首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Population genetic structure in the marine environment can be influenced by life‐history traits such as developmental mode (biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults) or habitat specificity, as well as geography and selection. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, this prediction can be complicated by the presence of geophysical barriers to dispersal. In this study, we use a panel of 8,020 SNPs to investigate population structure and biogeography over multiple spatial scales for a direct‐developing species, the New Zealand endemic marine isopod Isocladus armatus. Because our sampling range is intersected by two well‐known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. On a small spatial scale (20 km), gene flow between locations is extremely high, suggestive of an island model of migration. However, over larger spatial scales (600 km), populations exhibit a clear pattern of isolation‐by‐distance. Our results indicate that I. armatus exhibits significant migration across the hypothesized barriers and suggest that large‐scale ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we find evidence of a north‐south population genetic break occurring between Māhia and Wellington. While no known geophysical barrier is apparent in this area, it coincides with the location of a proposed border between bioregions. Analysis of loci under selection revealed that both isolation‐by‐distance and adaption may be contributing to the degree of population structure we have observed here. We conclude that developmental life history largely predicts dispersal in the intertidal isopod I. armatus. However, localized biogeographic processes can disrupt this expectation, and this may explain the potential meta‐population detected in the Auckland region.  相似文献   

2.
Ecological, environmental, and geographic factors all influence genetic structure. Species with broad distributions are ideal systems because they cover a range of ecological and environmental conditions allowing us to test which components predict genetic structure. This study presents a novel, broad geographic approach using molecular markers, morphology, and habitat modeling to investigate rangewide and local barriers causing contemporary genetic differentiation within the geographical range of three white‐crowned sparrow (Zonotrichia leucophrys) subspecies: Z. l. gambelii, Z. l. oriantha, and Z. l. pugetensis. Three types of genetic markers showed geographic distance between sampling sites, elevation, and ecosystem type are key factors contributing to population genetic structure. Microsatellite markers revealed white‐crowned sparrows do not group by subspecies, but instead indicated four groupings at a rangewide scale and two groupings based on coniferous and deciduous ecosystems at a local scale. Our analyses of morphological variation also revealed habitat differences; sparrows from deciduous ecosystems are larger than individuals from coniferous ecosystems based on principal component analyses. Habitat modeling showed isolation by distance was prevalent in describing genetic structure, but isolation by resistance also had a small but significant influence. Not only do these findings have implications concerning the accuracy of subspecies delineations, they also highlight the critical role of local factors such as habitat in shaping contemporary population genetic structure of species with high dispersal ability.  相似文献   

3.
For range‐restricted species with disjunct populations, it is critical to characterize population genetic structure, gene flow, and factors that influence functional connectivity among populations in order to design effective conservation programs. In this study, we genotyped 314 individuals from 16 extant populations of Ivesia webberi, a United States federally threatened Great Basin Desert using six microsatellite loci. We assessed the effects of Euclidean distance, landscape features, and ecological dissimilarity on the pairwise genetic distance of the sampled populations, while also testing for a potential relationship between Iwebberi genetic diversity and diversity in the vegetative communities. The results show low levels of genetic diversity overall (H e = 0.200–0.441; H o = 0.192–0.605) and high genetic differentiation among populations. Genetic diversity was structured along a geographic gradient, congruent with patterns of isolation by distance. Populations near the species’ range core have relatively high genetic diversity, supporting in part a central‐marginal pattern, while also showing some evidence for a metapopulation dynamic. Peripheral populations have lower genetic diversity, significantly higher genetic distances, and higher relatedness. Genotype cluster admixture results suggest a complex dispersal pattern among populations with dispersal direction and distance varying on the landscape. Pairwise genetic distance strongly correlates with elevation, actual evapotranspiration, and summer seasonal precipitation, indicating a role for isolation by environment, which the observed phenological mismatches among the populations also support. The significant correlation between pairwise genetic distance and floristic dissimilarity in the germinated soil seed bank suggests that annual regeneration in the plant communities contribute to the maintenance of genetic diversity in Iwebberi.  相似文献   

4.
Temporal genetic studies of low‐dispersing organisms are rare. Marine invertebrates lacking a planktonic larval stage are expected to have lower dispersal, low gene flow, and a higher potential for local adaptation than organisms with planktonic dispersal. Leptasterias is a genus of brooding sea stars containing several cryptic species complexes. Population genetic methods were used to resolve patterns of fine‐scale population structure in central California Leptasterias species using three loci from nuclear and mitochondrial genomes. Historic samples (collected between 1897 and 1998) were compared to contemporary samples (collected between 2008 and 2014) to delineate changes in species distributions in space and time. Phylogenetic analysis of contemporary samples confirmed the presence of a bay‐localized clade and revealed the presence of an additional bay‐localized and previously undescribed clade of Leptasterias. Analysis of contemporary and historic samples indicates two clades are experiencing a constriction in their southern range limit and suggests a decrease in clade‐specific abundance at sites at which they were once prevalent. Historic sampling revealed a dramatically different distribution of diversity along the California coastline compared to contemporary sampling and illustrates the importance of temporal genetic sampling in phylogeographic studies. These samples were collected prior to significant impacts of Sea Star Wasting Disease (SSWD) and represent an in‐depth analysis of genetic structure over 117 years prior to the SSWD‐associated mass die‐off of Leptasterias.  相似文献   

5.
Dispersal and colonization are among the most important ecological processes for species persistence as they allow species to track changing environmental conditions. During the last glacial maximum (LGM), many cold‐intolerant Northern Hemisphere plants retreated to southern glacial refugia. During subsequent warming periods, these species expanded their ranges northward. Interestingly, some tree species with limited seed dispersal migrated considerable distances after the LGM ~19,000 years before present (YBP). It has been hypothesized that indigenous peoples may have dispersed valued species, in some cases beyond the southern limits of the Laurentide Ice Sheet. To investigate this question, we employed a molecular genetics approach on a widespread North American understory tree species whose fruit was valued by indigenous peoples. Twenty putative anthropogenic (near pre‐Columbian habitations) and 62 wild populations of Asimina triloba (pawpaw), which produces the largest edible fruit of any North American tree, were genetically assayed with nine microsatellite loci. Putative anthropogenic populations were characterized by reduced genetic diversity and greater excess heterozygosity relative to wild populations. Anthropogenic populations in regions that were glaciated during the LGM had profiles consistent with founder effects and reduced gene flow, and shared rare alleles with wild populations hundreds of kilometers away (mean = 723 km). Some of the most compelling evidence for human‐mediated dispersal is that putative anthropogenic and wild populations sharing rare alleles were separated by significantly greater distances (mean = 695 km) than wild populations sharing rare alleles (mean = 607 km; p = .014). Collectively, the genetic data suggest that long‐distance dispersal played an important role in the distribution of pawpaw and is consistent with the hypothesized role of indigenous peoples.  相似文献   

6.
Site fidelity refers to the restriction of dispersal distance of an animal and its tendency to return to a stationary site. To our knowledge, the homing ability of freshwater turtles and their fidelity is reportedly very low in Asia. We examined mark–recapture data spanning a 4‐year period in Diaoluoshan National Nature Reserve, Hainan Province, China, to investigate the site fidelity and homing behavior of big‐headed turtles Platysternon megacephalum. A total of 11 big‐headed turtles were captured, and all individuals were used in this mark–recapture study. The site fidelity results showed that the adult big‐headed turtles (n = 4) had a 71.43% recapture rate in the original site after their release at the same site, whereas the juveniles (n = 1) showed lower recapture rates (0%). Moreover, the homing behavior results showed that the adults (n = 5) had an 83.33% homing rate after displacement. Adult big‐headed turtles were able to return to their initial capture sites (home) from 150 to 2,400 m away and precisely to their home sites from either upstream or downstream of their capture sites or even from other streams. However, none of the juveniles (n = 4) returned home, despite only being displaced 25–150 m away. These results indicated that the adult big‐headed turtles showed high fidelity to their home site and strong homing ability. In contrast, the juvenile turtles may show an opposite trend but further research is needed.  相似文献   

7.
Prevailing directions of seed and pollen dispersal may induce anisotropy of the fine‐scale spatial genetic structure (FSGS), particularly in wind‐dispersed and wind‐pollinated species. To examine the separate effects of directional seed and pollen dispersal on FSGS, we conducted a population genetics study for a dioecious, wind‐pollinated, and wind‐dispersed tree species, Cercidiphyllum japonicum Sieb. et Zucc, based on genotypes at five microsatellite loci of 281 adults of a population distributed over a ca. 80 ha along a stream and 755 current‐year seedlings. A neighborhood model approach with exponential‐power‐von Mises functions indicated shorter seed dispersal (mean = 69.1 m) and much longer pollen dispersal (mean = 870.6 m), effects of dispersal directions on the frequencies of seed and pollen dispersal, and the directions with most frequent seed and pollen dispersal (prevailing directions). Furthermore, the distance of effective seed dispersal within the population was estimated to depend on the dispersal direction and be longest at the direction near the prevailing direction. Therefore, patterns of seed and pollen dispersal may be affected by effective wind directions during the period of respective dispersals. Isotropic FSGS and spatial sibling structure analyses indicated a significant FSGS among the seedlings generated by the limited seed dispersal, but anisotropic analysis for the seedlings indicated that the strength of the FSGS varied with directions between individuals and was weakest at a direction near the directions of the most frequent and longest seed dispersal but far from the prevailing direction of pollen dispersal. These results suggest that frequent and long‐distance seed dispersal around the prevailing direction weakens the FSGS around the prevailing direction. Therefore, spatially limited but directional seed dispersal would determine the existence and direction of FSGS among the seedlings.  相似文献   

8.
Full factorial breeding designs are useful for quantifying the amount of additive genetic, nonadditive genetic, and maternal variance that explain phenotypic traits. Such variance estimates are important for examining evolutionary potential. Traditionally, full factorial mating designs have been analyzed using a two‐way analysis of variance, which may produce negative variance values and is not suited for unbalanced designs. Mixed‐effects models do not produce negative variance values and are suited for unbalanced designs. However, extracting the variance components, calculating significance values, and estimating confidence intervals and/or power values for the components are not straightforward using traditional analytic methods. We introduce fullfact – an R package that addresses these issues and facilitates the analysis of full factorial mating designs with mixed‐effects models. Here, we summarize the functions of the fullfact package. The observed data functions extract the variance explained by random and fixed effects and provide their significance. We then calculate the additive genetic, nonadditive genetic, and maternal variance components explaining the phenotype. In particular, we integrate nonnormal error structures for estimating these components for nonnormal data types. The resampled data functions are used to produce bootstrap‐t confidence intervals, which can then be plotted using a simple function. We explore the fullfact package through a worked example. This package will facilitate the analyses of full factorial mating designs in R, especially for the analysis of binary, proportion, and/or count data types and for the ability to incorporate additional random and fixed effects and power analyses.  相似文献   

9.
Natal dispersal is assumed to be a particularly risky movement behavior as individuals transfer, often long distances, from birth site to site of potential first reproduction. Though, because this behavior persists in populations, it is assumed that dispersal increases the fitness of individuals despite the potential for increased risk of mortality. The extent of dispersal risk, however, has rarely been tested, especially for large mammals. Therefore, we aimed to test the relationship between dispersal and survival for both males and females in a large herbivore. Using a radio‐transmittered sample of 398 juvenile male and 276 juvenile female white‐tailed deer (Odocoileus virginianus), we compared survival rates of dispersers and nondispersers. We predicted that dispersing deer would experience greater overall mortality than philopatric deer due to direct transfer‐related risks (e.g., vehicular collision), indirect immigration‐related mortality attributable to colonization of unfamiliar habitat, and increased overwinter mortality associated with energetic costs of movement and unfamiliarity with recently colonized habitat. For both male and female yearlings, survival rates of dispersers (male = 49.9%, female = 64.0%) did not differ from nondispersers (male = 51.6%, female = 70.7%). Only two individuals (both female) were killed by vehicular collision during transfer, and overwinter survival patterns were similar between the two groups. Although dispersal movement likely incurs energetic costs on dispersers, these costs do not necessarily translate to decreased survival. In many species, including white‐tailed deer, dispersal is likely condition‐dependent, such that larger and healthier individuals are more likely to disperse; therefore, costs associated with dispersal are more likely to be borne successfully by those individuals that do disperse. Whether low‐risk dispersal of large mammals is the rule or the exception will require additional research. Further, future research is needed to evaluate nonsurvival fitness‐related costs and benefits of dispersal (e.g., increased reproductive opportunities for dispersers).  相似文献   

10.
To understand colonization processes, it is critical to fully assess the role of dispersal in shaping biogeographical patterns at the gene, individual, population, and community levels. We test two alternative hypotheses (H I and H II) for the colonization of disturbed sites by clonal plants, by analyzing intraspecific genetic variation in one and reproductive traits in two typical fen mosses with separate sexes and intermittent spore dispersal, comparing disturbed, early‐succession (limed) fens and late‐successional rich fens. H I suggests initial colonization of disturbed sites by diverse genotypes of which fewer remain in late‐successional fens and an initially balanced sex ratio that develops into a possibly skewed population sex ratio. H II suggests initial colonization by few genotypes and gradual accumulation of additional genotypes and an initially skewed sex ratio that alters into the species‐specific sex ratio, during succession. Under both scenarios, we expect enhanced sexual reproduction in late‐successional fens due to resource gains and decreased intermate distances when clones expand. We show that the intraspecific genetic diversity, assessed by two molecular markers, in Scorpidium cossonii was higher and the genetic variation among sites was smaller in disturbed than late‐successional rich fens. Sex ratio was balanced in Scossonii and Campylium stellatum in disturbed fens and skewed in Cstellatum in late‐successional fens, thus supporting H I. In line with our prediction, sex expression incidence was higher in, and sporophytes were confined to, late‐succession compared to disturbed rich fens. Late‐successional Scossonii sites had more within‐site patches with two or more genotypes, and both species displayed higher sex expression levels in late‐successional than in disturbed sites. We conclude that diverse genotypes and both sexes disperse efficiently to, and successfully colonize new sites, while patterns of genetic variation and sexual reproduction in late‐successional rich fens are gradually shaped by local conditions and interactions over extended time periods.  相似文献   

11.
For nearly all organisms, dispersal is a fundamental life‐history trait that can shape their ecology and evolution. Variation in dispersal capabilities within a species exists and can influence population genetic structure and ecological interactions. In fungus‐gardening (attine) ants, co‐dispersal of ants and mutualistic fungi is crucial to the success of this obligate symbiosis. Female‐biased dispersal (and gene flow) may be favored in attines because virgin queens carry the responsibility of dispersing the fungi, but a paucity of research has made this conclusion difficult. Here, we investigate dispersal of the fungus‐gardening ant Trachymyrmex septentrionalis using a combination of maternally (mitochondrial DNA) and biparentally inherited (microsatellites) markers. We found three distinct, spatially isolated mitochondrial DNA haplotypes; two were found in the Florida panhandle and the other in the Florida peninsula. In contrast, biparental markers illustrated significant gene flow across this region and minimal spatial structure. The differential patterns uncovered from mitochondrial DNA and microsatellite markers suggest that most long‐distance ant dispersal is male‐biased and that females (and concomitantly the fungus) have more limited dispersal capabilities. Consequently, the limited female dispersal is likely an important bottleneck for the fungal symbiont. This bottleneck could slow fungal genetic diversification, which has significant implications for both ant hosts and fungal symbionts regarding population genetics, species distributions, adaptive responses to environmental change, and coevolutionary patterns.  相似文献   

12.
Habitat fragmentation can lower migration rates and genetic connectivity among remaining populations of native species. Ducetia japonica is one of the most widespread katydids in China, but little is known about its genetic structure and phylogeographic distribution. We combined the five‐prime region of cytochrome c oxidase subunit I (COI‐5P), 11 newly developed microsatellite loci coupled with an ecological niche model (ENM) to examine the genetic diversity and population structure of D. japonica in China and beyond to Laos and Singapore. Both Bayesian inference (BI) and haplotype network methods revealed six mitochondrial COI‐5P lineages. The distribution of COI‐5P haplotypes may not demonstrate significant phylogeographic structure (N ST > G ST, p > .05). The STRUCTURE analysis based on microsatellite data also revealed six genetic clusters, but discordant with those obtained from COI‐5P haplotypes. For both COI‐5P and microsatellite data, Mantel tests revealed a significant positive correlation between geographic and genetic distances in mainland China. Bayesian skyline plot (BSP) analyses indicated that the population size of D. japonica''s three major mitochondrial COI‐5P lineages were seemingly not affected by last glacial maximum (LGM, 0.015–0.025 Mya). The ecological niche models showed that the current distribution of D. japonica was similar to the species’ distribution during the LGM period and only slightly extended in northern China. Further phylogeographic studies based on more extensive sampling are needed to identify specific locations of glacial refugia in northern China.  相似文献   

13.
The performance of root hemiparasites depends strongly on host species identity, but it remains unknown whether there exist general patterns in the quality of species as hosts for hemiparasites and in their sensitivity to parasitism. In a comparative approach, the model root hemiparasites Rhinanthus minor and R. alectorolophus were grown with 25 host species (grasses, forbs, and legumes) at two nutrient levels. Hosts grown without parasites served as a control. Host species identity strongly influenced parasite biomass and other traits, and both parasites grew better with legumes and grasses than with forbs. The biomass of R. alectorolophus was much higher than that of R. minor with all host plants and R. alectorolophus responded much more strongly to higher nutrient availability than R. minor. The performance of the two species of Rhinanthus with individual hosts was strongly correlated, and it was also correlated with that of R. alectorolophus and the related Odontites vulgaris in previous experiments with many of the same hosts, but only weakly with that of the less closely related Melampyrum arvense. The negative effect of R. minor on host biomass was less strong than that of R. alectorolophus, but stronger relative to its own biomass, suggesting that it is more parasitic. The impact of the two parasites on individual hosts did not depend on nutrient level and was correlated. Several legumes and grasses were tolerant of parasitism. While R. minor slightly reduced mean overall productivity, R. alectorolophus increased it with several species, indicating that the loss of host biomass was more than compensated by that of the parasite. The results show that closely related parasites have similar host requirements and correlated negative effects on individual hosts, but that there are also specific interactions between pairs of parasitic plants and their hosts.  相似文献   

14.
Deleterious effects of habitat loss and fragmentation on biodiversity have been demonstrated in numerous taxa. Although parasites represent a large part of worldwide biodiversity, they are mostly neglected in this context. We investigated the effects of various anthropogenic environmental changes on gastrointestinal parasite infections in four small mammal hosts inhabiting two landscapes of fragmented dry forest in northwestern Madagascar. Coproscopical examinations were performed on 1,418 fecal samples from 903 individuals of two mouse lemur species, Microcebus murinus (n = 199) and M. ravelobensis (n = 421), and two rodent species, the native Eliurus myoxinus (n = 102) and the invasive Rattus rattus (n = 181). Overall, sixteen parasite morphotypes were detected and significant prevalence differences between host species regarding the most common five parasites may be explained by parasite–host specificity or host behavior, diet, and socioecology. Ten host‐ and habitat‐related ecological variables were evaluated by generalized linear mixed modeling for significant impacts on the prevalence of the most abundant gastrointestinal parasites and on gastrointestinal parasite species richness (GPSR). Forest maturation affected homoxenous parasites (direct life cycle) by increasing Lemuricola, but decreasing Enterobiinae gen. sp. prevalence, while habitat fragmentation and vegetation clearance negatively affected the prevalence of parasites with heterogenic environment (i.e., Strongyloides spp.) or heteroxenous (indirect cycle with intermediate host) cycles, and consequently reduced GPSR. Forest edges and forest degradation likely change abiotic conditions which may reduce habitat suitability for soil‐transmitted helminths or required intermediate hosts. The fragility of complex parasite life cycles suggests understudied and potentially severe effects of decreasing habitat quality by fragmentation and degradation on hidden ecological networks that involve parasites. Since parasites can provide indispensable ecological services and ensure stability of ecosystems by modulating animal population dynamics and nutrient pathways, our study underlines the importance of habitat quality and integrity as key aspects of conservation.  相似文献   

15.
Despite the key roles that dispersal plays in individual animal fitness and meta‐population gene flow, it remains one of the least understood behaviors in many species. In large mammalian herbivores, dispersals might span long distances and thereby influence landscape‐level ecological processes, such as infectious disease spread. Here, we describe and analyze an exceptional long‐distance dispersal by an adult white‐tailed deer (Odocoileus virginianus) in the central United States. We also conducted a literature survey to compare the dispersal to previous studies. This dispersal was remarkable for its length, duration, and the life history stage of the dispersing individual. Dispersal is typical of juvenile deer seeking to establish postnatal home ranges, but this dispersal was undertaken by an adult male (age = 3.5). This individual dispersed ~300 km over a 22‐day period by moving, on average, 13.6 km/day and achieving a straight‐line distance of ~215 km, which was ~174 km longer than any other distance recorded for an adult male deer in our literature survey. During the dispersal, which occurred during the hunting season, the individual crossed a major river seven times, an interstate highway, a railroad, and eight state highways. Movements during the dispersal were faster (mean = 568.1 m/h) and more directional than those during stationary home range periods before and after the dispersal (mean = 56.9 m/h). Likewise, movements during the dispersal were faster (mean = 847.8 m/h) and more directional at night than during the day (mean = 166.4 m/h), when the individual frequently sheltered in forest cover. This natural history event highlights the unpredictable nature of dispersal and has important implications for landscape‐level processes such as chronic wasting disease transmission in cervids. More broadly, our study underscores how integrating natural history observations with modern technology holds promise for understanding potentially high impact but rarely recorded ecological events.  相似文献   

16.
Seafloor characteristics can help in the prediction of fish distribution, which is required for fisheries and conservation management. Despite this, only 5%–10% of the world''s seafloor has been mapped at high resolution, as it is a time‐consuming and expensive process. Multibeam echo‐sounders (MBES) can produce high‐resolution bathymetry and a broad swath coverage of the seafloor, but require greater financial and technical resources for operation and data analysis than singlebeam echo‐sounders (SBES). In contrast, SBES provide comparatively limited spatial coverage, as only a single measurement is made from directly under the vessel. Thus, producing a continuous map requires interpolation to fill gaps between transects. This study assesses the performance of demersal fish species distribution models by comparing those derived from interpolated SBES data with full‐coverage MBES distribution models. A Random Forest classifier was used to model the distribution of Abalistes stellatus, Gymnocranius grandoculis, Lagocephalus sceleratus, Loxodon macrorhinus, Pristipomoides multidens, and Pristipomoides typus, with depth and depth derivatives (slope, aspect, standard deviation of depth, terrain ruggedness index, mean curvature, and topographic position index) as explanatory variables. The results indicated that distribution models for A. stellatus, G. grandoculis, L. sceleratus, and L. macrorhinus performed poorly for MBES and SBES data with area under the receiver operator curves (AUC) below 0.7. Consequently, the distribution of these species could not be predicted by seafloor characteristics produced from either echo‐sounder type. Distribution models for P. multidens and P. typus performed well for MBES and the SBES data with an AUC above 0.8. Depth was the most important variable explaining the distribution of P. multidens and P. typus in both MBES and SBES models. While further research is needed, this study shows that in resource‐limited scenarios, SBES can produce comparable results to MBES for use in demersal fish management and conservation.  相似文献   

17.
While the bone morphogenetic protein‐7 (BMP‐7) is a well‐known therapeutic growth factor reverting many fibrotic diseases, including peritoneal fibrosis by peritoneal dialysis (PD), soluble growth factors are largely limited in clinical applications owing to their short half‐life in clinical settings. Recently, we developed a novel drug delivery model using protein transduction domains (PTD) overcoming limitation of soluble recombinant proteins, including bone morphogenetic protein‐7 (BMP‐7). This study aims at evaluating the therapeutic effects of PTD‐BMP‐7 consisted of PTD and full‐length BMP‐7 on epithelial‐mesenchymal transition (EMT)‐related fibrosis. Human peritoneal mesothelial cells (HPMCs) were then treated with TGF‐β1 or TGF‐β1 + PTD‐BMP‐7. Peritoneal dialysis (PD) catheters were inserted into Sprague‐Dawley rats, and these rats were infused intra‐peritoneally with saline, peritoneal dialysis fluid (PDF) or PDF + PTD‐BMP‐7. In vitro, TGF‐β1 treatment significantly increased fibronectin, type I collagen, α‐SMA and Snail expression, while reducing E‐cadherin expression in HPMCs (P < .001). PTD‐BMP‐7 treatment ameliorated TGF‐β1‐induced fibronectin, type I collagen, α‐SMA and Snail expression, and restored E‐cadherin expression in HPMCs (P < .001). In vivo, the expressions of EMT‐related molecules and the thickness of the sub‐mesothelial layer were significantly increased in the peritoneum of rats treated with PDF, and these changes were significantly abrogated by the intra‐peritoneal administration of PTD‐BMP‐7. PTD‐BMP‐7 treatment significantly inhibited the progression of established PD fibrosis. These findings suggest that PTD‐BMP‐7, as a prodrug of BMP‐7, can be an effective therapeutic agent for peritoneal fibrosis in PD patients.  相似文献   

18.
AimHabitat loss and fragmentation impose high extinction risk upon endangered plant species globally. For many endangered plant species, as the remnant habitats become smaller and more fragmented, it is vital to estimate the population spread rate of small patches in order to effectively manage and preserve them for potential future range expansion. However, population spread rate has rarely been quantified at the patch level to inform conservation strategies and management decisions. To close this gap, we quantify the patch‐specific seed dispersal and local population dynamics of Minuartia smejkalii, which is a critically endangered plant species endemic in the Czech Republic and is of urgent conservation concern.LocationŽelivka and Hrnčíře, Czechia.MethodsWe conducted demographic analyses using population projection matrices with long‐term demographic data and used an analytic mechanistic dispersal model to simulate seed dispersal. We then used information on local population dynamics and seed dispersal to estimate the population spread rate and compared the relative contributions of seed dispersal and population growth rate to the population spread rate.ResultsWe found that although both seed dispersal and population growth rate in M. smejkalii were critically limited, the population spread rate depended more strongly on the maximal dispersal distance than on the population growth rate.Main conclusionsWe recommend conservationists to largely increase the dispersal distance of M. smejkalii. Generally, efforts made to increase seed dispersal ability could largely raise efficiency and effectiveness of conservation actions for critically endangered plant species.  相似文献   

19.
In the Atacama Desert from northern Chile (19–24°S), Prosopis (Leguminosae) individuals are restricted to oases that are unevenly distributed and isolated from each other by large stretches of barren landscape constituting an interesting study model as the degree of connectivity between natural populations depends on their dispersal capacity and the barriers imposed by the landscape. Our goal was to assess the genetic diversity and the degree of differentiation among groups of Prosopis individuals of different species from Section Algarobia and putative hybrids (hereafter populations) co‐occurring in these isolated oases from the Atacama Desert and determine whether genetic patterns are associated with dispersal barriers. Thirteen populations were sampled from oases located on three hydrographic basins (Pampa del Tamarugal, Rio Loa, and Salar de Atacama; northern, central, and southern basins, respectively). Individuals genotyped by eight SSRs show high levels of genetic diversity (H O = 0.61, A r = 3.5) and low but significant genetic differentiation among populations (F ST = 0.128, F ST‐ENA = 0.129, D JOST = 0.238). The AMOVA indicates that most of the variation occurs within individuals (79%) and from the variance among individuals (21%); almost, the same variation can be found between basins and between populations within basins. Differentiation and structure results were not associated with the basins, retrieving up to four genetic clusters and certain admixture in the central populations. Pairwise differentiation comparisons among populations showed inconsistencies considering their distribution throughout the basins. Genetic and geographic distances were significantly correlated at global and within the basins considered (p < .02), but low correlation indices were obtained (r < .37). These results are discussed in relation to the fragmented landscape, considering both natural and non‐natural (humans) dispersal agents that may be moving Prosopis in the Atacama Desert.  相似文献   

20.
Disease transmission can be strongly influenced by the manner in which conspecifics are connected across a landscape and the effects of land use upon these dynamics. In northern Botswana, the territorial and group‐living banded mongoose (Mungos mungo) lives across urban and natural landscapes and is infected with a novel Mycobacterium tuberculosis complex pathogen, M. mungi. Using microsatellite markers amplified from DNA derived from banded mongoose fecal and tissue samples (n = 168), we evaluated population genetic structure, individual dispersal, and gene flow for 12 troops. Genetic structure was detectable and moderately strong across groups (F ST = 0.086), with K = 7 being the best‐supported number of genetic clusters. Indications of admixture in certain troops suggest formation of new groups through recent fusion events. Differentiation was higher for troops inhabiting natural areas (F ST = 0.102) than for troops in urban landscapes (F ST = 0.081). While this suggests increased levels of gene flow between urban‐dwelling troops, the inclusion of a smaller number of study troops from natural land types may have influenced these findings. Of those individuals confirmed infected with M. mungi, the majority (73%, n = 11) were assigned to their natal group which is consistent with previous observations linking lower levels of dispersal with infection. Twenty‐one probable dispersing individuals were identified, with all suspected migrants originating from troops within the urban landscape. Findings suggest that urbanized landscapes may increase gene flow and dispersal behavior with a concomitant increase in the risk of pathogen spread. As urban landscapes expand, there is an increasing need to understand how land use and pathogen infection may change wildlife behavior and disease transmission potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号