首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
In response to an osmotic stress, Dunaliella tertiolecta osmoregulates by metabolizing intracellular glycerol as compatible solute. Upon the application of a salt stress to 0.17 M or 0.7 M NaCl grown D. tertiolecta cells, rates of total glycerol synthesis were substantially higher than that arising from photosynthetic 14CO2 fixation into glycerol. The source of this extra carbon is the reserve starch pool. The contribution of carbon from the starch breakdown to glycerol synthesis was estimated from the difference between the total glycerol synthesized and that arising from 14CO2 fixation. The maximum observed flux of carbon from 14CO2 to glycerol from photosynthesis was of the order of 15–20 μmol 14C-glycerol mg−1 Chl h−1, whereas the total glycerol synthesis reached about 70 μmol glycerol mg−1 Chl h−1. The contribution of products of starch breakdown to glycerol synthesis increased progressively with increasing salt stress. In light, contrary to prevailing assumptions, both the photosynthesis and the starch breakdown contribute carbon to glycerol biosynthesis. The relative contributions of these two processes in the light, while cells were actively photosynthesizing, depended on the magnitude of the salt stress. On application of dilution stress, the flux of carbon from newly photosynthetically fixed 14CO2 into glycerol was reduced progressively with increasing dilution stress that was also accompanied by a decline in total glycerol contents of the cell. The maximum observed rate of glycerol dissimilation was about 135 μmol glycerol mg−1 Chl h−1.  相似文献   

2.
Sorbitol, one of the main by-products of growth on high sucrose concentrations, is catalyzed by glucose-fructose oxidoreductase (GFOR, EC 1.1.99.28) in Zymomonas mobilis, which decreases the ethanol yield. In this study, an unmarked gfo mutant from Z. mobilis ZM4 was constructed using a site-specific FLP recombinase, and growth and ethanol production were evaluated with or without the addition of sorbitol to the media. The inactivation of gfo had contrasting effects in different substrates, especially at high concentrations. The maximum specific growth rate (μm) and theoretical ethanol yield value (Ym) increased from 0.065 h−1 and 60.56% to 0.094 h−1 and 83.87% in 342 g/L sucrose, respectively. Conversely, in 200 g/L glucose, gfo inactivation decreased μm and Ym from 0.15 h−1 and 89.85% to 0.10 h−1 and 67.59%, respectively, and prolonged the lag period from 16 h to 40 h. The addition of sorbitol slightly accelerated growth and sucrose hydrolysis by the gfo mutant in 342 g/L sucrose; however, addition of sorbitol restored the μm and Ym of the gfo mutant in 200 g/L glucose to 0.14 h−1 and 82.50%, respectively. Inactivation of gfo had a small effect on fructose utilization, and a positive one on mixture of glucose and fructose similar to that on sucrose. These results provide further understanding of the osmoregulation mechanisms in Z. mobilis and may help to exploit the biotechnological applications of this industrially important bacterium.  相似文献   

3.
《Process Biochemistry》2007,42(4):686-692
Pseudomonas putida 33 wild strain, subjected to gamma ray mutagenesis and designated as P. putida 300-B mutant was used as microbial rhamnolipid-producer by using distant carbon sources (viz. hydrocarbons, waste frying oils ‘WFOs’, vegetable oil refinery wastes and molasses) in the minimal media under shake flask conditions. The behavior of glucose as co-substrate and growth initiator was examined. The 300-B mutant strain showed its ability to grow on all the substrates tested and produced rhamnolipid surfactants to different extents however; soybean and corn WFOs were observed to be preferred carbon sources followed by kerosene and paraffin oils, respectively. The best cell biomass (3.5 g l−1) and rhamnolipids yield (4.1 g l−1) were obtained with soybean WFO as carbon source and glucose as growth initiator under fed-batch cultivation showing an optimum specific growth rate (μ) of 0.272 h−1, specific product yield (qp) of 0.318 g g−1 h and volumetric productivity (PV) of 0.024 g l−1 h. The critical micelle concentration of its culture supernatant was observed to be 91 mg rhamnolipids l−1 and surface tension as 31.2 mN m−1.  相似文献   

4.
The exponential substrate feeding (open-loop) and automated feedback substrate feeding (closed loop) strategies were developed to obtain high cell densities of fluorescent pseudomonad strains R62 and R81 and enhanced production of antifungal compound 2,4-diacetylphloroglucinol (DAPG) from glycerol as a sole carbon source. The exponential feeding strategy resulted in increased glycerol accumulation during the fed-batch cultivation when the predetermined specific growth rate (μ) was set at 0.10 or 0.20 h?1 (<μm = 0.29 h?1). Automated feeding strategies using dissolved oxygen (DO) or pH as feedback signals resulted in minimal to zero accumulation of glycerol for both the strains. In case of DO-based feeding strategy, biomass productivity of 0.24 g/(L h) and 0.29 g/(L h) was obtained for R62 and R81, respectively. Using pH-based feeding strategy, biomass productivity could be increased to a maximum of 0.51 and 0.54 g/(L h), for the strains R62 and R81, respectively, whereas the DAPG concentration was enhanced to 298 mg/L for R62 and 342 mg/L for R81 strains. These yields of DAPG are thus far the highest reported from GRAS organisms.  相似文献   

5.
《Process Biochemistry》2010,45(8):1334-1341
A high cell density cultivation protocol was developed for the secretory production of potato carboxypeptidase inhibitor (PCI) in Escherichia coli. The strain BW25113 (pIMAM3) was cultured in fed-batch mode employing minimal media and an exponential feed profile where the specific growth rate was fixed by limitation of the fed carbon source (glycerol). Plasmid loss rates were found to be proportional to the specific growth rate. Distribution of PCI along the cell compartments and the culture media was also dependent on the fixed growth rate. When specific growth rate was kept at μ = 0.10 h−1, 1.4 g PCI L−1 were obtained when adding the product present in periplasmic extracts and supernatant fractions, with a 50% of the total expressed protein recovered from the extracellular medium. This constituted a 1.2-fold increase compared to growth at μ = 0.15 h−1, and 2.0-fold compared to μ = 0.25 h−1. Last, a cell permeabilization treatment with Triton X-100 and glycine was employed to direct most of the product to the culture media, achieving over 81% of extracellular PCI. Overall, our results point out that production yields of secretory proteins in fed-batch cultures of E. coli can be improved by means of process variables, with applications to the production of small disulfide-bridged proteins. Overall, our results point out that control of the specific growth rate is a successful strategy to improve the production yields of secretory expression in fed-batch cultures of E. coli, with applications to the production of small disulfide-bridged proteins.  相似文献   

6.
To improve the growth of recombinant Pichia pastoris with a phenotype of MutS and expression of angiostatin, the effects of glycerol, sorbitol, acetate and lactic acid which were, respectively, added together with methanol in the expression phase, were studied in a 5-l fermentor. Methanol concentration was automatically controlled at 5 g/l by a methanol monitor and control system, while the feeding of the other carbon source was manually adjusted. The angiostatin production level was 108 mg/l when glycerol was added at an initial rate of 2.3 g/h and gradually increased to 9.9 g/h within an induction period of 96 h. The angiostatin concentration was 141 mg/l as sorbitol was used, while only 52 mg/l were obtained on acetate. The highest angiostatin production of 191 mg/l was achieved as lactic acid was used; whose feeding rate was gradually increased from 2.6 to 11.3 g/h. Lactic acid accumulated during the induction phase and reached 6.3 g/l at the end of fermentation. However, the accumulation of lactic acid did not interfere with angiostatin production, indicating that lactic acid to be a non-repressive carbon source. The average productivity and specific productivity of angiostatin obtained on lactic acid and methanol were, respectively, 2.96 and 0.044 mg/(g h), 1.7- and 2.5-fold of those obtained in the fermentation fed with glycerol and methanol.  相似文献   

7.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

8.
《Process Biochemistry》2007,42(4):740-744
The conversion of glycerol to 1,3-propanediol (PDO) using Klebsiella pneumoniae M5al under anaerobic condition was scaled up from scale 5 to 5000 l in series. A simple strategy for scale-up was to transfer the optimized conditions of a lab scale bioreactor to pilot-scale fermentation. Multistage inocula were developed and their fermentation abilities were assessed in a small-scale fermenter. The experimental results showed that inoculum development in the early steps of a scale-up process could influence the outcomes of a large scale fermentation. Through three-stage liquid inoculum development and a pulse addition of (NH4)2SO4 and yeast extract at 30 h of fermentation, the best results in a 5000 l fermentation were achieved leading to 58.8 g l−1 1,3-propanediol with a yield of 0.53 mol mol−1 glycerol and productivity of 0.92 g l−1 h−1. This is the first report on pilot-scale 1,3-propanediol production using K. pneumoniae.  相似文献   

9.
《Process Biochemistry》2010,45(7):1036-1042
A recombinant strain of Escherichia coli with CYP102A1 gene was developed for the demethylation of colchicine into their derivatives. The CYP102A1 gene responsible for demethylation was isolated from Bacillus megaterium ACBT03 and amplified using suitable primers. The amplified product was cloned into pET28a+ expression vector using host E. coli BL21(DE3) cells. The CYP3A4 (product of CYP102A1 gene) protein expression and other parameters like substrate toxicity, product toxicity and enzyme activity were optimized in shake flasks; and further scaled-up to 5 l bioreactor with 3 l working volume. In 5 l bioreactor, dissolved oxygen (DO) was optimized for maximum specific growth and enhanced 3-demethylated colchicine (3-DMC) production. The optimized conditions from shake flasks were scaled-up to 70 l bioreactor and resulted into ∼80% conversion of 20 mM colchicine in 48 h with a volumetric productivity of 6.62 mg l−1 h−1. Scale-up factors were measured as volumetric oxygen transfer coefficient (kLa) i.e., 56 h−1 and impeller tip velocity (Vtip) i.e., 7.065 m s−1, respectively. The kinetic parameters Km, kcat, and kcat/Km of the CYP3A4 enzyme using colchicine as the substrate were determined to be 271 ± 30 μM, 8533 ± 25 min−1, and 31.49 μM min−1, respectively, when IPTG induced recombinant E. coli culture was used.  相似文献   

10.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

11.
In this study, the soap stock as a sole carbon source was used for growing a carotenoid producing yeast (Rhodotorula rubra). The application of soap stock resulted in increase of carotenoids yield up to 5.36 folds when compared with the grown cultures on glucose. On the best Monod equation fitted on the specific growth rate (μ) data, the maximum specific growth rate (μm) and half-saturation concentration (KS) were respectively determined at 0.064 h−1 and 3.26 g L−1 for total fatty acids presented in soap stock. Further tests on the carotenogenesis process were carried out in a cell-immobilized airlift photobioreactor where the natural loofa sponge was used for immobilization of the cells. The performance of the bioreactor was statistically studied by the response surface methodology (RSM) where aeration rate of 0.11 vvm and light irradiation intensity of 2517 Lx provided an optimum condition for producing β-carotene with a specific production rate of 22.65 mg gcell−1 day−1.  相似文献   

12.
《Harmful algae》2011,10(6):531-539
Temporal and spatial variability in the kinetic parameters of uptake of nitrate (NO3), ammonium (NH4+), urea, and glycine was measured during dinoflagellate blooms in Changjiang River estuary and East China Sea coast, 2005. Karenia mikimotoi was the dominant species in the early stage of the blooms and was succeeded by Prorocentrum donghaiense. The uptake of nitrogen (N) was determined using 15N tracer techniques. The results of comparison kinetic parameters with ambient nutrients confirmed that different N forms were preferentially taken up during different stages of the bloom. NO3 (Vmax 0.044 h−1; Ks 60.8 μM-N) was an important N source before it was depleted. NH4+ (Vmax 0.049 h−1; Ks 2.15 μM-N) was generally the preferred N. Between the 2 organic N sources, urea was more preferred when K. mikimotoi dominated the bloom (Vmax 0.020 h−1; Ks 1.35 μM-N) and glycine, considered as a dominant amino acid, was more preferred when P. donghaiense dominated the bloom (Vmax 0.025 h−1; Ks 1.76 μM-N). The change of N uptake preference by the bloom-forming algae was also related to the variation in ambient N concentrations.  相似文献   

13.
The inhibitory effect of ammonium sulfate on a commercial mixed culture, used in biological waste-water treatment was studied under aerobic batch conditions. Several mathematical models of enzyme and growth kinetics including a death factor were analyzed through nonlinear regression to find the best fit to corresponding data of inhibition. The best fit model was found to be the generalized Monod type with a death factor having the biokinetic parameters; μmax 0.681 h−1, Ks 0.224 g dm−3, Ki 56240 g dm−3, K 0.055 g dm−3 and kd 0.052 h−1 to represent the experimental data accurately. The low saturation coefficient value along with high maximum specific growth rate and inhibition coefficient denotes the competitive characteristics of commercial mixed cultures in the biological treatment of high ammonium polluted waste waters.  相似文献   

14.
A thermo-alkaline pectate lyase (BliPelA) gene from an alkaliphilic Bacillus licheniformis strain was cloned and overexpressed in Escherichia coli. Mature BliPelA exhibited maximum activity at pH 11 and 70 °C, and demonstrated cleavage capability on a broad range of substrates such as polygalacturonic acid, pectins, and methylated pectins. The highest specific activity, of 320 U mg−1, was towards polygalacturonic acid. Significant ramie (Boehmeria nivea) fiber weight loss (21.5%) was obtained following enzyme treatment and combined enzyme-chemical treatment (29.3%), indicating a high ramie degumming efficiency of BliPelA. The total activity of recombinant BliPelA reached 1450.1 U ml−1 with a productivity of 48.3 U ml−1 h−1 under high-cell-density cultivation with a glycerol exponential feeding strategy for 30 h in 1-l fed-batch fermenter, and 1380.1 U ml−1 with a productivity of 57.5 U ml−1 h−1 after 24 h under constant glucose feeding in a 20-l fermenter using E. coli as the host. The enzyme yields reached 4.5 and 4.3 g l−1 in 1-l and 20-l fed-batch fermenters, respectively, which are higher than those of most reported alkaline Pels. Based on these promising properties and high-level production, BliPelA shows great potential for application in ramie degumming in textile industry.  相似文献   

15.
《Process Biochemistry》2007,42(1):112-117
A simple fed-batch process was developed using a modified variable specific growth rate feeding strategy for high cell density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-gamma (hIFN-γ). The feeding rate was adjusted to achieve the maximum attainable specific growth rate during fed-batch cultivation. In this method, specific growth rate was changed from a maximum value of 0.55 h−1 at the beginning of feeding and then it was reduced to 0.4 h−1 at induction time.The final concentration of biomass and IFN-γ was reached to ∼115 g l−1 (DCW) and 42.5 g(hIFN-γ) l−1 after 16.5 h, also the final specific yield and overall productivity of recombinant hIFN-γ (rhIFN-γ) were obtained 0.37 g(hIFN-γ) g−1 DCW and 2.57 g(hIFN-γ) l−1 h−1, respectively. According to available data this is the highest specific yield and productivity that has been reported for recombinant proteins production yet.  相似文献   

16.
The extensive prospects of violacein in the pharmaceutical industry have attracted increasing interest. However, the fermentation levels of violacein are currently inadequate to meet the demands of industrial production. This study was undertaken to develop an efficient process for the production of violacein by recombinant Citrobacter freundii. The effects of dissolved oxygen (DO) and pH on cell growth and violacein production in batch cultures were investigated first. When the DO and pH of the medium were controlled at around 25% and 7.0, respectively, the biomass and concentration of violacein were maximized. Based on the consumption of nutrients in the medium observed during batch culture, a fed-batch fermentation strategy with controlled DO and pH was implemented. By continuously feeding glycerol, NH4Cl, and l-tryptophan at a constant feeding rate of 16 mL h−1, the final concentration of violacein reached 4.13 g L−1, which was 4.09-fold higher than the corresponding batch culture, and the maximal dry cell weight (DCW) and average violacein productivity obtained for the fed-batch culture were 3.34 g DCW L−1 and 82.6 mg L−1 h−1, respectively. To date, this is the first report on the efficient production of violacein by genetically engineered strains in a fermentor.  相似文献   

17.
α-Glucuronidase (EC 3.2.1.139) of family GH 115 from Scheffersomyces stipitis is a valuable enzyme for the modification of water-soluble xylan into insoluble biopolymers, due to its unique ability to act on polymeric xylans. The influence of growth rate on the production of α-glucuronidase by recombinant Saccharomyces cerevisiae MH1000pbk10D-glu in glucose-limited fed-batch culture was studied at 14 and 100 L scale. At and below the critical specific growth rate (μcrit) of 0.12 h−1 at 14 L scale, the biomass yield coefficient (Yx/s) remained constant at 0.4 g g−1 with no ethanol production, whereas ethanol yields relative to biomass (keth/x) of up to 0.54 g g−1 and a steady decrease in Yx/s were observed at μ > 0.12 h−1. Production of α-glucuronidase was growth associated at a product yield (kα-glu/x) of 0.45 mg g−1, with the highest biomass (37.35 g/L) and α-glucuronidase (14.03 mg/L) concentrations, were recorded during fed-batch culture at or near to μcrit. Scale-up with constant kLa from 14 to 100 L resulted in ethanol concentrations of up to 2.5 g/L at μ = 0.12 h−1. At this scale, α-glucuronidase yield could be maximised at growth rates below μcrit, to prevent localised high glucose concentration pockets at the feed entry zone that would induce oxido-reductive metabolism. This is the first report where recombinant production of α-glucuronidase (EC 3.2.1.139) by S. cerevisiae was optimised for application at pilot scale.  相似文献   

18.
Fermentations were performed in an external recycle bioreactor using CO2 and d-glucose at feed concentrations of 20 and 40 g L−1. Severe biofilm formation prevented kinetic analysis of suspended cell (‘chemostat’) fermentation, while perlite packing enhanced the volumetric productivity by increasing the amount of immobilised cells. The highest productivity of 6.35 g L−1 h−1 was achieved at a dilution rate of 0.56 h−1. A constant succinic acid yield of 0.69 ± 0.02 g/(g of glucose consumed) was obtained and found to be independent of the dilution rate, transient state and extent of biofilm build-up – approximately 56% of the carbon that formed phosphoenolpyruvate ended up as succinate. Byproduct analysis indicated that pyruvate oxidation proceeded solely via the formate-lyase pathway. Cell growth and corresponding biofilm formation were rapid at dilution rates higher than 0.35 h−1 when the product concentrations were low (succinic acid < 10 g L−1), while minimal growth was observed at succinic acid concentrations above this threshold.  相似文献   

19.
《Aquatic Botany》2005,82(3):181-192
The influence of nitrogen and phosphorus pulses on Chaetomorpha linum (Muller) Kutzing growth and photosynthesis was studied in laboratory experiments. Photosynthesis and growth of C. linum from Tancada lagoon seems limited by both nitrogen and phosphorus, as indicated by the high rate (4.7–11.6 mg O2 g−1 dry weight h−1) of light-saturated photosynthesis (Pm) and growth rates observed under nitrogen plus phosphorus enrichment in relation to enrichment by nitrogen alone (2.9–7.6 mg O2 g−1 dry weight h−1). Significant increase in nitrogen and phosphorus content as percentage of dry weight was observed in C. linum fertilized with a single nutrient or with nitrogen plus phosphorus. In Tancada lagoon, when availability of nitrogen to primary producers is by pulses, an increase of nitrate concentration in the water column (from 6 to 100 μM) has a greater effect on growth of C. linum (growth rate: 0.13 day−1) than an increase in ammonium concentration (from 20 to 100 μM and growth rate: 0.11 day−1). For a given thallus nitrogen content (0.6–1.4% N), both Pm and the photosynthetic efficiency (α) normalized to dry weight were correlated (r2 = 0.73, p < 0.005) indicating that variations in electron transport were coupled to variations in C-fixation capacity. Optimizing both α and Pm may be a general characteristic of thin-structured opportunistic algae in more variable estuarine environments.  相似文献   

20.
Aerobic production-scale processes are constrained by the technical limitations of maximum oxygen transfer and heat removal. Consequently, microbial activity is often controlled via limited nutrient feeding to maintain it within technical operability. Here, we present an alternative approach based on a newly engineered Escherichia coli strain. This E. coli HGT (high glucose throughput) strain was engineered by modulating the stringent response regulation program and decreasing the activity of pyruvate dehydrogenase. The strain offers about three-fold higher rates of cell-specific glucose uptake under nitrogen-limitation (0.6 gGlc gCDW−1 h−1) compared to that of wild type, with a maximum glucose uptake rate of about 1.8 gGlc gCDW−1 h−1 already at a 0.3 h−1 specific growth rate. The surplus of imported glucose is almost completely available via pyruvate and is used to fuel pyruvate and lactate formation. Thus, E. coli HGT represents a novel chassis as a host for pyruvate-derived products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号