首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Tan‐67 is a selective non‐peptidic δ‐opioid receptor (DOR ) agonist that confers neuroprotection against cerebral ischemia/reperfusion (I/R)‐caused neuronal injury in pre‐treated animals. In this study, we examined whether post‐ischemic administration of Tan‐67 in stroke mice is also neuroprotective and whether the treatment affects expression, maturation and processing of the amyloid precursor protein (APP ). A focal cerebral I/R model in mice was induced by middle cerebral artery occlusion for 1 h and Tan‐67 (1.5, 3 or 4.5 mg/kg) was administered via the tail vein at 1 h after reperfusion. Alternatively, naltrindole, a selective DOR antagonist (5 mg/kg), was administered 1 h before Tan‐67 treatment. Our results showed that post‐ischemic administration of Tan‐67 (3 mg/kg or 4.5 mg/kg) was neuroprotective as shown by decreased infarct volume and neuronal loss following I/R. Importantly, Tan‐67 improved animal survival and neurobehavioral outcomes. Conversely, naltrindole abolished Tan‐67 neuroprotection in infarct volume. Tan‐67 treatment also increased APP expression, maturation and processing in the ipsilateral penumbral area at 6 h but decreased APP expression and maturation in the same brain area at 24 h after I/R. Tan‐67‐induced increase in APP expression was also seen in the ischemic cortex at 24 h following I/R. Moreover, Tan‐67 attenuated BACE ‐1 expression, β‐secretase activity and the BACE cleavage of APP in the ischemic cortex at 24 h after I/R, which was abolished by naltrindole. Our data suggest that Tan‐67 is a promising DOR ‐dependent therapeutic agent for treating I/R‐caused disorder and that Tan‐67‐mediated neuroprotection may be mediated via modulating APP expression, maturation and processing, despite an uncertain causative relationship between the altered APP and the outcomes observed.

  相似文献   

2.
Lower levels of the cognitively beneficial docosahexaenoic acid (DHA) are often observed in Alzheimer's disease (AD) brains. Brain DHA levels are regulated by the blood‐brain barrier (BBB) transport of plasma‐derived DHA, a process facilitated by fatty acid‐binding protein 5 (FABP5). This study reports a 42.1 ± 12.6% decrease in the BBB transport of 14C‐DHA in 8‐month‐old AD transgenic mice (APPswe,PSEN1?E9) relative to wild‐type mice, associated with a 34.5 ± 6.7% reduction in FABP5 expression in isolated brain capillaries of AD mice. Furthermore, short‐term spatial and recognition memory deficits were observed in AD mice on a 6‐month n‐3 fatty acid‐depleted diet, but not in AD mice on control diet. This intervention led to a dramatic reduction (41.5 ± 11.9%) of brain DHA levels in AD mice. This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB are associated with increased vulnerability to cognitive deficits in mice fed an n‐3 fatty acid‐depleted diet, in line with our previous studies demonstrating a crucial role of FABP5 in BBB transport of DHA and cognitive function.

  相似文献   

3.
Female hypocretin knockout (Hcrt KO) mice have increased body weight despite decreased food intake compared to wild type (WT) mice. In order to understand the nature of the increased body weight, we carried out a detailed study of Hcrt KO and WT, male, and female mice. Female KO mice showed consistently higher body weight than WT mice, from 4 to 20 months (20–60%). Fat, muscle, and free fluid levels were all significantly higher in adult (7–9 months) as well as old (18–20 months) female KO mice compared to age‐matched WT mice. Old male KO mice showed significantly higher fat content (150%) compared to age‐matched WT mice, but no significant change in body weight. Respiratory quotient (?19%) and metabolic rates (?14%) were significantly lower in KO mice compared to WT mice, regardless of gender or age. Female KO mice had significantly higher serum leptin levels (191%) than WT mice at 18–20 months, but no difference between male mice were observed. Conversely, insulin resistance was significantly higher in both male (73%) and female (93%) KO mice compared to age‐ and sex‐matched WT mice. We conclude that absence of the Hcrt peptide has gender‐specific effects. In contrast, Hcrt‐ataxin mice and human narcoleptics, with loss of the whole Hcrt cell, show weight gain in both sexes.

  相似文献   


4.
Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1‐G93A co‐cultures. Deleting TNFR2 from SOD1‐G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1‐G93A/TNFR2?/? mice showed high phospho‐TAR DNA‐binding protein 43 (TDP‐43) accumulation and low levels of acetyl‐tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane‐bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology.

  相似文献   


5.
Triheptanoin, the triglyceride of heptanoate, is anaplerotic (refills deficient tricarboxylic acid cycle intermediates) via the propionyl‐CoA carboxylase pathway. It has been shown to be neuroprotective and anticonvulsant in several models of neurological disorders. Here, we investigated the effects of triheptanoin against changes of hippocampal mitochondrial functions, oxidative stress and cell death induced by pilocarpine‐induced status epilepticus (SE ) in mice. Ten days of triheptanoin pre‐treatment did not protect against SE , but it preserved hippocampal mitochondrial functions including state 2, state 3 ADP , state 3 uncoupled respiration, respiration linked to ATP synthesis along with the activities of pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex 24 h post‐SE . Triheptanoin prevented the SE ‐induced reductions of hippocampal mitochondrial superoxide dismutase activity and plasma antioxidant status as well as lipid peroxidation. It also reduced neuronal degeneration in hippocampal CA 1 and CA 3 regions 3 days after SE . In addition, heptanoate significantly reduced hydrogen peroxide‐induced cell death in cultured neurons. In situ hybridization localized the enzymes of the propionyl‐CoA carboxylase pathway, specifically Pcc α, Pcc β and methylmalonyl‐CoA mutase to adult mouse hippocampal pyramidal neurons and dentate granule cells, indicating that anaplerosis may occur in neurons. In conclusion, triheptanoin appears to have anaplerotic and antioxidant effects which contribute to its neuroprotective properties.

  相似文献   

6.
Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre‐synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre‐ and post‐synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre‐synaptic dopamine function remain unclear. Non‐invasive imaging techniques such as positron emission tomography have revealed impaired pre‐synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre‐synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15–20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l ‐amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre‐treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre‐synaptic dopaminergic neurons are not initiated following a single exposure to the drug.

  相似文献   

7.
Neurotensin is known to inhibit neuronal Na+, K+‐ATPase, an effect that is rescued by nitric oxide (NO) synthase inhibition. However, whether the neurotensinergic and the nitrergic systems are independent pathways, or are mechanistically linked, remains unknown. Here, we addressed this issue and found that the administration of low affinity neurotensin receptor (NTS2) antagonist, levocabastine (50 μg/kg, i.p.) inhibited NO synthase (NOS) activity by 74 and 42% after 18 h in synaptosomal and mitochondrial fractions isolated from the Wistar rat cerebral cortex, respectively; these effects disappeared 36 h after levocabastine treatment. Intriguingly, whereas neuronal NOS protein abundance decreased (by 56%) in synaptosomes membranes, it was enhanced (by 86%) in mitochondria 18 h after levocabastine administration. Levocabastine enhanced the respiratory rate of synaptosomes in the presence of oligomycin, but it failed to alter the spare respiratory capacity; furthermore, the mitochondrial respiratory chain (MRC) complexes I–IV activities were severely diminished by levocabastine administration. The inhibition of NOS and MRC complexes activities were also observed after incubation of synaptosomes and mitochondria with levocabastine (1 μM) in vitro. These data indicate that the NTS2 antagonist levocabastine regulates NOS expression and activity at the synapse, suggesting an interrelationship between the neurotensinergic and the nitrergic systems. However, the bioenergetics effects of NTS2 activity inhibition are likely to be independent from the regulation of NO synthesis.

  相似文献   

8.
9.
Major depressive disorder is a common form of mental illness. Many brain regions are implicated in the pathophysiology and symptomatology of depression. Among key brain areas is the striatum that controls reward and mood and is involved in the development of core depression‐like behavior in animal models of depression. While molecular mechanisms in this region underlying depression‐related behavior are poorly understood, the glutamatergic input to the striatum is believed to play a role. In this study, we investigated changes in metabotropic glutamate (mGlu) receptor expression and signaling in the striatum of adult rats in response to prolonged (10–12 weeks) social isolation, a pre‐validated animal paradigm modeling depression in adulthood. We found that mGlu5 receptor protein levels in the striatum were increased in rats that showed typical depression‐ and anxiety‐like behavior after chronic social isolation. This increase in mGlu5 receptor expression was seen in both subdivisions of the striatum, the nucleus accumbens and caudate putamen. At subcellular and subsynaptic levels, mGlu5 receptor expression was elevated in surface membranes at synaptic sites. In striatal neurons, the mGlu5‐associated phosphoinositide signaling pathway was augmented in its efficacy after prolonged social isolation. These data indicate that the mGlu5 receptor is a sensitive substrate of depression. Adulthood social isolation leads to the up‐regulation of mGlu5 receptor expression and function in striatal neurons.

  相似文献   

10.
Beta‐adrenoceptors (β2‐AR s) have beneficial effects on prefrontal cortex (PFC ) working memory, however, the cellular and molecular mechanisms are unclear yet. In this study, we probed the effect of β2‐AR ‐selective agonist clenbuterol (Clen) on synaptic transmission in layer 5/6 pyramidal neurons of PFC . Bath application of Clen reduced spontaneous IPSC (sIPSC ) frequency without effects on sEPSC s. Clen did not alter the frequency and amplitude of miniature IPSC s (mIPSC s), but exerted heterogeneous effects on evoked IPSC s (eIPSC s) recorded from PFC layer 5/6 pyramidal neurons. Clen decreased the firing rate of action potentials of fast‐spiking GABA ergic interneurons. Clen‐induced hyperpolarization of fast‐spiking GABA ergic interneurons required potentiation of an inward rectifier K+ channels. Clen‐induced hyperpolarization of fast‐spiking interneurons was dependent on Gs protein rather than cAMP and protein kinase A. Our findings demonstrate that Clen (10 μM) enhances inward rectifier K+ channels via Gs protein to cause membrane hyperpolarization of fast‐spiking GABA ergic interneurons resulting in reduction of action potentials firing rate to reduce GABA ergic transmission.

  相似文献   

11.
Depression is one of the most debilitating neuropsychiatric disorders. Most of the current antidepressants have long remission time and low recovery rate. This study explores the impact of ketamine on neuronal and astroglial metabolic activity in prefrontal cortex in a social defeat (SD) model of depression. C57BL/6 mice were subjected to a social defeat paradigm for 5 min a day for 10 consecutive days. Ketamine (10 mg/kg, intraperitoneal) was administered to mice for two consecutive days following the last defeat stress. Mice were infused with [1,6‐13C2]glucose or [2‐13C]acetate to assess neuronal and astroglial metabolic activity, respectively, together with proton‐observed carbon‐edited nuclear magnetic resonance spectroscopy in prefrontal cortex tissue extract. The 13C labeling of amino acids from glucose and acetate was decreased in SD mice. Ketamine treatment in SD mice restored sucrose preference, social interaction and immobility time to control values. Acute subanesthetic ketamine restored the 13C labeling of brain amino acids from glucose as well as acetate in SD mice to the respective control values, suggesting that rates of neuronal and astroglial tricarboxylic acid (TCA) cycle and neurotransmitter cycling were re‐established to normal levels. The finding of improved energy metabolism in SD mice suggests that fast anti‐depressant action of ketamine is linked with improved neurotransmitter cycling.

  相似文献   

12.
13.
Monoamine neurotransmitters should be immediately removed from the synaptic cleft to avoid excessive neuronal activity. Recent studies have shown that astrocytes and neurons are involved in monoamine removal. However, the mechanism of monoamine transport by astrocytes is not entirely clear. We aimed to elucidate the transporters responsible for monoamine transport in 1321N1, a human astrocytoma‐derived cell line. First, we confirmed that 1321N1 cells transported dopamine, serotonin, norepinephrine, and histamine in a time‐ and dose‐dependent manner. Kinetics analysis suggested the involvement of low‐affinity monoamine transporters, such as organic cation transporter (OCT) 2 and 3 and plasma membrane monoamine transporter (PMAT). Monoamine transport in 1321N1 cells was not Na+/Cl? dependent but was inhibited by decynium‐22, an inhibitor of low‐affinity monoamine transporters, which supported the importance of low‐affinity transporters. RT‐PCR assays revealed that 1321N1 cells expressed OCT3 and PMAT but no other neurotransmitter transporters. Another human astrocytoma‐derived cell line, U251MG, and primary human astrocytes also exhibited the same gene expression pattern. Gene‐knockdown assays revealed that 1321N1 and primary human astrocytes could transport monoamines predominantly through PMAT and partly through OCT3. These results might indicate that PMAT and OCT3 in human astrocytes are involved in monoamine clearance.

  相似文献   


14.
TAR DNA ‐binding protein 43 (TDP ‐43) is an RNA ‐binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP ‐43 exists as a full‐length protein and as two shorter forms of 25 and 35 kD a. Full‐length mutant TDP ‐43s found in amyotrophic lateral sclerosis patients re‐localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP ‐43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kD a truncated form of TDP ‐43 is restricted to the intermembrane space, while the full‐length forms also localize in the mitochondrial matrix in cultured neuronal NSC ‐34 cells. Interestingly, the full‐length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial‐transcribed mRNA s, while the 35 kD a form does not. In the light of the known differential contribution of the full‐length and short isoforms to generate toxic aggregates, we propose that the presence of full‐length TDP ‐43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP ‐43 forms play a major role.

  相似文献   

15.
Pleiotrophin (PTN) is a cytokine with important roles in dopaminergic neurons. We found that an acute ethanol (2.0 g/kg, i.p.) administration causes a significant up‐regulation of PTN mRNA and protein levels in the mouse prefrontal cortex, suggesting that endogenous PTN could modulate behavioural responses to ethanol. To test this hypothesis, we studied the behavioural effects of ethanol in PTN knockout (PTN?/?) mice and in mice with cortex‐ and hippocampus‐specific transgenic PTN over‐expression (PTN‐Tg). Ethanol (1.0 and 2.0 g/kg) induced an enhanced conditioned place preference in PTN?/? compared to wild type mice, suggesting that PTN prevents ethanol rewarding effects. Accordingly, the conditioning effects of ethanol were completely abolished in PTN‐Tg mice. The ataxic effects induced by ethanol (2.0 g/kg) were not affected by the genotype. However, the sedative effects of ethanol (3.6 g/kg) tested in a loss of righting reflex paradigm were significantly reduced in PTN‐Tg mice, suggesting that up‐regulation of PTN levels prevents the sedative effects of ethanol. These results indicate that PTN may be a novel genetic factor of importance in alcohol use disorders, and that potentiation of the PTN signalling pathway may be a promising therapeutic strategy in the treatment of these disorders.

  相似文献   


16.
Chronic neuroinflammation may be a critical component of intractable inflammatory diseases, including neuropathic pain. Because angiogenesis as a result of vascular endothelial growth factor (VEGF) signaling plays a pivotal role in inflammation, we focused on the mechanisms of VEGF‐regulated neuropathic pain in mice. The mRNA and protein expression of VEGFA were up‐regulated in the injured sciatic nerve after partial sciatic nerve ligation (PSL). VEGFA was localized to accumulated macrophages and neutrophils derived from bone marrow. Up‐regulation of VEGFA was mediated by histone H3 acetylation and trimethylation in its promoter region. VEGF receptors (VEGFR1 and VEGFR2) were localized to vascular endothelial cells or macrophages. By ex vivo fluorescence imaging and immunohistochemistry using DiI fluorescence, progression of angiogenesis was observed in the injured sciatic nerve after PSL. Perineural administration of pharmacological inhibitors of VEGFA and VEGFR tyrosine kinases prevented tactile allodynia and thermal hyperalgesia caused by PSL. Moreover, we determined the contribution of VEGF‐ and CXC‐chemokine receptor 4‐expressing angiogenic macrophages to neuropathic pain. Taken together, VEGFA is up‐regulated in injured peripheral nerves and participates in angiogenesis and prolonged pain behaviors through its receptors. We propose that VEGFA‐related components may underlie peripheral sensitization leading to neuropathic pain.

  相似文献   


17.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


18.
19.
2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) is a ubiquitous environmental pollutant that could induce significant toxic effects in the human nervous system. However, the underlying molecular mechanism has not been entirely elucidated. Reactive astrogliosis has implicated in various neurological diseases via the production of a variety of pro‐inflammatory mediators. Herein, we investigated the potential role of TCDD in facilitating astrocyte activation and the underlying molecular mechanisms. We showed that TCDD induced rapid astrocyte activation following TCDD exposure, which was accompanied by significantly elevated expression of Src‐Suppressed‐C Kinase Substrate (SSeCKS), a protein involved in protein kinase C (PKC)‐mediated Nuclear Factor kappa B signaling, suggesting a possible involvement of PKC‐induced SSeCKS activation in TCDD‐triggered reactive astroglia. In keeping with the finding, we found that the level of phosphorylated Nuclear Factor kappa B p65 was remarkably increased after TCDD treatment. Furthermore, interference of SSeCKS attenuated TCDD‐induced inducible nitric oxide synthase, glial fibrillary acidic protein, phospho‐p65 expression, and tumor necrosis factor‐α secretion in astrocytes. In addition, pre‐treatment with PKC inhibitor also attenuated TCDD‐induced astrocyte activation, as well as SSeCKS expression. Interestingly, we found that TCDD treatment could lead to SSeCKS perinuclear localization, which could be abolished after treatment with PKC inhibitor. Finally, we showed that inhibition of PKC activity or SSeCKS expression would impair TCDD‐triggered tumor necrosis factor‐α secretion. Our results suggested that TCDD exposure could lead to astrocyte activation through PKC/SSeCKS‐dependent mechanisms, highlighting that astrocytes might be important target of TCDD‐induced neurotoxicity.

  相似文献   


20.
Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin‐dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35?/? (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell‐specific conditional Cdk5/p35 knockout (L7‐p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota‐rod test, and performed electrophysiological recordings to assess long‐term synaptic plasticity. Our analyses showed that Purkinje cell‐specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long‐term synaptic plasticity was observed at the parallel fiber‐Purkinje cell synapse in L7‐p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long‐term synaptic plasticity.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号