首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genetic trick allows induction of haploid maize plants by a process known as gynogenesis, which is a useful tool for breeders. In this issue of The EMBO Journal, Gilles et al ( 2017 ) show that loss of function of a patatin-like phospholipase A underlies the induction of gynogenesis, findings that were also made in two other recent studies (Kelliher et al, 2017 ; Liu et al, 2017 ).  相似文献   

2.
Embryonic germ cells are formed from embryonic progenitors through a highly complex differentiation process, recapitulation of which in vitro has proved challenging. Two new studies in The EMBO Journal report culture conditions for embryonic stem cell‐derived primordial germ cell‐like cells (PGCLCs) that enable global DNA demethylation (Ohta et al, 2017 ), and subsequent initiation of meiosis (Miyauchi et al, 2017 ), allowing future manipulations to elucidate mechanisms driving germ line differentiation.  相似文献   

3.
In embryonic stem cells (ESCs), silent genes with major developmental functions display a unique epigenetic state in which strong and broad binding by Polycomb repressive complexes (PRCs) is accompanied by the presence of poised RNA polymerase II (RNAPII) and activating histone marks (e.g. H3K4me3) (Azuara et al, 2006 ; Bernstein et al, 2006 ; Stock et al, 2007 ; Brookes et al, 2012 ). It has been suggested that the plasticity and broad differentiation potential of pluripotent cells might rely, at least partly, on this unique epigenetic state (Bernstein et al, 2006 ; Stock et al, 2007 ). In their recent study, Pombo and colleagues (Ferrai et al, 2017 ) show that a similar epigenetic state can be found at a subset of major developmental genes throughout the differentiation of ESCs into neurons, providing novel and exciting insights into the molecular basis of cellular plasticity in differentiated cells.  相似文献   

4.
The ability to withstand viral predation is critical for survival of most microbes. Accordingly, a plethora of phage resistance systems has been identified in bacterial genomes (Labrie et al, 2010 ), including restriction‐modification systems (R‐M) (Tock & Dryden, 2005 ), abortive infection (Abi) (Chopin et al, 2005 ), Argonaute‐based interference (Swarts et al, 2014 ), as well as clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein (Cas) adaptive immune system (CRISPR‐Cas) (Barrangou & Marraffini, 2014 ; Van der Oost et al, 2014 ). Predictably, the dark matter of bacterial genomes contains a wealth of genetic gold. A study published in this issue of The EMBO Journal by Goldfarb et al ( 2015 ) unveils bacteriophage exclusion (BREX) as a novel, widespread bacteriophage resistance system that provides innate immunity against virulent and temperate phage in bacteria.  相似文献   

5.
The balance between proliferation and differentiation is a fundamental aspect of multicellular life. Perhaps nowhere is this delicate balance more palpable than in the multiciliated cells (MCCs) that line the respiratory tract, the ependyma, and the oviduct. These cells contain dozens to hundreds of motile cilia that beat in a concerted fashion to generate directed fluid flow over the tissue surface. Although MCCs have exited the cell cycle, remarkably, they retain the ability to duplicate their centrioles and to mature those centrioles into ciliary basal bodies—two features, which are known to be normally under strict cell cycle control (Firat‐Karalar & Stearns, 2014 ). How post‐mitotic MCCs retain this ability, remains unclear. In the past several months, four research articles, including one from Terré et al in this issue of The EMBO Journal, have described a vital role for the geminin coiled‐coil domain‐containing protein (Gemc1) in the MCC gene expression program in multiple tissues and organisms, that bring us closer to understanding this question (Kyrousi et al, 2015 ; Zhou et al, 2015 ; Arbi et al, 2016 ; Terré et al, 2016 ).  相似文献   

6.
Antarctic ecosystems are dominated by micro‐organisms, and viruses play particularly important roles in the food webs. Since the first report in 2009 (López‐Bueno et al. 2009 ), ‘omic’‐based studies have greatly enlightened our understanding of Antarctic aquatic microbial diversity and ecosystem function (Wilkins et al. 2013 ; Cavicchioli 2015 ). This has included the discovery of many new eukaryotic viruses (López‐Bueno et al. 2009 ), virophage predators of algal viruses (Yau et al. 2011 ), bacteria with resistance to phage (Lauro et al. 2011 ) and mechanisms of haloarchaeal evasion, defence and adaptation to viruses (Tschitschko et al. 2015 ). In this issue of Molecular Ecology, López‐Bueno et al. ( 2015 ) report the first discovery of RNA viruses from an Antarctic aquatic environment. High sequence coverage enabled genome variation to be assessed for four positive‐sense single‐stranded RNA viruses from the order Picornavirales. By examining the populations present in the water column and in the lake's catchment area, populations of ‘quasispecies’ were able to be linked to local environmental factors. In view of the importance of viruses in Antarctic ecosystems but lack of data describing them, this study represents a significant advance in the field.  相似文献   

7.
Linking molecular evolution to biological function is a long‐standing challenge in evolutionary biology. Some of the best examples of this involve opsins, the genes that encode the molecular basis of light reception. In this issue of Molecular Ecology, three studies examine opsin gene sequence, expression and repertoire to determine how natural selection has shaped the visual system. First, Escobar‐Camacho et al. ( 2017 ) use opsin repertoire and expression in three Amazonian cichlid species to show that a shift in sensitivity towards longer wavelengths is coincident with the long‐wavelength‐dominated Amazon basin. Second, Stieb et al. ( 2017 ) explore opsin sequence and expression in reef‐dwelling damselfish and find that UV‐ and long‐wavelength vision are both important, but likely for different ecological functions. Lastly, Suvorov et al. ( 2017 ) study an expansive opsin repertoire in the insect order Odonata and find evidence that copy number expansion is consistent with the permanent heterozygote model of gene duplication. Together these studies emphasize the utility of opsin genes for studying both the local adaptation of sensory systems and, more generally, gene family evolution.  相似文献   

8.
Long non‐coding RNAs have become the focus of considerable interest over the past few years. Intriguing novel functions have been reported for lincRNAs. Three recent papers identify lincRNAs that work in a more conventional way—encoding protein—in each case a small polypeptide with an interesting biological activity (Magny et al, 2013 ; Pauli et al, 2014 ), (Bazzini et al, 2014 ).  相似文献   

9.
10.
During intestinal regeneration, opposing gradients of Wnt and BMP signaling ensure successful differentiation along the crypt/villus axis. In this issue of The EMBO Journal, Horiguchi et al ( 2017 ) show how intestinal subepithelial myofibroblasts can influence cell fate decisions in the regenerating intestine via autocrine secretion of angiopoietin‐like protein 2 (ANGPTL2).  相似文献   

11.
A number of membrane trafficking components are associated with lipid droplets (LDs) and/or are involved in their biogenesis. In this issue of The EMBO Journal, Li et al ( 2017 ) show that the mammalian TRAPPII (TRAnsport Protein Particle) complex acts as an LD‐associated GEF for Rab18, thereby regulating LD homeostasis.  相似文献   

12.
The white‐nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, is threatening the cave‐dwelling bat fauna of North America by killing individuals by the thousands in hibernacula each winter since its appearance in New York State less than ten years ago. Epidemiological models predict that WNS will reach the western coast of the USA by 2035, potentially eliminating most populations of susceptible bat species in its path (Frick et al. 2015; O'Regan et al. 2015). These models were built and validated using distributional data from the early years of the epidemic, which spread throughout eastern North America following a route driven by cave density and winter severity (Maher et al. 2012). In this issue of Molecular Ecology, Wilder et al. (2015) refine these findings by showing that connectivity among host populations, as assessed by population genetic markers, is crucial in determining the spread of the pathogen. Because host connectivity is much reduced in the hitherto disease free western half of North America, Wilder et al. make the reassuring prediction that the disease will spread more slowly west of the Great Plains.  相似文献   

13.
Hypoxia occurs physiologically in the developing body, and changing oxygen tensions are known to direct tissue differentiation; however, in the context of pathology, the same hypoxia‐activated mechanisms may negatively affect tissue function. In this issue of The EMBO Journal, Esteban‐Martínez et al (2017) report that programmed mitophagy, dependent on hypoxia‐induced NIP‐3‐like protein X (BNIP3L, best known as NIX), is an essential step in differentiation of both retinal neurons and inflammatory macrophages.  相似文献   

14.
Petr G Leiman 《EMBO reports》2018,19(2):191-193
The bacterial type VI secretion system (T6SS) is a multicomponent complex responsible for the translocation of effector proteins into the external milieu. The T6SS consists of an external sheath, an internal rigid tube, a baseplate, and a T6SS‐specific membrane complex. Secretion is accomplished by the contraction of the sheath, which expels the effector‐loaded tube. In this issue of EMBO reports, Brackmann et al 1 show how modifications of the sheath subunits can lock the T6SS assembly in the extended state. These findings allowed Wang et al 2 and Nazarov et al 3 to purify the T6SS sheath–tube–baseplate complex in the extended pre‐secretion state and to analyze its structure using cryo‐electron microscopy (cryoEM).  相似文献   

15.
Genetic mutations responsible for neurodegenerative Nasu‐Hakola disease have been localized to the gene TREM2 and its adaptor DAP12, but it remained unclear what causes the brain to deteriorate. In this issue of The EMBO Journal, Kleinberger et al (2017) provide intriguing evidence suggesting a TREM2 mutation alone can lead to striking microglial dysfunction and precipitate changes in cerebral blood flow and metabolism in mice.  相似文献   

16.
James Shorter 《The EMBO journal》2017,36(20):2925-2927
FUS is an RNA‐binding protein (RBP) with a prion‐like domain (PrLD) that condenses into functional liquids, which can aberrantly phase transition into solid aggregates comprised of pathological fibrils connected to neurodegenerative disease. How cells prevent aberrant phase transitions of FUS and other disease‐linked RBPs with PrLDs is poorly understood. In this issue of The EMBO Journal, Monahan et al ( 2017 ) establish that phosphorylation of specific serine and threonine residues in the FUS PrLD inhibits aberrant phase separation and toxicity.  相似文献   

17.
Recent publications in The EMBO Journal (Xu et al, 2016 ) and in Nature Structural & Molecular Biology (Brown et al, 2016 ) report crystal structures of the Zika virus (ZIKV) NS1 protein. The structures reveal unique surface properties that help explain the specificity of anti‐ZIKV NS1 antibodies. Possible functions of this multifaceted pathogenicity factor are discussed here on the basis of the structures and cautious extrapolation from other flaviviruses.  相似文献   

18.
Somatic cells harbor random heteroplasmic mitochondrial DNA mutations, which are considered to contribute to aging. In this issue of The EMBO Journal, Perales‐Clemente et al ( 2016 ) show that mtDNA mutations, present at low levels in the starting fibroblasts, become enriched in iPS cells and lead to functional defects in iPS‐derived cells. In another recent study, Kang et al ( 2016 ) demonstrated that accumulation of mtDNA mutations of somatic origin in iPSCs is age related.  相似文献   

19.
Tony Gamble 《Molecular ecology》2016,25(10):2114-2116
Next‐generation sequencing methods have initiated a revolution in molecular ecology and evolution (Tautz et al. 2010 ). Among the most impressive of these sequencing innovations is restriction site‐associated DNA sequencing or RAD‐seq (Baird et al. 2008 ; Andrews et al. 2016 ). RAD‐seq uses the Illumina sequencing platform to sequence fragments of DNA cut by a specific restriction enzyme and can generate tens of thousands of molecular genetic markers for analysis. One of the many uses of RAD‐seq data has been to identify sex‐specific genetic markers, markers found in one sex but not the other (Baxter et al. 2011 ; Gamble & Zarkower 2014 ). Sex‐specific markers are a powerful tool for biologists. At their most basic, they can be used to identify the sex of an individual via PCR. This is useful in cases where a species lacks obvious sexual dimorphism at some or all life history stages. For example, such tests have been important for studying sex differences in life history (Sheldon 1998 ; Mossman & Waser 1999 ), the management and breeding of endangered species (Taberlet et al. 1993 ; Griffiths & Tiwari 1995 ; Robertson et al. 2006 ) and sexing embryonic material (Hacker et al. 1995 ; Smith et al. 1999 ). Furthermore, sex‐specific markers allow recognition of the sex chromosome system in cases where standard cytogenetic methods fail (Charlesworth & Mank 2010 ; Gamble & Zarkower 2014 ). Thus, species with male‐specific markers have male heterogamety (XY) while species with female‐specific markers have female heterogamety (ZW). In this issue, Fowler & Buonaccorsi ( 2016 ) illustrate the ease by which RAD‐seq data can generate sex‐specific genetic markers in rockfish (Sebastes). Moreover, by examining RAD‐seq data from two closely related rockfish species, Sebastes chrysomelas and Sebastes carnatus (Fig.  1 ), Fowler & Buonaccorsi ( 2016 ) uncover shared sex‐specific markers and a conserved sex chromosome system.  相似文献   

20.
Exploring the relationships between the biodiversity of groups of interacting organisms yields insight into ecosystem stability and function (Hooper et al. 2000 ; Wardle 2006 ). We demonstrated positive relationships between host plant richness and ectomycorrhizal (EM) fungal diversity both in a field study in subtropical China (Gutianshan) and in a meta‐analysis of temperate and tropical studies (Gao et al. 2013 ). However, based on re‐evaluation of our data sets, Tedersoo et al. ( 2014 ) argue that the observed positive correlation between EM fungal richness and EM plant richness at Gutianshan and also in our metastudies was based mainly from (i) a sampling design with inconsistent species pool and (ii) poor data compilation for the meta‐analysis. Accordingly, we checked our data sets and repeated the analysis performed by Tedersoo et al. ( 2014 ). In contrast to Tedersoo et al. ( 2014 ), our re‐analysis still confirms a positive effect of plant richness on EM fungal diversity in Gutianshan, temperate and tropical ecosystems, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号