首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat and hydrology indices were developed to assess the conditions in reaches of the impounded Mississippi river, the Fort Peck and Garrison reaches of the upper Missouri river, the Missouri National Recreational river (MNRR), the channelized lower Missouri river, and the Ohio river. Data were obtained from field sampling, air photo interpretation, and U.S. Geological Survey (USGS) hydrologic records. Habitat and hydrology attributes were incorporated into four habitat indices (channel complexity, substrate quality, littoral cover, and riparian condition) and one hydrology index. Construction of habitat indices for these very large rivers was complicated by a lack of previous research demonstrating methods for choosing and weighting the metrics used to compose these indices. Many habitat metrics used to assess habitat quality in small rivers proved irrelevant or impractical for assessing habitat quality in the upper Mississippi, Missouri, and Ohio rivers. In addition, these very large rivers, unlike smaller streams, were subject to physical and hydrological alterations due to channelization, revetment, levees, and dams. Because of the lack of proven indicators of habitat condition in very large rivers, we began with a large number of measures of natural and anthropogenic stress, eliminating only those metrics that failed tests of range, redundancy, and correlation with longitudinal position along the river. The lock and low-head dam sequences on the impounded Mississippi and Ohio influenced both hydrological patterns and the resident fish community, with conditions recovering with increased distance below dams, until hydrology was once again altered by impoundment from a downriver dam. Channel complexity and hydrology indices displayed the highest correlations with a multimetric fish index, possibly because these indices integrated habitat condition over a larger scale than the transect- and site-scaled littoral cover and riparian indices. Data limitations prevented the calculation of a littoral cover and a channel complexity index for the upper Missouri and Ohio rivers, respectively.  相似文献   

2.
We compared extracellular enzyme activity (EEA) of microbial assemblages in river sediments at 447 sites along the Upper Mississippi, Missouri, and Ohio Rivers with sediment and water chemistry, atmospheric deposition of nitrogen and sulfate, and catchment land uses. The sites represented five unique river reaches—impounded and unimpounded reaches of the Upper Mississippi River, the upper and lower reaches of the Missouri River, and the entire Ohio River. Land use and river chemistry varied significantly between rivers and reaches. There was more agriculture in the two Upper Mississippi River reaches, and this was reflected in higher nutrient concentrations at sites in these reaches. EEA was highest in the two Upper Mississippi River reaches, followed by the lower Missouri River reach. EEA was generally lowest in the upper Missouri River reach. Canonical correlation analysis revealed a strong correlation between EEA and the suite of water and sediment chemistry variables, and the percent of the catchment in anthropogenically dominated land uses, including agriculture and urban development. Nutrient ratios of the waters and sediments suggested carbon (C), nitrogen (N), or phosphorus (P) limitation at a large number of sites in each reach. C-limitation was most pronounced in the unimpounded Mississippi River and lower Missouri River reaches; N-limitation was prevalent in the two Missouri River reaches; and P-limitation dominated the Ohio River. Linking microbial enzyme activities to regional-scale anthropogenic stressors in these large river ecosystems suggests that microbial enzyme regulation of carbon and nutrient dynamics may be sensitive indicators of anthropogenic nutrient and carbon loading.  相似文献   

3.
Pallid sturgeon Scaphirhynchus albus relative condition has been observed to be declining along the Nebraska reach (rkm 1212.6–801.3) of the Missouri River over the past several years; therefore, pallid sturgeon capture data was synthesized from the entire Missouri and Middle Mississippi rivers to document and compare how pallid sturgeon condition varies spatially and temporally throughout much of their current range. The study area was subdivided into four river reaches based on a priori statistical differences for pallid sturgeon catches from 2003 to 2015. Pallid sturgeon in the Middle Mississippi River (Alton Dam [rkm 321.9]) to the confluence of the Ohio River (rkm 0.0) were in the best condition while pallid sturgeon in the Middle Missouri River (Fort Randall Dam [rkm 1416.2]) to the Grand River confluence (rkm 402.3) were in the poorest condition. Furthermore, pallid sturgeon condition in the Upper Missouri River (Fort Peck Dam [rkm 2850.9] to the headwaters of Lake Sakakawea [rkm 2523.5] and lower Yellowstone River) and the Lower Missouri River (Grand River confluence to the Mississippi River confluence [rkm 0.0]) were significantly less than in the Middle Mississippi River but significantly higher than the Middle Missouri River. Temporally, pallid sturgeon condition was highly variable. Relative condition in the Middle Mississippi River was consistently above average (Kn = 1.1). Comparatively, Kn throughout the Missouri River rarely exceeded “normal” (Kn = 1.0), with Kn in the middle and lower reaches of the Missouri River having declined to the lowest observed. As pallid sturgeon recovery efforts continue, understanding the range‐wide differences and effects on condition could be critical, as poor condition may cause maturation delays, reproductive senescence or even mortality, which affects the likelihood of natural reproduction and recruitment.  相似文献   

4.
Diatom-based indicators were developed to assess environmental conditions in the Missouri, Ohio, and Upper Mississippi rivers. Disturbance gradients, comprising the first two principal components derived from a suite of stressor variables, included a trophic gradient (Trophic) and a gradient reflecting agriculture and other development activities (Ag/Dev). Diatom-based indicators were developed by creating models using weighted average calibration and regression-based transfer functions to relate planktonic and periphytic diatom species assemblages to each disturbance gradient. The most predictive disturbance models combined phytoplankton and periphyton assemblages into a single bioindicator model (observed versus inferred: Trophic $ r_{\text{boot}}^{2} = 0. 5 6 $ ; Ag/Dev $ r_{\text{boot}}^{2} = 0. 7 0 $ ). The geographic applicability of bioindicators was assessed by limiting sample geographical range during model calibrations. Geographic scale was limited by creating bioindicators using samples from: (a) each river, and (b) combined Mississippi/Missouri samples excluding Ohio River sites which were chemically unique. Indicator performance decreased with geographically restrictive models, therefore river basin-wide models, developed across all three rivers, is recommended. The most effective diatom-based disturbance bioindicators for this great river ecosystem could be applied using phytoplankton, periphyton, or combined assemblages to infer both trophic and agriculture/development disturbances.  相似文献   

5.
Periphyton and phytoplankton samples were collected and analyzed from 393 locations in three mid-continent (US) great rivers: the Upper Mississippi, Missouri and Ohio. From the 410 taxa identified, 303 taxa were common enough for multivariate analyses. Algae assemblages were quantified by multiple metrics including biovolume (based on algal shape formulae and cell measurements), relative biovolume, cell density, relative cell density, entity density (based on numbers of colonies, filaments or free-living cells), and relative entity density. Relationships between algal metrics and both water quality (e.g., nutrients, ionic properties, physicochemical parameters) and landscape-scale stressor data (e.g., proportions watershed with agriculture and urban development, impoundment, pollution point-sources) were examined using multivariate analyses. Overall, algal metrics were more closely related to water quality than to landscape stressors. Phytoplankton cell density was the best indicator of water quality with 45% of the variance in the taxonomic data explained. We suspect that relationships between periphyton and water quality were weaker because water grab samples did not reflect the prevailing conditions to which the periphyton had been exposed. Phytoplankton also had a slightly stronger relationship to landscape-scale stressor data than did periphyton. Biovolume metrics were the best periphytic indicators of water quality and stressors. Absolute algal metrics, especially cell density, consistently had stronger relationships to water quality and stressors than relative (percentage-based) metrics.  相似文献   

6.
Large river bioassessment protocols lag far behind those of wadeable streams and often rely on fish assemblages of individual rivers. We developed a regional macroinvertebrate index and assessed relative condition of six large river tributaries to the upper Mississippi and Ohio rivers, Midwest USA. In 2004 and 2005, benthic macroinvertebrates, water chemistry, and habitat data were collected from randomly selected sites on each of the St. Croix, Wisconsin, Minnesota, Scioto, Wabash, and Illinois rivers. We first identified the human disturbance gradient using principal components analysis (PCA) of abiotic data. From the PCA, least disturbed sites showed strong separation from stressed sites along a gradient contrasting high water clarity, canopy cover, habitat scores, and plant-based substrates at one end and higher conductivity and nutrient concentrations at the other. Evaluation of 97 benthic metrics identified those with good range, responsiveness, and relative scope of impairment, as well as redundancies with other metrics. The final index was composed of Diptera taxa richness, EPT taxa richness, Coleoptera taxa richness, percent oligochaete and leech taxa, percent collector-filterer individuals, predator taxa richness, percent burrower taxa, tolerant taxa richness, and percent facultative individuals. Each of the selected metrics was scored using upper and lower thresholds based on all sites, and averaging across the nine metric scores, we obtained the Non-wadeable Macroinvertebrate Assemblage Condition Index (NMACI). The NMACI showed a strong response to disturbance using a validation data set and was highly correlated with non-metric multidimensional scaling (NMDS) ordination axes of benthic taxa. The cumulative distribution function of index scores for each river showed qualitative differences in condition among rivers. NMACI scores were highest for the federally protected St. Croix River and lowest for the Illinois River. Other rivers were intermediate and generally reflected the mixture of land use types within individual basins. Use of regional reference sites, though setting a high level of expectation, provides a valuable frame of reference for the potential of large river benthic communities that will aid management and restoration efforts.  相似文献   

7.
Naturally occurring stable isotope and trace elemental markers in otoliths have emerged as powerful tools for determining natal origins and environmental history of fishes in a variety of marine and freshwater environments. However, few studies have examined the applicability of this technique in large river-floodplain ecosystems. This study evaluated otolith microchemistry and stable isotopic composition as tools for determining environmental history of fishes in the Middle Mississippi River, its tributaries, and floodplain lakes in Illinois and Missouri, USA. Fishes were collected from 14 sites and water samples obtained from 16 sites during summer and fall 2006 and spring 2007. Otolith and water samples were analyzed for stable oxygen isotopic composition (δ18O) and concentrations of a suite of trace elements; otoliths were also analyzed for carbon isotopic composition (δ13C). Tributaries, floodplain lakes, and the Mississippi and Lower Missouri Rivers possessed distinct isotopic and elemental signatures that were reflected in fish otoliths. Fish from tributaries on the Missouri and Illinois sides of the middle Mississippi River could also be distinguished from one another by their elemental and isotopic fingerprints. Linear discriminant function analysis of otolith chemical signatures indicated that fish could be classified back to their environment of capture (Mississippi River, floodplain lake, tributary on the Illinois or Missouri side of the Mississippi River, or lower Missouri River) with 71–100% accuracy. This study demonstrates the potential applicability of otolith microchemistry and stable isotope analyses to determine natal origins and describe environmental history of fishes in the Middle Mississippi River, its tributaries, and floodplain lakes. The ability to reconstruct environmental history of individual fish using naturally occurring isotopic markers in otoliths may also facilitate efforts to quantify nutrient and energy subsidies to the Mississippi River provided by fishes that emigrate from floodplain lakes or tributaries.  相似文献   

8.
The annual loads of C,N,P, silicate, total suspended sediment (mass) and their yields (mass area?1) were estimated for six watersheds of the Mississippi River Basin (MRB) using water quality and water discharge records for 1973 to 1994. The highest load of suspended sediments is from the Missouri watershed (58 mt km2 yr?1), which is also the largest among the six major sub-basins. The Ohio watershed delivers the largest load of water (38%). The Upper Mississippi has the largest total nitrogen load (32%) and yield (1120 kg TN km2 yr?1). The loading of organic carbon, total phosphorus and silicate from the Upper Mississippi and Ohio watersheds are similar and relatively high (range 2.1–2.5, 0.068–0.076, and 0.8–1.1 mt km2 yr?1, respectively). The yields of suspended sediments, total phosphorus, total nitrogen, and silicate from the Lower Mississippi watershed are disproportionately the highest for its area, which is the smallest of all the watersheds and has the weakest monitoring network. The loading from the Red and Arkansas watersheds are of lesser importance than the others for most parameters investigated. The total nitrogen loading to coastal waters increased an additional 150% since the early 1900s, and is now dominated by loads from the Upper Mississippi watershed, rather than the previously dominant Ohio watershed. An analysis of trends for 1973–1994 suggests variability among years, rather than uni-directional change for most variables among 11 key stations. Explanatory relationships were established or confirmed to describe TN and TP loadings in terms of the now largely human-created landscape arising mostly over the last 150 years.  相似文献   

9.
The different drainage basins of large rivers such as the Mississippi River represent interesting systems in which to study patterns in freshwater microbial biogeography. Spatial variability in bacterioplankton communities in six major rivers (the Upper Mississippi, Missouri, Illinois, Ohio, Tennessee, and Arkansas) of the Mississippi River Basin was characterized using Ion Torrent 16S rRNA amplicon sequencing. When all systems were combined, particle-associated (>3 μm) bacterial assemblages were found to be different from free-living bacterioplankton in terms of overall community structure, partly because of differences in the proportional abundance of sequences affiliated with major bacterial lineages (Alphaproteobacteria, Cyanobacteria, and Planctomycetes). Both particle-associated and free-living communities ordinated by river system, a pattern that was apparent even after rare sequences or those affiliated with Cyanobacteria were removed from the analyses. Ordination of samples by river system correlated with environmental characteristics of each river, such as nutrient status and turbidity. Communities in the Upper Mississippi and the Missouri and in the Ohio and the Tennessee, pairs of rivers that join each other, contained similar taxa in terms of presence-absence data but differed in the proportional abundance of major lineages. The most common sequence types detected in particle-associated communities were picocyanobacteria in the Synechococcus/Prochlorococcus/Cyanobium (Syn/Pro) clade, while free-living communities also contained a high proportion of LD12 (SAR11/Pelagibacter)-like Alphaproteobacteria. This research shows that while different tributaries of large river systems such as the Mississippi River harbor distinct bacterioplankton communities, there is also microhabitat variation such as that between free-living and particle-associated assemblages.  相似文献   

10.
Sturgeon specimens encountered in the wild that exhibit visible signs of gross physical trauma often look to the naked eye to be in otherwise good condition. Visible morphological anomalies were observed in 9.1% of 176 pallid (Scaphirhynchus albus) and 4.6% of 4904 shovelnose (Scaphirhynchus platorynchus) sturgeon specimens captured in the Middle (mouth of Missouri River to mouth of Ohio River) and Lower (below mouth of Ohio River) Mississippi River from 1997 to 2004. Frequencies among the types of anomalies differed between the lower and middle river reaches. In the lower river, deformities from foreign objects (typically rubber bands) comprised almost one‐third of anomalies observed and may have contributed to other types of anterior injury which, if combined, would comprise the majority of lower river anomalies. In the middle river, nearly half of the observed anomalies involved damage to the caudal peduncle, usually a missing tail. Power regressions from length–weight relationships were compared for anomalous and non‐anomalous specimens and demonstrated no significant disparity, verifying the resiliency of river sturgeons.  相似文献   

11.
Pallid sturgeon (Scaphirhynchus albus) captured in the Middle and Lower Mississippi River (i.e. below St. Louis, MO, USA) are morphologically very similar to shovelnose sturgeon (Scaphirhynchus platorynchus). Available empirical data are limited to a few studies based on low sample sizes from disjointed populations. Geneticists are currently searching for markers that will differentiate the two species, but the need for unequivocal species‐specific field characters remains. Continuation of commercial fishing for shovelnose sturgeon in some states necessitates an immediate means for accurate field identifications. Previous studies of lower basin river sturgeon classified individuals with simple morphometric character indices and interpreted intermediacy as interspecific hybridization. In this study, morphometric variation among Scaphirhynchus specimens from the Middle and Lower Mississippi River is examined for evidence of hybridization. Data are compared for large (>250‐mm standard length) hatchery‐reared and wild pallid specimens and wild shovelnose specimens. Specimens are compared using two morphometric character indices, two morphometric/meristic character indices and principal components analysis. Results indicate substantial morphological variation among pallid sturgeon below the mouth of the Missouri River. The amount of variation appears to decrease downstream in the Mississippi River. Sheared principal components analysis of morphometric data shows complete separation of shovelnose and pallid sturgeon specimens, whereas character indices indicate overlap. Both character indices and sheared principal components analysis demonstrate that pallid sturgeon in the Lower Mississippi River are morphologically more similar to shovelnose sturgeon than are pallids from the Upper Missouri River. This similarity, explained in previous studies as hybridization, may be the result of latitudinal morphometric variation and length‐at‐age differences between populations of the upper and lower extremes of the range.  相似文献   

12.
We developed a preliminary fish-based multimetric index (MMI) to assess biotic condition of Atlantic Rain Forest streams in Southeastern Brazil. We used least-disturbed sites as proxies of reference conditions for metric development. To determine the disturbance gradient we used an Integrated Disturbance Index (IDI) that summarized the multiple disturbances measured at local/regional catchment scales in a single index, describing the totality of exposure of the streams to human pressures. For our 48 sites, nine were least-disturbed (IDI < 0.25), five were most-disturbed (IDI > 1.35) and 34 were intermediate. Initially, we considered 41 candidate metrics selected primarily from previous studies. We screened this pool of candidate metrics using a series of tests: range test, signal-to-noise test, correlation with natural gradients, responsiveness test, and redundancy test. After screening, we selected six metrics for the MMI: % Characiform individuals, % water column native individuals, % benthic invertivorous individuals, % tolerant species, % intolerant species, and % detritivorous individuals. Metrics such as diversity, dominance, species richness and biomass that have been historically used for assessing ecosystem condition failed one or more screening tests. We conclude that an IDI and rigorous metric screening are critical to the MMI development process and for meaningful assessments of stream condition.  相似文献   

13.
Over 70% of North American freshwater mussel species (families Unionidae and Margaritiferidae) are listed as threatened or endangered. Knowledge of the genetic structure of target species is essential for the development of effective conservation plans. Because Ambelma plicata is a common species, its population genetic structure is likely to be relatively intact, making it a logical model species for investigations of freshwater mussel population genetics. Using mtDNA and allozymes, we determined the genotypes of 170+ individuals in each of three distinct drainages: Lake Erie, Ohio River, and the Lower Mississippi River. Overall, within-population variation increased significantly from north to south, with unique haplotypes and allele frequencies in the Kiamichi River (Lower Mississippi River drainage). Genetic diversity was relatively low in the Strawberry River (Lower Mississippi River drainage), and in the Lake Erie drainage. We calculated significant among-population structure using both molecular markers (A.p. Φst = 0.15, θst = 0.12). Using a hierarchical approach, we found low genetic structure among rivers and drainages separated by large geographic distances, indicating high effective population size and/or highly vagile fish hosts for this species. Genetic structure in the Lake Erie drainage was similar to that in the Ohio River, and indicates that northern populations were founded from at least two glacial refugia following the Pleistocene. Conservation of genetic diversity in Amblema plicata and other mussel species with similar genetic structure should focus on protection of a number of individual populations, especially those in southern rivers.  相似文献   

14.
1. In situ exclosure experiments in the Mississippi and Ohio Rivers determined the importance of fish predation in regulating zebra mussels (Dreissena polymorpha), an increasingly important constituent of the benthic invertebrate assemblages in both rivers. 2. We evaluated the effects of predatory fish on the density, biomass and size distribution of zebra mussels in a floodplain reach of the upper Mississippi River and in a naturally constrained reach of the Ohio River. Fifty, six-sided, predator-exclusion cages and fifty ‘partial’ cages (mesh at the upstream end only) were deployed, with half the cages containing willow snags and half clay tiles suspended 12–16 cm above the bottom. A single snag or tile sample unit was removed from each cage at approximately monthly intervals from July to October 1994. Types and relative abundances of molluscivorous fish were evaluated by electrofishing near the cages in both rivers. Actual and potential recruitment of young zebra mussels on to the substrata were measured using benthic samples in both rivers and estimated (Ohio River only) from counts of planktonic veligers. 3. Zebra mussels were consumed by at least three fish species in the upper Mississippi River (mostly carp, Cyprinus carpio, and redhorse suckers, Moxostoma sp.) and five species in the Ohio River (primarily smallmouth buffalo, Ictiobus bubalus, and channel catfish, Ictalurus punctatus), but potential recruitment seemed adequate to replace consumed mussels, at least in the Ohio River. The number of juvenile benthic mussels showed no apparent link with the density of veligers soon after initiation of reproduction. Recruitment of juveniles on snags and tiles was not affected by cage type (thus eliminating a potentially confounding ‘cage effect’). 4. Fish significantly influenced mussel populations, but the impact was often greatest among low density populations in the upper Mississippi. Density and biomass differed in both rivers for cage type (higher inside cages), substratum (greater on tiles), and date (increased over time). Presumed size-selective predation was present in the Mississippi (greater on larger size classes) but was not evident in the Ohio. We hypothesize that fish in the Mississippi can more easily select larger prey from the low density populations; whereas size-selective predation on tightly packed zebra mussels in the Ohio would be difficult. 5. Although fish can reduce numbers of Dreissena polymorpha in the two rivers, current levels of fish predation seem insufficient to regulate zebra mussel densities because of its great reproductive capacity. The recent invasion of zebra mussels, however, could lead to larger fish populations while promoting greater carbon retention and overall ecosystem secondary production.  相似文献   

15.
Lake sturgeon Acipenser fulvescens are considered rare and were nearly extirpated in the Mississippi River in Missouri by 1931 as a result of overfishing and habitat fragmentation. Propagation efforts have been implemented by the Missouri Department of Conservation since 1984 as means to restore the lake sturgeon population. Although recent population increases have been observed, a formalized evaluation to determine if lake sturgeon are self‐sustaining in the Missouri portion of the Mississippi River has not been completed. Therefore, the objectives of this study were to: (i) determine the proportion of reproductive individuals, (ii) evaluate seasonal movement patterns of adults, and (iii) validate purported spawning locations within the Mississippi River in Missouri. Lake sturgeon catch data indicated that approximately 11 percent of the population are reproductively mature. Additionally, telemetry data confirms that the greatest movement by adult lake sturgeon occurs during spring, which suggests spawning behavior. Finally, it was possible to document lake sturgeon embryos and emergent fry larvae below Melvin Price Locks and Dam 26 in the Upper Mississippi River near St. Louis, Missouri. Water velocity, depth, and substrate size were measured at this location and embryos were collected and hatched in the laboratory. River gage data suggest that spawning behavior may have been elicited by a large influx of water during a drawdown period of water above the dam. This study represents the first documented spawning of A. fulvescens in the Mississippi River and highlights the success of recovery efforts in Missouri.  相似文献   

16.
We compared the responsiveness of macroinvertebrate assemblages to variation in water quality (ions, nutrients, dissolved metals, and suspended sediment) in two mesohabitats within the main channel of three North American great rivers, the Upper Mississippi, Missouri, and Ohio. Based on about 400 paired samples, we examined the responsiveness of benthic assemblages sampled in the littoral zone and assemblages sampled from the surface of woody snags in the main channel. The assemblages in the two mesohabitats were different in all rivers. Taxa richness was much higher in the benthos than on snags. Macroinvertebrate assemblage response to water quality variation was weak on the Mississippi River, but the reasons for this are unknown. Based on analysis of the similarity between the composition of assemblages from groups of sites with high and low concentrations of water quality variables, benthic assemblages were only slightly more sensitive to water chemistry variation than were snag assemblages. Results of two-sample comparisons between groups of sites with high and low concentrations of water quality variables were consistent with rank correlations of assemblage metrics with water quality. In general, there was little difference between habitats in response to variation in water quality on any river. Our simple method of snag sampling in great rivers is usually much easier than littoral benthic sampling because it does not require wading. Snag sampling in large rivers has some limitations (e.g., natural snags are sometimes absent, samples are semi-quantitative), but lack of sensitivity to water quality gradients compared to the benthos is not among them.  相似文献   

17.
The annual growth of hypoxia in the Gulf of Mexico is largely attributed to agricultural nutrient loadings that originate from the Mississippi/Atchafalaya River Basin (MARB). To effectively target conservation efforts throughout the entire MARB in order to reduce Gulf hypoxia, strategies to rank areas according to their impact on both agricultural production and ecosystem services are extremely important. In this paper, we utilize an Environmental Performance Index (EPI) to rank regions within the MARB according to their environmental performance, that is, their ability to produce agricultural outputs while minimizing nutrient loadings to the Gulf of Mexico. We compare our index rankings to previously used rankings of delivered yields alone and find the spatial distribution of rankings changes considerably when accounting for agricultural productivity. For example, the Corn Belt regions of central Iowa and northern Illinois no longer make up the lowest performing regions of the MARB after accounting for their high levels of agricultural production. Instead, regions along the Missouri river including central Missouri, western Iowa, and southeastern South Dakota as well as areas near the Ohio river including southern Illinois, western Kentucky, and southern Ohio now count among the lowest performing regions using the EPI ranking scheme. We suggest that incorporation of economic production value into large-scale prioritization of agricultural conservation within the MARB is essential to effectively reduce Gulf hypoxia while maintaining food security from efficient farm production.  相似文献   

18.
Age and growth of pallid sturgeon in the free-flowing Mississippi River   总被引:1,自引:1,他引:0  
Trotlines were used to capture pallid sturgeon in the free‐flowing Mississippi River, which extends from the Gulf of Mexico to the mouth of the Missouri River. Trotlines were baited with worms, and set overnight usually along the channel border. The pectoral fin rays of 165 pallid sturgeon caught in the Mississippi River were aged; 118 were from the lower Mississippi River (LMR) between the Gulf and mouth of the Ohio River, and 47 were from the middle Mississippi River (MMR) between the mouths of the Ohio and Missouri rivers. Initial agreement within ±1 year between two readers ranged from 53% for the LMR specimens, which were read first, to 84% for the MMR. Final age was agreed upon by both readers. For LMR pallid sturgeon, final age estimates ranged from 3 to 21 years with a mean (±SD) of 11.0 ± 4.7. For MMR pallid sturgeon, final age estimates ranged from 5 to 14 years with a mean of 9.5 ± 2.1. Seven pallid sturgeon marked with coded wire tags (CWT), indicating hatchery origin, were collected in the MMR. Age estimates for CWT fish were 7–8 years representing 1997 stocked fish, and 11–12 years representing 1992 progeny stocked in 1994. Von Bertalanffy growth equations for length indicated that pallid sturgeon in the MMR had higher growth rates for a given age than pallid sturgeon in the LMR. However, there were no significant differences (anova , P > 0.5) in the length–weight relationships between reaches. In the LMR, pallid sturgeon fully recruited to trotlines at age 11 and instantaneous total mortality (Z; slope of catch curve) was estimated at −0.12 (n = 10 year classes, r2 = 0.55, P = 0.01). Of the 118 sectioned rays from the LMR, 28 could not be reliably aged (only one section from the MMR could not be aged). Therefore, age was predicted from length using the von Bertalanffy equation. The catch curve was re‐calculated using the predicted ages of the 28 pallid sturgeon in the LMR resulting in Z = −0.07. In the MMR, pallid sturgeon fully recruited to trotlines at age 9 and Z was estimated at −0.36 (n = 6 year classes, r2 = 0.67, P = 0.04), which was significantly higher (anova , P = 0.04) than the LMR estimate. Higher mortality in the MMR may be due to habitat limitations compared to a larger, more diverse channel in the LMR, and incidental take of larger, older individuals during commercial harvesting of shovelnose sturgeon. Commercial take of shovelnose does not occur in the LMR except in the northern portion of the reach. Considering the presence of pallid sturgeon with CWT, recruitment of older individuals in the MMR may have been influenced by stocking a decade earlier. Management strategies for this endangered species should consider the differences in mortality rates among reaches, the impacts of commercial fishing on recovery of pallid sturgeon in the MMR, and the long‐term effects of hatchery fish now recruiting into the free‐flowing Mississippi River.  相似文献   

19.
The blue sucker, Cycleptus elongatus, is a large catostomid fish that occurs in main stem rivers throughout the Mississippi basin of North America. Although not federally listed as threatened or endangered, populations are not considered stable in any of 21 states where they occur. Included in the range is the Missouri River, which flows more than 3,200 km from Montana to St. Louis, Missouri. Historically, C. elongatus was distributed continuously throughout the main stem Missouri and its major tributaries, but from 1952 to 1963, six major impoundments were constructed on the upper Missouri by the US Army Corps of Engineers. The resulting reservoirs have inundated and fragmented large riverine habitat from Yankton, South Dakota to the headwaters. C. elongatus still occurs in remnant stretches between reservoirs; however, little is known of the impacts of the dams on these populations. In order to test for such effects, 231 individuals from nine sites were genotyped at 14 variable microsatellite loci. An additional 142 individuals from six sites in the Mississippi River were also genotyped for comparative purposes. In the Missouri, allelic richness was reduced in inter-reservoir sites relative to those in the free flowing lower river. In addition, significant isolation by distance occurs in the Missouri, a pattern not present in the unimpounded Mississippi. These results are consistent with reduced intradrainage gene flow in the Missouri River and are the first to indicate effects of impoundments on genetic structure in the system. This information will assist governing agencies in making informed decisions regarding conservation of C. elongatus in the Missouri River drainage and throughout the range.  相似文献   

20.
Large rivers are amongst the most degraded ecosystems. We studied a relationship between hydromorphological degradation and benthic invertebrates in large rivers in Slovenia. Five indices of the Slovenian hydromorphological assessment methodology were used to develop a HM stressor gradient. Natural type-specific habitat diversity was considered in the hydromorphological stressor gradient building and thus two hydromorphological types of large rivers were defined. CCA ordination with five HM indices and 315 benthic invertebrate taxa revealed variations in taxa response along the HM stressor gradient. First CCA axis species values were used to develop a taxon-specific river fauna value (Rfi), whereas tolerance values (biplot scaling) were used to determine a hydromorphological indicative weight (HWi). Rfi, HWi, and log5 abundance classes were combined using weighted average approach to construct a River fauna index for large rivers (RFIVR). Several additional benthic invertebrate-based metrics were also tested against the HQM. A Slovenian multimetric index for assessing the hydromorphological impact on benthic invertebrates in large rivers (SMEIHVR) was constructed from the RFIVR and a functional metric %akal + lithal + psammal taxa (scored taxa = 100%). The strong relationship between hydromorphological stressor gradient and SMEIHVR index provides us with an effective assessment system and river management tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号