首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expressions of vascular endothelial growth factor (VEGF) receptors in astrocytes are increased in damaged brains. To clarify the regulatory mechanisms of VEGF receptors, the effects of endothelin‐1 (ET‐1) were examined in rat cultured astrocytes. Expressions of VEGF‐R1 and ‐R2 receptor mRNA were at similar levels, whereas the mRNA expressions of VEGF‐R3 and Tie‐2, a receptor for angiopoietins, were lower. Placenta growth factor, a selective agonist of the VEGF‐R1 receptor, induced phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase 1/2 (ERK1/2). Phosphorylations of FAK and ERK 1/2 were also stimulated by VEGF‐E, a selective VEGF‐R2 agonist. Increased phosphorylations of FAK and ERK1/2 by VEGF165 were reduced by selective antagonists for VEGF‐R1 and ‐R2. Treatment with ET‐1 increased VEGF‐R1 mRNA and protein levels. The effects of ET‐1 on VEGF‐R1 mRNA were mimicked by Ala1,3,11,15‐ET‐1, a selective agonist for ETB receptors, and inhibited by BQ788, an ETB antagonist. ET‐1 did not affect the mRNA levels of VEGF‐R2, ‐R3, and Tie‐2. Pre‐treatment with ET‐1 potentiated the effects of placenta growth factor on phosphorylations of FAK and ERK1/2. These findings suggest that ET‐1 induces up‐regulation of VEGF‐R1 receptors in astrocytes, and potentiates VEGF signals in damaged nerve tissues.

  相似文献   


2.
3.
Trafficking of G protein‐coupled receptors plays a crucial role in controlling the precise signalling of the receptor as well as its proper regulation. Metabotropic glutamate receptor 1 (mGluR1), a G protein‐coupled receptor, is a member of the group I mGluR family. mGluR1 plays a critical role in neuronal circuit formation and also in multiple types of synaptic plasticity. This receptor has also been reported to be involved in various neuropsychiatric diseases. Other than the central nervous system, mGluR1 plays crucial roles in various non‐neuronal cells like hepatocytes, skin cells, etc. Although it has been reported that mGluR1 gets endocytosed on ligand application, the events after the internalization of the receptor has not been studied. We show here that mGluR1 internalizes on ligand application. Subsequent to endocytosis, majority of the receptors localize at the recycling compartment and no significant presence of the receptor was noticed in the lysosome. Furthermore, mGluR1 returned to the cell membrane subsequent to ligand‐mediated internalization. We also show here that the recycling of mGluR1 is dependent on the activity of protein phosphatase 2A. Thus, our data suggest that the ligand‐mediated internalized receptors recycle back to the cell surface in protein phosphatase 2A‐dependent manner.

  相似文献   


4.
Intraplantar injection of 0.4% formalin into the rat hind paw leads to a biphasic nociceptive response; an ‘acute’ phase (0–15 min) and ‘tonic’ phase (16–120 min), which is accompanied by significant phosphorylation of extracellular signal‐regulated kinase (ERK)1/2 in the contralateral striatum at 120 min post‐formalin injection. To uncover a possible relationship between the slow‐onset substance P (SP) release and increased ERK1/2 phosphorylation in the striatum, continuous infusion of SP into the striatum by reverse microdialysis (0.4 μg/mL in microdialysis fiber, 1 μL/min) was performed to mimic volume neurotransmission of SP. Continuous infusion for 3 h of SP reduced the duration of ‘tonic’ phase nociception, and this SP effect was mediated by neurokinin 1 (NK1) receptors since pre‐treatment with NK1 receptor antagonist CP96345 (10 μM) blocked the effect of SP infusion. However, formalin‐induced ‘tonic’ phase nociception was significantly prolonged following acute injection of the MAP/ERK kinase 1/2 inhibitor PD0325901 (100 pmol) by microinjection. The coinfusion of SP and PD0325901 significantly increased the ‘tonic’ phase of nociception. These data demonstrate that volume transmission of striatal SP triggered by peripheral nociceptive stimulation does not lead to pain facilitation but a significant decrease of tonic nociception by the activation of the SP‐NK1 receptor–ERK1/2 system.

  相似文献   


5.
The glutamate metabotropic receptor 5 (mGluR5) and the adenosine A2A receptor (A2AR) represent major non‐dopaminergic therapeutic targets in Parkinson's disease (PD) to improve motor symptoms and slow down/revert disease progression. The 6‐hydroxydopamine rat model of PD was used to determine/compare the neuroprotective and behavioral impacts of single and combined administration of one mGluR5 antagonist, 2‐methyl‐6‐(phenylethynyl)pyridine (MPEP), and two A2AR antagonists, (E)‐phosphoric acid mono‐[3‐[8‐[2‐(3‐methoxyphenyl)vinyl]‐7‐methyl‐2,6‐dioxo‐1‐prop‐2‐ynyl‐1,2,6,7‐tetrahydropurin‐3‐yl]propyl] (MSX‐3) and 8‐ethoxy‐9‐ethyladenine (ANR 94). Chronic treatment with MPEP or MSX‐3 alone, but not with ANR 94, reduced the toxin‐induced loss of dopaminergic neurons in the substantia nigra pars compacta. Combining MSX‐3 and MPEP further improved the neuroprotective effect of either antagonists. At the behavioral level, ANR 94 and MSX‐3 given alone significantly potentiated l ‐DOPA‐induced turning behavior. Combination of either A2AR antagonists with MPEP synergistically increased L‐DOPA‐induced turning. This effect was dose‐dependent and required subthreshold drug concentration, which per se had no motor stimulating effect. Our findings suggest that co‐treatment with A2AR and mGluR5 antagonists provides better therapeutic benefits than those produced by either drug alone. Our study sheds some light on the efficacy and advantages of combined non‐dopaminergic PD treatment using low drug concentration and establishes the basis for in‐depth studies to identify optimal doses at which these drugs reach highest efficacy.

  相似文献   


6.
Two glutamate receptors, metabotropic glutamate receptor 5 (mGluR5), and ionotropic NMDA receptors (NMDAR), functionally interact with each other to regulate excitatory synaptic transmission in the mammalian brain. In exploring molecular mechanisms underlying their interactions, we found that Ca2+/calmodulin‐dependent protein kinase IIα (CaMKIIα) may play a central role. The synapse‐enriched CaMKIIα directly binds to the proximal region of intracellular C terminal tails of mGluR5 in vitro. This binding is state‐dependent: inactive CaMKIIα binds to mGluR5 at a high level whereas the active form of the kinase (following Ca2+/calmodulin binding and activation) loses its affinity for the receptor. Ca2+ also promotes calmodulin to bind to mGluR5 at a region overlapping with the CaMKIIα‐binding site, resulting in a competitive inhibition of CaMKIIα binding to mGluR5. In rat striatal neurons, inactive CaMKIIα constitutively binds to mGluR5. Activation of mGluR5 Ca2+‐dependently dissociates CaMKIIα from the receptor and simultaneously promotes CaMKIIα to bind to the adjacent NMDAR GluN2B subunit, which enables CaMKIIα to phosphorylate GluN2B at a CaMKIIα‐sensitive site. Together, the long intracellular C‐terminal tail of mGluR5 seems to serve as a scaffolding domain to recruit and store CaMKIIα within synapses. The mGluR5‐dependent Ca2+ transients differentially regulate CaMKIIα interactions with mGluR5 and GluN2B in striatal neurons, which may contribute to cross‐talk between the two receptors.

  相似文献   


7.
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post‐synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP‐ and PKA‐dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA‐mediated modulation of mGluR5 functions such as extracellular signal‐regulated kinase phosphorylation and intracellular Ca2+ oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5‐mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling.

  相似文献   


8.
The receptor for advanced glycation end products (RAGE) gene expresses two major alternative splicing isoforms, full‐length membrane‐bound RAGE (mRAGE) and secretory RAGE (esRAGE). Both isoforms play important roles in Alzheimer's disease (AD) pathogenesis, either via interaction of mRAGE with β‐amyloid peptide (Aβ) or inhibition of the mRAGE‐activated signaling pathway. In the present study, we showed that heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and Transformer2β‐1 (Tra2β‐1) were involved in the alternative splicing of mRAGE and esRAGE. Functionally, two factors had an antagonistic effect on the regulation. Glucose deprivation induced an increased ratio of mRAGE/esRAGE via up‐regulation of hnRNP A1 and down‐regulation of Tra2β‐1. Moreover, the ratios of mRAGE/esRAGE and hnRNP A1/Tra2β‐1 were increased in peripheral blood mononuclear cells from AD patients. The results provide a molecular basis for altered splicing of mRAGE and esRAGE in AD pathogenesis.

  相似文献   


9.
10.
Alzheimer's disease (AD ) is a neurodegenerative pathology characterized by aggregates of amyloid‐β (Aβ) and phosphorylated tau protein, synaptic dysfunction, and spatial memory impairment. The Wnt signaling pathway has several key functions in the adult brain and has been associated with AD , mainly as a neuroprotective factor against Aβ toxicity and tau phosphorylation. However, dysfunction of Wnt/β‐catenin signaling might also play a role in the onset and development of the disease. J20 APP swInd transgenic (Tg) mouse model of AD was treated i.p. with various Wnt signaling inhibitors for 10 weeks during pre‐symptomatic stages. Then, cognitive, biochemical and histochemical analyses were performed. Wnt signaling inhibitors induced severe changes in the hippocampus, including alterations in Wnt pathway components and loss of Wnt signaling function, severe cognitive deficits, increased tau phosphorylation and Aβ1–42 peptide levels, decreased Aβ42/Aβ40 ratio and Aβ1–42 concentration in the cerebral spinal fluid, and high levels of soluble Aβ species and synaptotoxic oligomers in the hippocampus, together with changes in the amount and size of senile plaques. More important, we also observed severe alterations in treated wild‐type (WT ) mice, including behavioral impairment, tau phosphorylation, increased Aβ1–42 in the hippocampus, decreased Aβ1–42 in the cerebral spinal fluid, and hippocampal dysfunction. Wnt inhibition accelerated the development of the pathology in a Tg AD mouse model and contributed to the development of Alzheimer's‐like changes in WT mice. These results indicate that Wnt signaling plays important roles in the structure and function of the adult hippocampus and suggest that inhibition of the Wnt signaling pathway is an important factor in the pathogenesis of AD .

Read the Editorial Highlight for this article on page 356 .
  相似文献   

11.
12.
Hypoxia‐mediated neurotoxicity contributes to various neurodegenerative disorders, including Alzheimer's disease and multiple sclerosis. Tetramethylpyrazine (TMP), a major bioactive component purified from Ligusticum wallichii Franchat, exhibited potent neuroprotective effect. However, the mechanism of TMP‐exerted neuroprotective effect against hypoxia was not clear. In the study, we investigated the mechanism of the neuroprotective effect of TMP against hypoxia induced by CoCl2 in vitro and in vivo. The results showed that TMP could protect against CoCl2‐induced neurotoxicity in PC12 cells and in rats, as evidenced by enhancement of cell viability in PC12 cells and improvement of learning and memory ability in rats treated with CoCl2. TMP could inhibit mitochondrial dysfunction, mitochondrial apoptotic molecular events, and thus apoptosis induced by CoCl2. TMP inhibited CoCl2‐increased reactive oxygen species (ROS) level, which may contribute to hypoxia‐related neurotoxicity induced by CoCl2. The antioxidant and neuroprotective activities of TMP involved two pathways: one was the enhancement of nuclear factor erythroid 2‐related factor 2 (Nrf2)/catalytic subunit of γ‐glutamylcysteine ligase‐mediated regulation of GSH and the other was the inhibition of hypoxia‐inducible factor 1 α/NADPH oxidase 2 (NOX2)‐mediated ROS generation. These two pathways contributed to improvement of oxidative stress and thus the amelioration of apoptosis under hypoxic conditions. These results have appointed a new path toward the understanding of pathogenesis and TMP‐related therapy of hypoxia‐related neurodegenerative diseases.

  相似文献   


13.
Characterization of the molecular signaling pathways underlying protein synthesis‐dependent forms of synaptic plasticity, such as late long‐term potentiation (L‐LTP ), can provide insights not only into memory expression/maintenance under physiological conditions but also potential mechanisms associated with the pathogenesis of memory disorders. Here, we report in mice that L‐LTP failure induced by the mammalian (mechanistic) target of rapamycin complex 1 (mTORC 1) inhibitor rapamycin is reversed by brain‐specific genetic deletion of PKR ‐like ER kinase, PERK (PERK KO ), a kinase for eukaryotic initiation factor 2α (eIF 2α). In contrast, genetic removal of general control non‐derepressible‐2, GCN 2 (GCN 2 KO ), another eIF 2α kinase, or treatment of hippocampal slices with the PERK inhibitor GSK 2606414, does not rescue rapamycin‐induced L‐LTP failure, suggesting mechanisms independent of eIF 2α phosphorylation. Moreover, we demonstrate that phosphorylation of eukaryotic elongation factor 2 (eEF 2) is significantly decreased in PERK KO mice but unaltered in GCN 2 KO mice or slices treated with the PERK inhibitor. Reduction in eEF 2 phosphorylation results in increased general protein synthesis, and thus could contribute to the mTORC 1‐independent L‐LTP in PERK KO mice. We further performed experiments on mutant mice with genetic removal of eEF 2K (eEF 2K KO ), the only known kinase for eEF 2, and found that L‐LTP in eEF 2K KO mice is insensitive to rapamycin. These data, for the first time, connect reduction in PERK activity with the regulation of translation elongation in enabling L‐LTP independent of mTORC 1. Thus, our findings indicate previously unrecognized levels of complexity in the regulation of protein synthesis‐dependent synaptic plasticity.

Read the Editorial Highlight for this article on page 119 . Cover Image for this issue: doi: 10.1111/jnc.14185 .
  相似文献   

14.
15.
Two types of syntaxin 1 isoforms, HPC‐1/syntaxin 1A (STX1A) and syntaxin 1B (STX1B), are thought to have similar functions in exocytosis of synaptic vesicles. STX1A?/? mice which we generated previously develop normally, possibly because of compensation by STX1B. We produced STX1B?/? mice using targeted gene disruption and investigated their phenotypes. STX1B?/? mice were born alive, but died before postnatal day 14, unlike STX1A?/? mice. Morphologically, brain development in STX1B?/? mice was impaired. In hippocampal neuronal culture, the cell viability of STX1B?/? neurons was lower than that of WT or STX1A?/? neurons after 9 days. Interestingly, STX1B?/? neurons survived on WT or STX1A?/? glial feeder layers as well as WT neurons. However, STX1B?/? glial feeder layers were less effective at promoting survival of STX1B?/? neurons. Conditioned medium from WT or STX1A?/? glial cells had a similar effect on survival, but that from STX1B?/? did not promote survival. Furthermore, brain‐derived neurotrophic factor (BDNF) or neurotrophin‐3 supported survival of STX1B?/? neurons. BDNF localization in STX1B?/? glial cells was disrupted, and BDNF secretion from STX1B?/? glial cells was impaired. These results suggest that STX1A and STX1B may play distinct roles in supporting neuronal survival by glia.

  相似文献   


16.
Bisphenol‐A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)‐induced memory impairment, whereas co‐exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up‐regulated synaptic proteins synapsin I and PSD‐95 and NMDA receptor NR2B but inhibited EB‐induced increase in PSD‐95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen.

  相似文献   


17.
Striatal neurodegeneration and synaptic dysfunction in Huntington's disease are mediated by the mutant huntingtin (mHtt) protein. MHtt disrupts calcium homeostasis and facilitates excitotoxicity, in part by altering NMDA receptor (NMDAR) trafficking and function. Pre‐symptomatic (excitotoxin‐sensitive) transgenic mice expressing full‐length human mHtt with 128 polyglutamine repeats (YAC128 Huntington's disease mice) show increased calpain activity and extrasynaptic NMDAR (Ex‐NMDAR) localization and signaling. Furthermore, Ex‐NMDAR stimulation facilitates excitotoxicity in wild‐type cortical neurons via calpain‐mediated cleavage of STriatal‐Enriched protein tyrosine Phosphatase 61 (STEP61). The cleavage product, STEP33, cannot dephosphorylate p38 mitogen‐activated protein kinase (MAPK), thereby augmenting apoptotic signaling. Here, we show elevated extrasynaptic calpain‐mediated cleavage of STEP61 and p38 phosphorylation, as well as STEP61 inactivation and reduced extracellular signal‐regulated protein kinase 1/2 phosphorylation (ERK1/2) in the striatum of 6‐week‐old, excitotoxin‐sensitive YAC128 mice. Calpain inhibition reduced basal and NMDA‐induced STEP61 cleavage. However, basal p38 phosphorylation was normalized by a peptide disrupting NMDAR‐post‐synaptic density protein‐95 (PSD‐95) binding but not by calpain inhibition. In 1‐year‐old excitotoxin‐resistant YAC128 mice, STEP33 levels were not elevated, but STEP61 inactivation and p38 and ERK 1/2 phosphorylation levels were increased. These results show that in YAC128 striatal tissue, enhanced NMDAR–PSD‐95 interactions contributes to elevated p38 signaling in early, excitotoxin‐sensitive stages, and suggest that STEP61 inactivation enhances MAPK signaling at late, excitotoxin‐resistant stages.

  相似文献   


18.
The role of phosphoinositide 3‐kinase (PI3K) in oxidative glutamate toxicity is not clear. Here, we investigate its role in HT22 mouse hippocampal cells and primary cortical neuronal cultures, showing that inhibitors of PI3K, LY294002, and wortmannin suppress extracellular hydrogen peroxide (H2O2) generation and increase cell survival during glutamate toxicity in HT22 cells. The mitogen‐activated protein kinase kinase (MEK) inhibitor U0126 also reduced glutamate‐induced H2O2 generation and inhibited phosphorylation of extracellular signal‐regulated kinase (ERK) 1/2. LY294002 was seen to abolish phosphorylation of both ERK1/2 and Akt. A small interfering RNA (siRNA) study showed that PI3Kβ and PI3Kγ, rather than PI3Kα and PI3Kδ, contribute to glutamate‐induced H2O2 generation and cell death. PI3Kγ knockdown also inhibited glutamate‐induced ERK1/2 phosphorylation, whereas transfection with the constitutively active form of human PI3Kγ (PI3Kγ‐CAAX) triggered MEK1/2 and ERK1/2 phosphorylation and H2O2 generation without glutamate exposure. This H2O2 generation was reduced by inhibition of MEK. Transfection with kinase‐dead 3‐phosphoinositide‐dependent protein kinase 1 (PDK1‐KD) reduced glutamate‐induced ERK1/2 phosphorylation and H2O2 generation. Accordingly, cotransfection of cells with PDK1‐KD and PI3Kγ‐CAAX suppressed PI3Kγ‐CAAX‐triggered ERK1/2 phosphorylation and H2O2 generation. These results suggest that activation of PI3Kγ induces ERK1/2 phosphorylation, leading to extracellular H2O2 generation via PDK1 in oxidative glutamate toxicity.

  相似文献   


19.
This study involved mice that received 4 days of ethanol (EtOH) vapor inhalation and then were assessed for type 1 inositol 1,4,5‐trisphosphate receptor (IP3Rs‐1) expression and the development of EtOH‐induced place preference at various time points in withdrawal. IP3R‐1 protein was found to be significantly increased in the nucleus accumbens (NAcc) of mice immediately after 4‐day EtOH vapor inhalation, while it significantly reduced to the control level during the next 3 days of withdrawal from EtOH inhalation. EtOH (2 g/kg, i.p.)‐induced place preference after 3 days of withdrawal from EtOH vapor inhalation increased dose dependently for 4 days, which was significantly inhibited by 2‐aminophenoxyethane‐borate, an antagonist for IP3Rs. EtOH conditioning significantly increased, compared to alcohol‐naïve control mice, both IP3R‐1 protein and the release of dopamine in the NAcc of mice after 3 days of withdrawal from EtOH vapor inhaled for 4 days, and this increase of IP3R‐1 protein was completely abolished by intracerebroventricular injection of FK506, an inhibitor for calcineurin. These results indicate that the sensitization of EtOH‐induced place preference is due to up‐regulated IP3R‐1 via calcineurin‐mediated pathway after enhanced release of dopamine in the NAcc on EtOH administration during EtOH conditioning.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号