首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2010,45(8):1334-1341
A high cell density cultivation protocol was developed for the secretory production of potato carboxypeptidase inhibitor (PCI) in Escherichia coli. The strain BW25113 (pIMAM3) was cultured in fed-batch mode employing minimal media and an exponential feed profile where the specific growth rate was fixed by limitation of the fed carbon source (glycerol). Plasmid loss rates were found to be proportional to the specific growth rate. Distribution of PCI along the cell compartments and the culture media was also dependent on the fixed growth rate. When specific growth rate was kept at μ = 0.10 h−1, 1.4 g PCI L−1 were obtained when adding the product present in periplasmic extracts and supernatant fractions, with a 50% of the total expressed protein recovered from the extracellular medium. This constituted a 1.2-fold increase compared to growth at μ = 0.15 h−1, and 2.0-fold compared to μ = 0.25 h−1. Last, a cell permeabilization treatment with Triton X-100 and glycine was employed to direct most of the product to the culture media, achieving over 81% of extracellular PCI. Overall, our results point out that production yields of secretory proteins in fed-batch cultures of E. coli can be improved by means of process variables, with applications to the production of small disulfide-bridged proteins. Overall, our results point out that control of the specific growth rate is a successful strategy to improve the production yields of secretory expression in fed-batch cultures of E. coli, with applications to the production of small disulfide-bridged proteins.  相似文献   

2.
The coupled system of partial nitrification and anaerobic ammonium oxidation (Anammox) is efficient in nitrogen removal from wastewater. In this study, the effect of different oxygen concentrations on partial nitrification performance with a sequencing batch reactor (SBR) was investigated. Results indicate that, partial nitrification of landfill leachate could be successfully achieved under the 1.0–2.0 mg L−1 dissolved oxygen (DO) condition after 118 d long-term operation, and that the effluent is suitable for an Anammox reactor. Further decreasing or increasing the DO concentration, however, would lead to a decay of nitrification performance. Additionally, the MLSS concentration in the reactor increased with increasing DO concentration. Respirometric assays suggest that low DO conditions (<2 mg L−1) favor the ammonia-oxidizing bacteria (AOB) and significantly inhibit nitrite oxidizing bacteria (NOB) and aerobic heterotrophic bacteria (AHB); whereas high DO conditions (>3 mg L−1) allow AHB to dominate and significantly inhibit AOB. Therefore, the optimal condition for partial nitrification of landfill leachate is 1.0–2.0 mg L−1 DO concentration.  相似文献   

3.
S-licarbazepine was synthesized by asymmetric reduction of oxcarbazepine with CGMCC No. 2266. The optimum batch reduction conditions were found to consist of a reaction time of 36 h, temperature of 30 °C, and initial pH value of 7.0. The optimum concentration of the glucose co-substrate was found to be 0.3 mol L−1. The addition of glucose contributed to in situ regeneration of NADPH in cells and improved conversion. Conversion increased with the addition of more biomass and with a decrease in the initial concentration of substrate. Within the membrane reactor, a continuous reduction process was used to improve production efficiency and reduce the inhibition of high-concentration substrate upon reduction. The optimum flux was found to be 20 ml h−1. S-licarbazepine yield was 3.7678 mmol L−1 d−1 in continuous reduction over four days. The enantiometric excess of S-licarbazepine was 100% for both batch and continuous reduction processes.  相似文献   

4.
Extracellular lipase of the yeast Candida rugosa was produced via high cell density fed-batch fermentations using palm oil as the sole source of carbon and energy. Feeding strategies consisted of a pH-stat operation, foaming-dependent control and specific growth rate control in different experiments. Compared to foaming-dependent feeding and the pH-stat operation, the specific growth rate control of feeding proved to be the most successful. At the specific growth rate control set at 0.05 h−1, the final lipase activity in the culture broth was the highest at ∼700 U L−1. This was 2.6-fold higher than the final enzyme activity obtained at a specific growth rate control set at 0.15 h−1. The peak enzyme concentration achieved using the best foaming-dependent control of feeding was around 28% of the peak activity attained using the specific growth rate control of feeding at 0.05 h−1. Similarly, the peak enzyme concentration attained using the pH-stat feeding operation was a mere 9% of the peak activity attained by specific growth rate control of feeding at a set-point of 0.05 h−1. Fed-batch fermentations were performed in a 2 L stirred-tank bioreactor (30 °C, pH 7) with the dissolved oxygen level controlled at 30% of air saturation.  相似文献   

5.
We examined glucose 6-phosphate dehydrogenase (G6PD) production by fed-batch cultivation, using a recombinant strain of Saccharomyces cerevisiae W303-181 overexpressing this enzyme. The cultivations were carried out in a 3 L fermenter at pH 5.7, 30 °C, 2.0 vvm aeration, 200 rpm agitation and an inoculum concentration of 1.0 g/L. The volume of the culture medium in the fed-batch process varied from 1.333 to 2.0 L, due to the addition of 15.0 g/L glucose solution during 5 h. Different feeding rates were studied (exponentially increasing and decreasing feeding rates), and the feeding profile was determined by values of the parameter K (time constant), namely: 0.2, 0.5 and 0.8 h−1. The best enzyme production (847 U/L) was obtained with an exponentially increasing feeding rate and K = 0.2 h−1. The results attained also showed that this process is promising for G6PD production.  相似文献   

6.
Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L−1, respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L−1 concomitant with kefiran production of 1.91 g L−1.  相似文献   

7.
《Process Biochemistry》2007,42(1):112-117
A simple fed-batch process was developed using a modified variable specific growth rate feeding strategy for high cell density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-gamma (hIFN-γ). The feeding rate was adjusted to achieve the maximum attainable specific growth rate during fed-batch cultivation. In this method, specific growth rate was changed from a maximum value of 0.55 h−1 at the beginning of feeding and then it was reduced to 0.4 h−1 at induction time.The final concentration of biomass and IFN-γ was reached to ∼115 g l−1 (DCW) and 42.5 g(hIFN-γ) l−1 after 16.5 h, also the final specific yield and overall productivity of recombinant hIFN-γ (rhIFN-γ) were obtained 0.37 g(hIFN-γ) g−1 DCW and 2.57 g(hIFN-γ) l−1 h−1, respectively. According to available data this is the highest specific yield and productivity that has been reported for recombinant proteins production yet.  相似文献   

8.
A mixed fermentation strategy based on exponentially fed-batch cultures (EFBC) and nutrient pulses with sucrose and yeast extract was developed to achieve a high concentration of PHB by Azotobacter vinelandii OPNA, which carries a mutation on the regulatory systems PTSNtr and RsmA-RsmZ/Y, that negatively regulate the synthesis of PHB. Culture of the OPNA strain in shake flaks containing PY-sucrose medium significantly improved growth and PHB production with respect to the results obtained from the cultures with the parental strain (OP). When the OPNA strain was cultured in a batch fermentation keeping constant the DOT at 4%, the maximal growth rate (0.16 h−1) and PHB yield (0.30 gPHB gSuc−1) were reached. Later, in EFBC, the OPNA strain increased three fold the biomass and 2.2 fold the PHB concentration in relation to the values obtained from the batch cultures. Finally, using a strategy of exponential feeding coupled with nutrient pulses (with sucrose and yeast extract) the production of PHB increased 7-fold to reach a maximal PHB concentration of 27.3 ± 3.2 g L−1 at 60 h of fermentation. Overall, the use of the mutant of A. vinelandii OPNA, impaired in the PHB regulatory systems, in combination with a mixed fermentation strategy could be a feasible strategy to optimize the PHB production at industrial level.  相似文献   

9.
The aim of this study was to develop a bioprocess for l- and d-lactic acid production from raw sweet potato through simultaneous saccharification and fermentation by Lactobacillus paracasei and Lactobacillus coryniformis, respectively. The effects of enzyme and nitrogen source concentrations as well as of the ratio of raw material to medium were investigated. At dried material concentrations of 136.36–219.51 g L−1, yields of 90.13–91.17% (w/w) and productivities of 3.41–3.83 g L−1 h−1 were obtained with lactic acid concentrations as high as 198.32 g L−1 for l-lactic acid production. In addition, d-lactic acid was produced with yields of 90.11–84.92% (w/w) and productivities of 2.55–3.11 g L−1 h−1 with a maximum concentration of 186.40 g L−1 at the same concentrations of dried material. The simple and efficient process described in this study will benefit the tuber and root-based lactic acid industries without requiring alterations in plant equipment.  相似文献   

10.
With the aim to produce cellulases and to study the effect of mechanical agitation, a 35 L draft-tube airlift bioreactor equipped with a mechanical impeller was developed and validated to grow Trichoderma reesei RUT-C30 in a cellulose culture medium with lactose and lactobionic acid as fed batch. Cultures carried out without mechanical agitation resulted in higher volumetric enzyme productivity (200 U L−1 h−1), filter paper activity (17 U mL−1), carboxymethyl cellulase activity (11.8 U mL−1) and soluble proteins (3.2 mg mL−1) when compared to those with agitation. Stereo and polarized light microscopy analyses reveal that mechanical agitation resulted in shorter mycelial hyphae and larger numbers of tips.  相似文献   

11.
Lacto-N-tetraose (Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc) is one of the most abundant oligosaccharide structures in human milk. We recently described the synthesis of lacto-N-tetraose by a whole-cell biotransformation with recombinant Escherichia coli cells. However, only about 5% of the lactose was converted into lacto-N-tetraose by this approach. The major product obtained was the intermediate lacto-N-triose II (GlcNAc(β1-3)Gal(β1-4)Glc).In order to improve the bioconversion of lactose to lacto-N-tetraose, we have investigated the influence of the carbon source on the formation of lacto-N-tetraose and on the intracellular availability of the glycosyltransferase substrates, UDP-N-acetylglucosamine and UDP-galactose. By growth of the recombinant E. coli cells on D-galactose, the yield of lacto-N-tetraose (810.8 mg L−1 culture) was 3.6-times higher compared to cultivation on D-glucose.Using fed-batch cultivation with galactose as sole energy and carbon source, a large-scale synthesis of lacto-N-tetraose was demonstrated. During the 26 h feeding phase the growth rate (μ = 0.05) was maintained by an exponential galactose feed. In total, 16 g L−1 lactose were fed and resulted in final yields of 12.72 ± 0.21 g L−1 lacto-N-tetraose and 13.70 ± 0.10 g L−1 lacto-N-triose II. In total, 173 g of lacto-N-tetraose were produced with a space-time yield of 0.37 g L−1 h−1.  相似文献   

12.
A study was conducted on H2S removal in a biotrickling filter packed with open-pore polyurethane foam. Thiobacillus denitrificans was used as inoculum and a mixed culture population was developed during the process. The inhibitory effect of sulphate concentration (1.8–16.8 g L−1), pH (6.9–8.6), trickling liquid velocity (TLV, 9.1–22.8 m h−1), H2S inlet concentration (20–157 ppmv) and the empty bed residence time (EBRT, 9–57 s) on the H2S removal efficiency (RE) were thoroughly investigated. An increase in pH from 6.9 to 8.5 led to a corresponding increase in H2S removal. In addition, an inhibitory effect of sulphate concentration was observed from 16.8 g L−1 and the maximum elimination capacity was found to be 22 gS m−3 h−1 (RE 98%). The RE was constant (98.8 ± 0.30%) for EBRT  16 s, but a decrease in the EBRT from 16 to 9 s led to a corresponding decrease in RE from 98.2 to 89.6% for a TLV of 9.1 m h−1 and from 97.9 to 94.9% for a TLV of 22.8 m h−1 (inlet load of 11.0 ± 0.2 gS m−3 h−1). The sulphur oxidation capacity in the biotrickling filter was not diminished by the presence of other bacteria.  相似文献   

13.
A thermo-alkaline pectate lyase (BliPelA) gene from an alkaliphilic Bacillus licheniformis strain was cloned and overexpressed in Escherichia coli. Mature BliPelA exhibited maximum activity at pH 11 and 70 °C, and demonstrated cleavage capability on a broad range of substrates such as polygalacturonic acid, pectins, and methylated pectins. The highest specific activity, of 320 U mg−1, was towards polygalacturonic acid. Significant ramie (Boehmeria nivea) fiber weight loss (21.5%) was obtained following enzyme treatment and combined enzyme-chemical treatment (29.3%), indicating a high ramie degumming efficiency of BliPelA. The total activity of recombinant BliPelA reached 1450.1 U ml−1 with a productivity of 48.3 U ml−1 h−1 under high-cell-density cultivation with a glycerol exponential feeding strategy for 30 h in 1-l fed-batch fermenter, and 1380.1 U ml−1 with a productivity of 57.5 U ml−1 h−1 after 24 h under constant glucose feeding in a 20-l fermenter using E. coli as the host. The enzyme yields reached 4.5 and 4.3 g l−1 in 1-l and 20-l fed-batch fermenters, respectively, which are higher than those of most reported alkaline Pels. Based on these promising properties and high-level production, BliPelA shows great potential for application in ramie degumming in textile industry.  相似文献   

14.
Recently, a bubbleless membrane bioreactor (BMBR) has been successfully developed for biosurfactant production by Bacillus subtilis [1]. In this study, for the first time, continuous culture were carried out for the production of surfactin in a BMBR, both with or without a coupled microfiltration membrane. Results from continuous culture showed that a significant part of biomass was immobilized onto the air/liquid membrane contactor. Immobilized biomass activity onto the air/liquid membrane contactor was monitored using a respirometric analysis. Kinetics of growth, surfactin and primary metabolites production were investigated. Planktonic biomass, immobilized biomass and surfactin production and productivity obtained in batch culture (3 L) of 1.5 days of culture were 4.5 g DW, 1.3 g DW, 1.8 g and 17.4 mg L?1 h?1, respectively. In continuous culture without total cell recycling (TCR), the planktonic biomass was leached, but immobilized biomass reached a steady state at an estimated 6.6 g DW. 11.5 g of surfactin was produced after 3 days of culture, this gave an average surfactin productivity of 54.7 mg L?1 h?1 for the continuous culture, which presented a surfactin productivity of 30 mg L?1 h?1 at the steady state. TCR was then investigated for the continuous production, extraction and purification of surfactin using a coupled ultrafiltration step. In continuous culture with TCR at a dilution rate of 0.1 h?1, planktonic biomass, immobilized biomass, surfactin production and productivity reached 7.5 g DW, 5.5 g DW, 7.1 g and 41.6 mg L?1 h?1 respectively, after 2 days of culture. After this time, biomass and surfactin productions stopped. Increasing dilution rate to 0.2 h?1 led to the resumption of biomass and surfactin production and these values reached 11.1 g DW, 10.5 g DW, 7.9 g and 110.1 mg L?1 h?1, respectively, after 3 days of culture. This study has therefore shown that with this new integrated bioprocess, it was possible to continuously extract and purify several grams of biosurfactant, with purity up to 95%.  相似文献   

15.
《Process Biochemistry》2007,42(2):279-284
Cell immobilization techniques were adopted to biohydrogen production using immobilized anaerobic sludge as the seed culture. Sucrose-based synthetic wastewater was converted to H2 using batch and continuous cultures. A novel composite polymeric material comprising polymethyl methacrylate (PMMA), collagen, and activated carbon was used to entrap biomass for H2 production. Using the PMMA immobilized cells, the favorable conditions for batch H2 fermentation were 35 °C, pH 6.0, and an 20 g COD l−1 of sucrose, giving a H2 production rate of 238 ml h−1 l−1 and a H2 yield of 2.25 mol H2 mol sucrose−1. Under these optimal conditions, continuous H2 fermentation was conducted at a hydraulic retention time (HRT) of 4–8 h, giving the best H2-producing rate of 1.8 l h−1 l−1 (over seven-fold of the best batch result) at a HRT of 6 h and a H2 yield of 2.0 mol H2 mol sucrose−1. The sucrose conversion was essentially over 90% in all runs. The biogas consisted of only H2 and CO2. The major soluble metabolites were butyric acid, acetic acid, and 2,3-butandiol, while a small amount of ethanol also detected. The PMMA-immobilized-cell system developed in this work seems to be a promising H2-producing process due to the high stability in continuous operations and the capability of achieving a competitively high H2 production rate under a relatively low organic loading rate.  相似文献   

16.
The exponential substrate feeding (open-loop) and automated feedback substrate feeding (closed loop) strategies were developed to obtain high cell densities of fluorescent pseudomonad strains R62 and R81 and enhanced production of antifungal compound 2,4-diacetylphloroglucinol (DAPG) from glycerol as a sole carbon source. The exponential feeding strategy resulted in increased glycerol accumulation during the fed-batch cultivation when the predetermined specific growth rate (μ) was set at 0.10 or 0.20 h?1 (<μm = 0.29 h?1). Automated feeding strategies using dissolved oxygen (DO) or pH as feedback signals resulted in minimal to zero accumulation of glycerol for both the strains. In case of DO-based feeding strategy, biomass productivity of 0.24 g/(L h) and 0.29 g/(L h) was obtained for R62 and R81, respectively. Using pH-based feeding strategy, biomass productivity could be increased to a maximum of 0.51 and 0.54 g/(L h), for the strains R62 and R81, respectively, whereas the DAPG concentration was enhanced to 298 mg/L for R62 and 342 mg/L for R81 strains. These yields of DAPG are thus far the highest reported from GRAS organisms.  相似文献   

17.
α-Glucuronidase (EC 3.2.1.139) of family GH 115 from Scheffersomyces stipitis is a valuable enzyme for the modification of water-soluble xylan into insoluble biopolymers, due to its unique ability to act on polymeric xylans. The influence of growth rate on the production of α-glucuronidase by recombinant Saccharomyces cerevisiae MH1000pbk10D-glu in glucose-limited fed-batch culture was studied at 14 and 100 L scale. At and below the critical specific growth rate (μcrit) of 0.12 h−1 at 14 L scale, the biomass yield coefficient (Yx/s) remained constant at 0.4 g g−1 with no ethanol production, whereas ethanol yields relative to biomass (keth/x) of up to 0.54 g g−1 and a steady decrease in Yx/s were observed at μ > 0.12 h−1. Production of α-glucuronidase was growth associated at a product yield (kα-glu/x) of 0.45 mg g−1, with the highest biomass (37.35 g/L) and α-glucuronidase (14.03 mg/L) concentrations, were recorded during fed-batch culture at or near to μcrit. Scale-up with constant kLa from 14 to 100 L resulted in ethanol concentrations of up to 2.5 g/L at μ = 0.12 h−1. At this scale, α-glucuronidase yield could be maximised at growth rates below μcrit, to prevent localised high glucose concentration pockets at the feed entry zone that would induce oxido-reductive metabolism. This is the first report where recombinant production of α-glucuronidase (EC 3.2.1.139) by S. cerevisiae was optimised for application at pilot scale.  相似文献   

18.
Chlorella vulgaris was cultivated in two different 2.0 L-helicoidal and horizontal photobioreactors at 5 klux using the bicarbonate contained in the medium and ambient air as the main CO2 sources. The influence of bicarbonate concentration on biomass growth as well as lipid content and profile was first investigated in shake flasks, where the stationary phase was achieved in about one half the time required by the control. The best NaHCO3 concentration (0.2 g L−1) was then used in both photobioreactors. While the fed-batch run performed in the helicoidal photobioreactor provided the best result in terms of biomass productivity, which was (84.8 mg L−1 d−1) about 2.5-fold that of the batch run, the horizontal configuration ensured the highest lipid productivity (10.3 mg L−1 d−1) because of a higher lipid content of biomass (22.8%). These preliminary results suggest that the photobioreactor configuration is a key factor either for the growth or the composition of this microalga. The lipid quality of C. vulgaris biomass grown in both photobioreactors is expected to meet the standards for biodiesel, especially in the case of the helicoidal configuration, provided that further efforts will be made to optimize the conditions for its production as a biodiesel source.  相似文献   

19.
The entomogenous fungus Cordyceps taii, a traditional Chinese medicinal mushroom, exhibits potent important pharmacological effects and it has great potential for health foods and medicine. In this work, the effects of oxygen supply on production of biomass and bioactive helvolic acid were studied in shake-flask fermentation of C. taii mycelia. The value of initial volumetric oxygen transfer coefficient (KLa) within 10.1–33.8 h−1 affected the cell growth, helvolic acid production and expression levels of biosynthetic genes. The highest cell concentration of 17.2 g/L was obtained at 14.3 h−1 of initial KLa. The highest helvolic acid production was 9.6 mg/L at 10.1 h−1 of initial KLa. The expression levels of three genes encoding hydroxymethylglutaryl-CoA synthase, hydroxymethylglutaryl-CoA reductase and squalene synthase were down-regulated on day 2 and day 8 but up-regulated on day 14 at an initial KLa value of 10.1 h−1 vs. 33.8 h−1, which well corresponded to the helvolic acid biosynthesis in those conditions. The information obtained would be helpful for improving the biomass and helvolic acid production in large-scale fermentation of C. taii.  相似文献   

20.
While an aeration tank in an activated sludge process is often operated with high dissolved oxygen (DO) concentration to ensure organic degradation and nitrification, it may be operated at low DO concentration to reduce energy consumption and achieve desired denitrification. The ASM1 (Activated Sludge Model No. 1) can be used to describe the activated sludge process if the nitrification and denitrification occur either during different phases or in different tanks, but it may encounter problems in simulating the denitrification phenomenon caused by low DO concentration in the aeration tank. In the present work, we developed a model integrating the ASM1 kinetics and a biofloc model to account for the actual anoxic and aerobic rates. Oxygen was assumed the only substrate of both bio-kinetically and flux limiting in the flocs and its dispersion coefficient was estimated as 1.2 × 10−4 m2 day−1 by using a set of measured effluent qualities of a full-scale wastewater treatment plant (WWTP) operating at low DO concentration (∼0.80 mg L−1) for 60 days. Simulation studies predicted the optimal DO level of 0.36 mg L−1 which would lead to minimum total nitrogen of 15.7 mg N L−1 and also showed the insignificance of the addition of carbon source for nitrogen removal for the operation under study. The developed model may be helpful for process engineers to predict the plant behaviors under various configurations or operating strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号