen oxidoreductase (demethylating), EC 1.5.3.1) isolated from Corynebacterium sp. U-96 contains both covalently bound FAD and noncovalently bound FAD. The noncovalent FAD reacts with sarcosine, the covalent FAD with molecular oxygen (Jorns, M.S. (1985) Biochemistry 24, 3189-3194). To clarify the reaction mechanism of the enzyme, kinetic investigations were performed by the stopped-flow method as well as by analysis of the overall reaction. The absorption spectrum of the enzyme in the steady state was very similar to that of the oxidized enzyme, and no intermediate enzyme species, such as a semiquinoid flavin, was detected. The rate for anaerobic reduction of the noncovalently bound FAD and the covalently bound FAD by sarcosine were 31 and 6.7 s-1, respectively. The latter value was smaller than the value of respective Vmax/e0 obtained by the overall reaction kinetics (Vmax/e0: the maximum velocity per enzyme concentration). Both rate constants for oxidation of the two FADs by molecular oxygen were 100 s-1. A reaction scheme of sarcosine oxidase is proposed to account for the data obtained; 70% of the enzyme functions via a fully reduced enzyme, and 30% of the enzyme goes along a side-path, without forming the fully reduced enzyme. In addition, it is suggested that the reactivity of noncovalently bound FAD with sarcosine is affected by the oxidation-reduction state of the covalently bound FAD, in contrast to the reactivity of the covalently bound FAD with molecular oxygen, which is independent of the oxidation-reduction state of the noncovalently bound FAD.  相似文献   

17.
Yao L  Li Y  Wu Y  Liu A  Yan H 《Biochemistry》2005,44(15):5940-5947
Yeast cytosine deaminase (yCD), a zinc metalloenzyme, catalyzes the hydrolytic deamination of cytosine to uracil. The enzyme is of great biomedical interest because it also catalyzes the deamination of the prodrug 5-fluorocytosine (5FC) to form the anticancer drug 5-fluorouracil (5FU). yCD/5FC is one of the most widely used enzyme/prodrug combinations for gene-directed enzyme prodrug therapy for the treatment of cancers. A pH indicator assay has been developed for the measurement of the steady-state kinetic parameters for the deamination reaction. Transient kinetic studies have shown that the product release is a rate-limiting step in the activation of the prodrug 5FC by yCD. The rate constant of the chemical step for the forward reaction (250 s(-)(1)) is approximately 8 times that of the product release (31 s(-)(1)) and approximately 15 times k(cat) (17 s(-)(1)). The transient kinetic results are consistent with those of the steady-state kinetic analysis in the sense that the k(cat) and K(m) values calculated from the rate constants determined by the transient kinetic analysis are in close agreement with those measured by the steady-state kinetic analysis. NMR experiments have demonstrated that free 5FU is in slow exchange with its complex with yCD but has a low affinity for yCD. The transient kinetic and NMR results together suggest that the release of 5FU is rate-limiting in the activation of the prodrug 5FC by yCD and may involve multiple steps.  相似文献   

18.
19.
Rabbit liver aldolase B (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) contains 8 SH groups/subunit and no disulfide bonds. In the native enzyme 3 SH groups/subunit are titrable with 5,5'-dithiobis(2-nitrobenzoic) acid (Nbs2), 2,2'-dithiodipyridine and N-ethylmaleimide, whereas p-mercuribenzoate is able to react with 4 thiol groups per subunit. Among the three thiol groups titrable with Nbs2, two react 'fast' with simple second-order kinetics, one reacts 'slow' and for this thiol group saturation kinetics is observed, suggesting a reversible binding of Nbs2 to the enzyme prior to covalent modification. It is shown that this binding most likely occurs via ionic interactions in the region close to the active site. The kinetic differentiation between the two 'fast' reacting groups is possible by kinetic analysis of the release of Nbs residues from the modified enzyme. Modification of all exposed SH groups of aldolase B results in 14-32% loss of enzymatic activity. The complete inactivation of liver aldolase by 1 mM p-mercuribenzoate reported previously (Waud, J.M., Feldman, E. and Schray, K.J. (1981) Arch. Biochem. Biophys. 206, 292-295) is shown to be caused by a nonspecific reaction of this reagent used in large excess. It is concluded that this isoenzyme differs from muscle aldolase in the reactivity of exposed SH groups, the mechanisms of the interaction with modifying agents and also in the effect of SH group modification on the enzymatic activity.  相似文献   

20.
A beta-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters (Km and Vmax) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified beta-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion (H3O+), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion (SH+) protonated to the S molecule and the HOMO energy of the H2O2 molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via SN1 and SN2 reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that Km has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号