首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Paraffin sections of an ontogenetic series of embryos of the viviparous lizard Gerrhonotus coeruleus and the oviparous congener G. multicarinatus reveal that although general features of the development of the chorioallantoic and yolk sac membranes are similar, differences are evident in the distribution of the chorioallantoic membrane in late stage embryos. An acellular shell membrane surrounds the egg throughout gestation in both species although the thickness of this structure is much reduced in G. coeruleus over that of G. multicarinatus. The initial vascular membrane to contact the shell membrane in both species is a trilaminar omphalopleure (choriovitelline membrane) composed of ectoderm, mesoderm of the area vasculosa, and endoderm. This transitory membrane is replaced by the vascularized chorioallantois as the allantois expands to contact the inner surface of the chorion. Prior to the establishment of the chorioallantois at the embryonic pole, a membrane begins to form within the yolk ventral to the sinus terminalis. This membrane, which becomes vascularized, extends across the entire width of the abembryonic region and isolates a mass of yolk ventral to the yolk mass proper. The outer membrane of the yolk pole is a nonvascular bilaminar omphalopleure (chorionic ectoderm and yolk endoderm). In G. multicarinatus the bilaminar omphalopleure is supported internally by the vascularized allantoic membrane, whereas in G. coeruleus the allantois does not extend beyond the margin of the isolated yolk mass and the bilaminar omphalopleure is supported by the vascularized intravitelline membrane. Both the chorioallantoic placenta (uterine epithelium, chorionic ectoderm and mesoderm, and allantoic mesoderm and endoderm) and the yolk sac placenta at the abembryonic pole (uterine epithelium, chorionic ectoderm, and yolk sac endoderm) persist to the end of gestation in G. coeruleus.  相似文献   

2.
The inner cell mass of the blastocyst has differentiated into epiblast and hypoblast (primitive endoderm) prior to implantation. Since endoderm cells extend beyond the epiblast, it can be considered that both parietal and visceral endoderm are present. At implantation, epiblast cells begin to show marked evidence of polarity. They form a spherical aggregate with their basal ends toward the basal lamina and apical ends toward the interior. The potential for an internal space is formed by this change in polarity of the cells. No cytological evidence of separation of those cells that will form amniotic epithelium from the rest of the epiblast is seen until a cavity begins to form. The amniotic epithelium is originally contiguous with overlying cytotrophoblast, and a diverticulum remains in this position during early development. Epiblast forms a pseudostratified columnar epithelium, but dividing cells are situated toward the amniotic cavity rather than basally. The first evidence of a trilaminar disc occurs when a strand of cells contiguous with epiblast is found extending toward visceral endoderm. These presumptive mesoderm cells are undifferentiated, whereas extraembryonic mesoderm cells are already a distinct population forming extracellular materials. After implantation, visceral endoderm cells proliferate forming an irregular layer one to three cells thick. Visceral endoderm cells have smooth apical surfaces, but very irregular basal surfaces, and no basal lamina. At the margins of the disc, visceral endoderm is continuous with parietal endoderm and reflects back over the apices of the marginal visceral endoderm cells. This sacculation by visceral endoderm cells precedes pinching off of the secondary yolk sac from the remaining primary yolk sac.  相似文献   

3.
Summary The structure of the yolk syncytial-endoderm complex of the preimplantation yolk sac of the shark is examined by light- and transmission electron microscopy. The yolk syncytium is bounded by a membrane that is anchored to the plasmalemma of adjacent endoderm cells by desmosomes. Enlarged nuclei, rough endoplasmic reticulum, Golgi complexes, mitochondria, and other cellular organelles populate the syncytium. Microtubules and filamentous elements are also observed free in the syncytium. Yolk is present as pleomorphic droplets, the profiles of which are generally spherical but may be vesicular, especially at the periphery of large yolk droplets. Occasionally, large yolk droplets have a paracrystalline configuration. Small yolk droplets are modulated through the Golgi complex of the yolk syncytium, and it is suggested that acid hydrolases are added there. Small yolk droplets released from the maturing face of the Golgi complex are sequestered in membrane-limited packets. The membrane of the packets fuses with the membrane enveloping the yolk syncytium and the yolk droplets are released into the yolk syncytialendoderm interspace. Subsequently, the yolk droplets are endocytosed by the endoderm. Yolk droplets disperse and fuse to form the large irregular yolk inclusions of the endoderm. Yolk metabolites are transported out of the endoderm through the yolk sac endothelium. The yolk sac endoderm thus mediates the transfer of metabolites from the yolk mass to the extraembryonic circulation.  相似文献   

4.
We previously demonstrated that a member of the Hedgehog gene family, Indian hedgehog (Ihh), is expressed in the visceral endoderm of EC and ES cell embryoid bodies and mouse embryos. Overexpression studies suggested that Ihh was involved in visceral endoderm differentiation. We now provide evidence for a Hh response in the embryoid body core and in the mesothelial layer of the visceral yolk sac. We also demonstrate that treatment of ES embryoid bodies with the Hh antagonists cAMP and forskolin results in downregulation of the Hh response and altered embryoid body differentiation. The outer endoderm layer undergoes a transition to parietal endoderm while formation of an embryonic ectoderm layer surrounding a cavity is inhibited. These treatments also result in a decrease in the expression of markers for the mesoderm derivatives, blood and endothelial cells. We present a model to explain how Ihh and BMP signaling may regulate extraembryonic endoderm and embryonic ectoderm differentiation.  相似文献   

5.
The structure of the developing oocytes in the ovary of unfed and fed femaleArgas (Persicargas) arboreus is described as seen by scanning (SEM) and transmission (TEM) electron microscopy. The unfed female ovary contains small oocytes protruding onto the surface and its epithelium consists of interstitial cells, oogonia and young oocytes. Feeding initiates oocyte growth through the previtellogenic and vitellogenic phases of development. These phases can be observed by SEM in the same ovary.The surface of isolated, growing oocytes is covered by microvilli which closely contact the basal lamina investing the ovarian epithelium and contains a shallow, circular area with cytoplasmic projections and a deep pit, or micropyle, at the epithelium side. In more advanced oocytes the shell is deposited between microvilli and later completely covers the surface.Transmission EM of growing oocytes in the previtellogenic phase reveals nuclear and nucleolar activity in the emission of dense granules passing into the cytoplasm and the formation of surface microvilli. The cell cytoplasm is rich in free ribosomes and polysomes and contains several dictyosomes associated with dense vesicles and mitochondria which undergo morphogenic changes as growth proceeds. Membrane-limited multivesiculate bodies, probably originating from modified mitochondria, dictyosomes and ribosomal aggregates, are also observed. Rough endoplasmic reticulum is in the form of annulate lamellae. During vitellogenesis, proteinaceous yolk bodies are formed by both endogenous and exogenous sources. The former is involved in the formation of multivesicular bodies which become primary yolk bodies, whereas the latter process involves internalization from the haemolymph through micropinocytosis in pits, vesicles and reservoirs. These fuse with the primary yolk bodies forming large yolk spheres. Glycogen and lipid inclusions are found in the cytoplasm between the yolk spheres.  相似文献   

6.
河鲈锚首吸虫体壁的超微结构观察   总被引:1,自引:0,他引:1  
高谦  聂品 《水生生物学报》2003,27(3):221-226
寄生鳜鳃部的河鲈锚首吸虫的体壁由表皮合胞体、基板、环肌、纵肌和表皮细胞核周体所组成。合胞体顶部质膜起伏形成表皮的嵴纹,基部质膜折叠形成指状突起伸入到合胞体中。合胞体表面覆盖着一层糖萼。河鲈锚首吸虫的表皮中含有四类分泌体,即电子致密的分泌颗粒、中等电子致密的分泌颗粒、有膜包围的电子稀疏的分泌体和多囊体.可见分泌体和合胞体基质通过胞吐作用排到体外,未见吞饮小泡,推测表皮的主要功能在于分泌和渗透压调节而非营养吸收。在外侧头瓣的乳突状结构所在处,合胞层较薄,基板平滑,在实质组织中的一腔体样结构中可见囊状体、电子致密度各异的颗粒体、泡状体和电子致密的基质团,神经突起分布于腔体周围,这类乳突可能代表一类新的非纤毛感受器类型。  相似文献   

7.
Differentiation of the yolk sac was examined ultrastructurally and cytochemically in late embryonic development of the stick insect Carausius morosus. During migration along the yolk sac, endodermal cells form a discontinuous cell epithelium, leaving wide intercellular channels between neighbouring cell clusters. Within the same cell cluster, cells are all joined by septate junctions. In the proximity of the proctodeum region, intercellular channels are filled with numerous cell debris which are shown to derive from vitellophages undergoing cell lysis. Yolk sacs resolved by gel electrophoresis are shown to release a number of vitellin polypeptides into the culture medium. These are equivalent in molecular weight to those present in the vitellophage yolk granules This observation is consistent with the evidence that the basement lamina may act as a course physical filter, retaining particles larger than colloidal thorium dioxide and allowing free percolation of peroxidase. Differentiating endodermal cells form a microvillar striated border along the apical plasma membrane. A number of vesicular criptae were frequently seen in these differentiating endodermal cells. Electron dense granules released by endodermal cells are suggested to play a role in vitellophage lysis and vitellin release from the enclosed yolk granules.  相似文献   

8.
Mouse embryos lacking the polycomb group gene member Yin-Yang1 (YY1) die during the peri-implantation stage. To assess the post-gastrulation role of YY1, a conditional knock-out (cKO) strategy was used to delete YY1 from the visceral endoderm of the yolk sac and the definitive endoderm of the embryo. cKO embryos display profound yolk sac defects at 9.5 days post coitum (dpc), including disrupted angiogenesis in mesoderm derivatives and altered epithelial characteristics in the visceral endoderm. Significant changes in both cell death and proliferation were confined to the YY1-expressing yolk sac mesoderm indicating that loss of YY1 in the visceral endoderm causes defects in the adjacent yolk sac mesoderm. Production of Vascular Endothelial Growth Factor A (VEGFA) by the visceral endoderm is essential for normal growth and development of the yolk sac vasculature. Reduced levels of VEGFA are observed in the cKO yolk sac, suggesting a cause for the angiogenesis defects. Ex vivo culture with exogenous VEGF not only rescued angiogenesis and apoptosis in the cKO yolk sac mesoderm, but also restored the epithelial defects observed in the cKO visceral endoderm. Intriguingly, blocking the activity of the mesoderm-localized VEGF receptor, FLK1, recapitulates both the mesoderm and visceral endoderm defects observed in the cKO yolk sac. Taken together, these results demonstrate that YY1 is responsible for maintaining VEGF in the developing visceral endoderm and that a VEGF-responsive paracrine signal, originating in the yolk sac mesoderm, is required to promote normal visceral endoderm development.  相似文献   

9.
Abstract. The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ('blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

10.
The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ("blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

11.
Embryogenesis of the alimentary tract in two chrysomelid species (Chrysolina pardalina and Melasoma saliceti) is described. The embryonic development of both species lasts 7days at room temperature. Stomodaeum and proctodaeum invaginate at the anterior and posterior ends of the germ band. Together with the ectodermal tissue the endoderm cells also enter into the embryo. The anterior and posterior parts of the alimentary tract wedge into the yolk in the form of conical structures. The endodermal cells remain at the yolk surface and start migration over the yolk mass as two lateral bands of cells. The endoderm is always accompanied by mesoderm. On the fifth day of development the endodermal cells together with the mesoderm layer spread over the ventral and dorsal sides of the yolk mass and form the single layered primordium of the midgut epithelium. On the sixth day of development a basal lamina appears between the endoderm and the mesoderm cells and differentiation of both tissues starts. The endodermal epithelium cells change shape from flat to cuboidal and eventually into columnar. Mesoderm cells differentiate into muscle and tracheae. On the 7thday of development stomodaeum and proctodaeum become lined with cuticle and the midgut becomes covered with microvilli. The yolk cells populating the yolk mass do not contribute to midgut formation in the species studied.  相似文献   

12.
This paper addresses morphogenetic processes and cell differentiation during embryogenesis of the brittle star Amphipholis kochii at the ultrastructural level. The radial cleavage is not strictly determined. Embryos are covered with a thick hyaline envelope and contain numerous yolk granules and small lipid drops. Blastulae feature a thick blastoderm with extensive intercellular cavities, which are retained in the crest epithelium of late gastrulae. Embryonic cells have single cilia with long cross-striated rootlets associated with the Golgi apparatus. Depolarized cells of the primary mesenchyme with a well-developed rough endoplasmic reticulum differentiate into sclerenchyme syncytium. Gastrulation occurs by invagination. Secondary mesenchymal cells emigrate from the archenteron tip to differentiate into amebocytes, which contain a well-developed Golgi apparatus and numerous mitochondria. The endoderm is formed of cubic cells with numerous yolk granules and rare microvilli. Flattened cells of the dorsal and ventral ectoderm contain a small amount of yolk. Yolk utilization during embryogenesis occurs by intracellular lysosomal digestion with selective exocytosis of toposomes.Original Russian Text Copyright © 2005 by Biologiya Morya, Gliznutsa, Dautov.  相似文献   

13.
We examined the activity of X-linked glucose-6-phosphate dehydrogenase (G6PD) in concepti of the enzyme-deficient mutant and wild-type C3H mice. By using different crosses between the G6PD-deficient homozygous, heterozygous, or wild-type females and hemizygous or wild-type males, we confirmed the inactivation of one of the two X chromosomes in female concepti by a histochemical method. With this technique, a dual (G6PD + or -) cell population could be observed in the tissue sections. We demonstrate that the paternal X chromosome is inactivated in the endoderm of parietal and visceral yolk sac and in the trophoblast, whereas in the embryo and in the yolk sac mesoderm this inactivation is random. Our results confirm biochemical observations showing that only the maternal X chromosome is expressed in all derivatives of trophectoderm and primitive endoderm, whereas derivatives of the primitive ectoderm show random X chromosome expression.  相似文献   

14.
We have examined the role of germline-specific chromosomal determinants of development in the mouse. Studies were carried out using aggregation chimaeras between androgenetic----fertilized embryos and compared with similar parthenogenetic----fertilized chimaeras. Several adult chimaeras were found with parthenogenetic cells but none were found with androgenetic cells. Analysis of chimaeras at mid-gestation showed that parthenogenetic cells were detected in the embryo and yolk sac but that androgenetic cells were found only in the trophoblast and yolk sac and not in the embryo. The contribution of parthenogenetic cells to the embryo and yolk sac was increased by aggregating 2-cell parthenogenetic and 4-cell fertilized embryos but the contribution of parthenogenetic cells in extraembryonic tissues remained negligible even after aggregation of 4-cell parthenogenetic and 2-cell fertilized embryos. Furthermore, parthenogenetic cells were primarily found in the yolk sac mesoderm and not in the yolk sac endoderm. These results suggest that maternal chromosomes in parthenogenetic cells permit their participation in the primitive ectoderm lineage but these cells are presumably eliminated by selective pressure or autonomous cell lethality from the primitive endoderm and trophectoderm lineages. Conversely paternal chromosomes in androgenetic cells confer opposite properties since the embryonic cells can be detected in the trophoblast and the yolk sac but not in the embryos, presumably because they are eliminated from the primitive ectoderm lineage. The spatial distribution of cells with different parental chromosomes may occur partly because of differential expression of some genes, such as proto-oncogenes, and partly due to their ability to respond to a variety of diffusible growth factors.  相似文献   

15.
16.
The ultrastructure of the oral (buccopharyngeal) membrane was examined during normal development in embryos removed from pregnant hamsters at intervals from 7.5–10 days postcoitum. The oral membrane is represented at 7.5 days by a region of close approximation between endoderm and surface ectoderm anterior to the neural folds. A distinct basal lamina develops subjacent to each epithelial germ layer, and the narrow extracellular space separating the epithelia contains patches of fibrillar and flocculent material. Cell processes extend from cells of one epithelium across the extracellular space to make direct contact with cells of the opposing germ layer by 7.75 days. Increased intermingling of cells subsequently occurs within the oral membrane, and some cells extend the entire width of the membrane with surfaces exposed to both foregut and stomodeum. Accumulations of presumed basal lamina and extracellular material are observed at intervals within the oral membrane, but a continuous intercellular space is no longer present. Many of these accumulations are encompassed by processes of adjacent cells containing dense intracellular bodies, indicating active phagocytosis of this material by the epithelial cells. Rupture of the oral membrane begins between 8.25 and 8.75 days, and all remnants are removed by Day 9. Possible factors involved in rupture are discussed.  相似文献   

17.
The visceral yolk sac (VYS), composed of extraembryonic mesoderm and visceral endoderm, is the initial site of blood cell development and serves important nutritive and absorptive functions. In the mouse, the visceral endoderm becomes a morphologically distinct tissue at the time of implantation (E4.5), while the extraembryonic mesoderm arises during gastrulation (E6.5–8.5). To isolate genes differentially expressed in the developing yolk sac, polymerase chain reaction (PCR) methods were used to construct cDNA from late primitive streak to neural plate stage (E7.5) murine VYS mesoderm and VYS endoderm tissues. Differential screening led to the identification of six VYS mesoderm-enriched clones: ribosomal protein L13a, the heat shock proteins hsc 70 and hsp 86, guanine-nucleotide binding protein-related gene, cellular nucleic acid binding protein, and ã-enolase. One VYS endoderm-specific cDNA was identified as apolipoprotein C2. In situ hybridization studies confirmed the differential expression of these genes in E7.5 yolk sac tissues. These results indicate that representative cDNA populations can be obtained from small numbers of cells and that PCR methodologies permit the study of gene expression during early mammalian postimplantation development. While all of the mesoderm-enriched genes were ubiquitously expressed in the embryo proper, apolipoprotein C2 expression was confined to the visceral endoderm. These results are consistent with the hypothesis that at E7.5, the yolk sac endoderm provides differentiated liver-like functions, while the newly developing extraembryonic mesoderm is still a largely undifferentiated tissue. © 1995 wiley-Liss, Inc.  相似文献   

18.
19.
E D Adamson  S E Ayers 《Cell》1979,16(4):953-965
The location of type IV (basement membrane)collagen in early post-implantation mouse embryos was examined by immunoperoxidase reactions using a specific immunoglobulin raised against mouse lens capsule collagen. Reaction was positive in the earliest embryos studied--on the fifth day of gestation (the day of detection of the copulation plug is the first day). It was found only in the primitive endoderm adjacent to the blastocoelic cavity. Subsequently in development, strong staining reactions were found in the parietal endoderm, Reichert's membrane and an acellular layer which separates the visceral endoderm of the egg cylinder from the ectoderm. In tenth to eighteenth day visceral yolk sacs, the mesodermal portion was stained, which is consistent with the presence of basement membranes around blood vessels. The endodermal portion of the visceral yolk sac did not react, while small amounts were found in the amnion. By incubation of various embryonic tissues with tritiated amino acids, purification of the biosynthesized secreted collagens and their partial characterization, the differential expression of several collagen genes was detected. Identification of collagen types was made by: reaction with specific antibodies to type I and IV collagens; electrophoretic mobility; sensitivity to reduction and to collagenase; analysis of the proportions of 3-hydroxyproline, 4-hydroxyproline and hydroxylysine; and CNBr peptides. In agreement with the data of Minor et al. (1976a) for the rat, mouse parietal endoderm synthesizes large amounts of type IV collagen. In contrast to their findings, however, the 165,000 molecular weight polypeptide is not converted to one of 100,000 after reduction, alkylation and repepsinization (Dehm and Kefalides, 1978). The endoderm of the visceral yolk sac was shown to be synthesizing primarily type I collagen, while the mesoderm layer of this membrane synthesized both type I and IV collagens. Little or no type IV collagen synthesis was detected in the endoderm of the visceral yolk sac. If it is correct that the visceral endoderm of the early embryo makes a major contribution to the formation of the endoderm portion of the visceral yolk sac, then it is clear that a switch in collagen gene expression must occur as it does so.  相似文献   

20.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of prestreak and early primitive streak stages of the mouse embryo was studied in vitro by microinjecting horseradish peroxidase into single axial endoderm cells of 6.7-day-old embryos and tracing the labelled descendants either through gastrulation (1 day of culture) or to early somite stages (2 days of culture). Descendants of endoderm cells from the anterior half of the axis were found at the extreme cranial end of the embryo after 1 day and in the visceral yolk sac endoderm after 2 days, i.e. they were displaced anteriorly and anterolaterally. Descendants of cells originating over and near the anterior end of the early primitive streak, i.e. posterior to the distal tip of the egg cylinder, were found after 1 day over the entire embryonic axis and after 2 days in the embryonic endoderm at the anterior intestinal portal, in the foregut, along the trunk and postnodally, as well as anteriorly and posteriorly in the visceral yolk sac. Endoderm covering the posterior half of the early primitive streak contributed to postnodal endoderm after 1 day (at the late streak stage) and mainly to posterior visceral yolk sac endoderm after 2 days. Clonal descendants of axial endoderm were located after 2 days either over the embryo or in the yolk sac; the few exceptions spanned the caudal end of the embryo and the posterior yolk sac. The clonal analysis also showed that the endoderm layer along the posterior half of the axis of prestreak- and early-streak-stage embryos is heterogeneous in its germ layer fate. Whereas the germ layer location of descendants from anterior sites did not differ after 1 day from that expected from the initial controls (approx. 90% exclusively in endoderm), only 62% of the successfully injected posterior sites resulted in labelled cells exclusively in endoderm; the remainder contributed partially or entirely to ectoderm and mesoderm. This loss from the endoderm layer was compensated by posterior-derived cells that remained in endoderm having more surviving descendants (8.4 h population doubling time) than did anterior-derived cells (10.5 h population doubling time). There was no indication of cell death at the prestreak and early streak stages; at least 93% of the cells were proliferating and more than half of the total axial population were in, or had completed, a third cell cycle after 22 h culture.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号