首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The physiological role of lactoferrin (LF), the major estrogen-inducible protein in the murine uterus, is unclear; however, LF may be a useful marker for the study of estrogen action in the uterus. Thus, the expression of LF mRNA and the localization of the protein in genital tract tissues and secretions of female mice (6-8 wk old) at different stages of the estrous cycle were investigated. Uterine luminal fluid (ULF) was analyzed for LF by means of gel electrophoresis and Western blot techniques; LF mRNA and protein were identified in reproductive tract tissues through in situ hybridization and immunocytochemistry. At diestrus, the level of LF mRNA was low, and staining for the protein was very light in uterine epithelial cells; LF was undetectable in ULF. At proestrus, LF mRNA and protein increased in the uterine epithelium and LF was readily detectable in ULF. LF mRNA and protein reached the highest levels at estrus. At early metestrus as compared to estrus, LF mRNA and protein were detected in decreasing amounts in uterine epithelial cells; the protein was undetected in ULF. By late metestrus and diestrus, LF mRNA and protein returned to a low level, and the protein was undetectable in ULF. LF protein was also demonstrated by immunocytochemistry in the epithelium of the oviduct, cervix, and vagina. LF protein fluctuation similar to that observed in the uterus was seen in these tissues; however, the uterus demonstrated the most dramatic changes in the number of epithelial cells involved in LF production during the estrous cycle. In summary, LF mRNA and its expression in uterine epithelial cells of the mouse varied with the stage of the estrous cycle. These results, combined with previously reported findings that LF is a major constituent of mouse ULF under the influence of estrogen, suggest that LF may play an important role in normal reproductive processes.  相似文献   

3.
4.
In mature female rats, sex hormones regulate the reproductive (estrous) cycle to optimize mating and fertility. During the part of the estrous cycle when mating occurs, and when estrogen is the dominant sex hormone, the uterus is susceptible to infection with bacteria that can be deleterious for survival and fertility. The present study investigated whether sex hormones regulate innate immunity in the female reproductive tract by affecting the secretion of an anti-bacterial factor(s) in the rat uterus. Uterine fluids from intact rats at the proestrous stage of the estrous cycle significantly inhibited Staphylococcus aureus growth. When ovariectomized rats were treated with estradiol, anti-bacterial activity against both S. aureus and Escherichia coli increased in uterine secretions with hormone treatment. In contrast, rats injected with either progesterone and estradiol or progesterone alone displayed no bactericidal activity indicating that progesterone reversed the stimulatory effect of estradiol on anti-bacterial activity. In other studies, isolated uterine epithelial cells from intact animals were grown to confluence and high transepithelial resistance on cell inserts. Analysis of apical secretions indicated that a soluble factor(s) is released by polarized epithelial cells which inhibits bacterial growth. These results demonstrate that sex hormones influence the presence of a broad-spectrum bactericidal factor(s) in luminal secretions of the rat uterus. Further these studies suggest that epithelial cells which line the uterine lumen are a primary source of anti-bacterial activity.  相似文献   

5.
In the present studies atrial natriuretic factor (ANF) was characterized immunocytochemically in the reproductive tract of immature female rats, and changes of ANF levels in response to different hormonal conditions were demonstrated. Administration of pregnant mare serum gonadotropin (PMSG) to immature animals has shown to be a useful method to synchronize growth, differentiation and atresia of ovarian follicles. ANF immunoreactivity was investigated in rat uterus and oviduct during follicular growth and estrogenic dominance (48 h after PMSG treatment) and during follicular atresia and progesterone dominance (96 h after PMSG treatment). Our immunocytochemical results showed that in rat uterus ANF was localized in endometrial mucosal and glandular epithelium and smooth muscle cells of the myometrium. In the oviduct ANF immunoreactivity was observed in mucosal cells and muscle layers. Immunocytochemical staining patterns and Western blot analysis revealed that ANF levels in rat uterus and oviduct are modulated by the hormonal status. ANF immunoreactivity was elevated during estrogenic dominance (48 h after PMSG) in uterus and oviduct. However, during progesterone dominance (96 h after PMSG) elevation of ANF immunoreactivity was observed in the uterus only. These results raise the possibility that ANF expression in rat oviduct is positively controlled by estrogen and negatively by progesterone. ANF staining in uterus during progesterone phase provides evidence that both estrogen and progesterone regulate ANF levels in uterus. The observed staining patterns indicate that ANF may have intracellular functions as well as a role in priming the extracellular environment. Accordingly, the possibility that ANF might be an important regulatory molecule for autocrine/paracrine communication within the female reproductive tract should be considered.  相似文献   

6.
为研究蛋白激酶H11基因在生殖系统中的作用,我们采用半定量RT-PCR和原位杂交方法,研究了蛋白激酶H11基因在小鼠中的组织特异性表达,在妊娠初始期胚胎植入位点、妊娠期子宫和胎盘以及正常动情周期子宫中的表达及其受性激素的调节。结果发现:蛋白激酶H11基因在小鼠多种组织中都有表达,在卵巢及子宫等一些生殖相关的组织中表达水平较高;妊娠初始期,蛋白激酶H11基因在小鼠子宫内膜植入位点处有明显的高表达,其mRNA定位于腔上皮细胞和基质细胞中。在动情周期中,蛋白激酶H11基因在动情前期子宫中表达水平较低;卵巢切除模型显示雌激素和孕激素均可显著上调蛋白激酶H11基因的表达。以上结果提示蛋白激酶H11可能参与了胚胎植入过程中腔上皮细胞凋亡和基质细胞增殖与蜕膜化以及动情周期小鼠子宫内膜细胞的功能调节[动物学报51(3):462-468,2005]。  相似文献   

7.
To confirm the utility of the bromodeoxyuridine (BrdU) labeling method in the study of cell proliferation in mouse uterine tissues, changes in the labeling index in the luminal and glandular epithelia, the periluminal, periglandular and deep stromal regions and the myometrium were surveyed in normal adult mice during the estrous cycle and early pregnancy, in prepubertal mice and in ovariectomized adult and young animals treated with estrogen and/or progesterone. All results obtained were consistent with those obtained in previous histometric and autoradiographic studies and proved the effectiveness of the BrdU labeling method in the study of the uterus as well as many other organs. A marked rise in the labeling index was found in the luminal epithelium at metestrus, as well as on the proestrous morning, indicating the occurrence of extensive cell proliferation in the absence of estrogen stimulation. The change in the labeling index in adult mice was much more evident in the luminal epithelium than in the glandular epithelium in all conditions examined. On the other hand, the change in the stroma was more eminent in the periglandular region than in the periluminal and deep regions in most conditions. In immature mice, a great increase in labeling incidence occurred not only in luminal epithelium but also in muscle layers along with the process of puberty and at the time of estrogen stimulation. A moderate increase in the incidence also occurred in all other areas of the uterus including the perimetrium. Again, the increase was more prominent in the periglandular area than in other stromal regions.  相似文献   

8.
Previous studies in our laboratory demonstrated the presence of sialomucin complex (SMC)/Muc4 covering the rat uterine luminal epithelium. SMC/Muc4 expression in the uterus is regulated by estrogen and progesterone and lost at the time of receptivity. In contrast to this hormonal regulation at the uterine luminal surface, SMC/Muc4 in the uterine glandular epithelium, oviduct, cervix, and vagina was constitutively expressed at all stages of the estrous cycle. Furthermore, SMC was expressed in the cervix and vagina of the ovariectomized rat, even though it is not found in the uterine luminal epithelium. Both soluble and membrane-bound forms of SMC were present in these tissues. Immunohistochemical analyses showed distinctive localization patterns of SMC in the various tissues during the estrous cycle. Moreover, the previously unreported expression of SMC/Muc4 in the isthmus, ampulla, and infundibulum of the oviduct suggests potential functions in gamete development. These results indicate that SMC/Muc4 is expressed in most tissues of the female reproductive tract, in which it may have multiple functions. However, hormonal regulation appears to be restricted to the uterine luminal epithelium.  相似文献   

9.
富含脯氨酸小蛋白-2在小鼠子宫中的表达及调节   总被引:1,自引:0,他引:1  
富含脯氨酸小蛋白(Sprrs)参与构建复层扁平上皮的角化细胞壳(CE),它们在子宫单层上皮中的作用还不清楚.采用RNA印迹和半定量RT-PCR方法,研究了Sprr2在小鼠动情周期和妊娠子宫中的表达及其激素调控.实验结果发现:Sprr2在动情前期和动情期表达上调,而动情后期和间情期表达下调.在妊娠初期表达迅速下调,直至临产期表达重新受到诱导并在产后达到高峰.鉴于其在不同生殖阶段子宫中独特的表达模式和在复层上皮中保护性的功能,推测Sprr2与子宫对交配和分娩所产生的应激反应有关.  相似文献   

10.
11.
NELL2, a protein containing epidermal growth factor-like repeat domains, is predominantly expressed in the nervous system. In the mammalian brain, NELL2 expression is mostly neuronal. Previously we found that NELL2 is involved in the onset of female puberty by regulating the release of gonadotropin-releasing hormone (GnRH), and in normal male sexual behavior by controlling the development of the sexually dimorphic nucleus of the preoptic area (POA). In this study we investigated the effect of NELL2 on the female rat estrous cycle. NELL2 expression in the POA was highest during the proestrous phase. NELL2 mRNA levels in the POA were increased by estrogen treatment in ovariectomized female rats. Blocking NELL2 synthesis in the female rat hypothalamus decreased the expression of kisspeptin 1, an important regulator of the GnRH neuronal apparatus, and resulted in disruption of the estrous cycle at the diestrous phase. These results indicate that NELL2 is involved in the maintenance of the normal female reproductive cycle in mammals.  相似文献   

12.
13.
Recent evidence suggests that a regulated insulin-like growth factor (IGF) system mediates the effects of estrogen, promoting the proliferation and differentiation of specific uterine cell types throughout the estrous cycle and during gestation in the rodent. Previous studies have shown that IGFs are differentially expressed in the mouse uterus during the periimplantation period. In the current study, we examined the expression of IGF binding protein-4 (IGFBP-4), IGF-I receptor (IGF-IR), and IGF-I in the mouse uterus throughout the estrous cycle. Ligand blot analysis was conducted on uterine homogenates using [125I]IGF-I. IGFBP-4 was detected in all uterine homogenates, varying in intensity throughout the estrous cycle. In situ hybridization studies at metestrus and diestrus demonstrated an intense IGFBP-4 mRNA signal in antimesometrial stromal cells between the luminal epithelium and the myometrium, but at proestrus and estrus, no IGFBP-4 signal was detected. No IGF-I mRNA was detected at any stage of the estrous cycle by in situ hybridization. However, by RT-PCR analysis, IGF-I mRNA was detected at all stages of the estrous cycle. RT-PCR analysis also showed IGF-IR mRNA throughout the estrous cycle. Using immunohistochemistry, IGF-IR immunostaining was detected throughout the estrous cycle and on days 2-7 of gestation, but was restricted to the glandular epithelium. These results suggest that uterine IGFBP-4 expression may not be dependent on uterine IGF-I expression. They also suggest that IGFBP-4 may play a role in uterine physiology independent of the inhibition of IGF-I action, and that IGF-IR is constitutively expressed in the mouse uterus.  相似文献   

14.
15.
The presence of the LH receptor (LHR) in nongonadal tissues of the reproductive tract has been reported, but localization studies have not been performed. Our objectives were to demonstrate the presence of LHR in the reproductive tract and to localize receptor expression. Reproductive age rats and mice were obtained and (125)I-hCG binding assays were performed on membrane preparations from the uterus, ovary, liver, and testis. In situ hybridizations were performed using (35)S-labeled antisense and sense RNA probes prepared from nucleotides 1-591 of the mouse LHR cDNA. Specific hCG binding was detected in membrane preparations from the ovary, uterus, and testis but not in the liver in both the rat and mouse. In the ovary, LHR mRNA was localized in theca cells, large follicles, and corpora lutea as expected. In the uterus, LHR mRNA was expressed in stromal cells of the endometrium and in the uterine serosa. Uterine smooth muscle cells had low levels of expression, and the endometrial epithelium was negative. In the oviduct, high levels of LHR expression were noted on the serosa and in subepithelial cells. Oviductal smooth muscle had low expression, and the epithelium was negative. We conclude that functional, nongonadal LHR are expressed in the mouse reproductive tract. The presence and localization of LHR expression in the mouse reproductive tract lay the foundation for transgenic models to address the physiologic role of these receptors.  相似文献   

16.
17.
Circadian rhythms in physiology and behavior are known to be influenced by the estrous cycle in female rodents. The clock genes responsible for the generation of circadian oscillations are widely expressed both within the central nervous system and peripheral tissues, including those that comprise the reproductive system. To address whether the estrous cycle affects rhythms of clock gene expression in peripheral tissues, we first examined rhythms of clock gene expression (Per1, Per2, Bmal1) in reproductive (uterus, ovary) and non-reproductive (liver) tissues of cycling rats using quantitative real-time PCR (in vivo) and luminescent recording methods to measure circadian rhythms of PER2 expression in tissue explant cultures from cycling PER2::LUCIFERASE (PER2::LUC) knockin mice (ex vivo). We found significant estrous variations of clock gene expression in all three tissues in vivo, and in the uterus ex vivo. We also found that exogenous application of estrogen and progesterone altered rhythms of PER2::LUC expression in the uterus. In addition, we measured the effects of ovarian steroids on clock gene expression in a human breast cancer cell line (MCF-7 cells) as a model for endocrine cells that contain both the steroid hormone receptors and clock genes. We found that progesterone, but not estrogen, acutely up-regulated Per1, Per2, and Bmal1 expression in MCF-7 cells. Together, our findings demonstrate that the timing of the circadian clock in reproductive tissues is influenced by the estrous cycle and suggest that fluctuating steroid hormone levels may be responsible, in part, through direct effects on the timing of clock gene expression.  相似文献   

18.
The ovarian steroids, estrogen and progesterone, regulate cellular and molecular changes which occur in the uterus during the estrous cycle. Cycles of protein synthesis, cell proliferation and differentiation, and cell death are the direct results of changes in hormone concentration. To explore the possibility that cytokines, which stimulate proliferation and differentiation of numerous types of cells, might be associated with those cyclic changes, the production of IL-1, IL-6, and TNF alpha was examined in the mouse uterus. Cytokine mRNA expression, bioactivity, and immunoreactivity were quantitated during the estrous cycle, following ovariectomy and exposure of ovariectomized mice to estrogen and progesterone. IL-1, IL-6, and TNF alpha mRNA was detected, and mRNA levels for each of the cytokines varied with the stage of the cycle. Cytokine bioactivity was expressed throughout the cycle, but levels of each cytokine were highest during proestrus and/or estrus. Immunoreactivity paralleled bioactivity. Uterus from ovariectomized mice contained little or no cytokine activity, and systemic administration of estrogen or progesterone resulted in the induction of IL-1 alpha and IL-1 beta mRNA expression. Significant amounts of IL-6 and TNF alpha mRNA appeared only following the exposure of ovariectomized mice to estrogen plus progesterone. Cytokine bioactivity and immunoreactivity also appeared following the administration of estrogen and/or progesterone. The highest activity levels for each cytokine were observed following the injection of estrogen plus progesterone. Cyclic expression of IL-1, IL-6, and TNF alpha in the uterus and their apparent regulation by estrogen and progesterone raise the possibility that cytokines and factors which are induced by cytokines are part of the regulatory process which is induced by ovarian hormones in the uterus of reproductive age females.  相似文献   

19.
The steroid hormone estrogen profoundly influences growth and differentiation programs in the reproductive tract of cycling and pregnant mamals. It is thought that estrogen exerts its cellular effects by regulating the expression of specific target genes. We utilized a messenger RNA differential display method to identify the genes whose expression is modulated by estrogen in the preimplantation rat uterus. Here we report the cloning of a novel gene (ERG1) that is tightly regulated by estrogen in two key reproductive tissues, the uterus and oviduct. Spatio-temporal analyses reveal that ERG1 mRNA is expressed in a highly stage-specific manner in the uterus and oviduct, and its expression is restricted to the surface epithelium of both of these tissues. Nucleotide sequence analysis of the full-length ERG1 cDNA indicates that it has an open reading frame of 1821 nuceotides encoding a putative protein of 607 amino acids with a single transmembrane domain and a short cytoplasmic tail. The extracellular part of the protein contains several distinct structural motifs. These include a zona pellucida binding domain, which is present in a number of proteins such as the zona pellucida sperm binding proteins, and uromodulin, In addition, there is a repeat of a motif called CUB domain, which exists in a number of genes involved in development and differentiation such as bone morphogenetic protein 1 (BMP1). Although the precise function of ERG1 eludes us presently, its unique pattern of expression in the uterus and oviduct and its regulation by estrogen, a principal reproductive hormone, lead us to speculate that this novel gene plays an important role in events during the reproductive cycle and early pregnancy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号