首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
After removal of the embryo from developing seeds of Pisum sativum,the ‘empty’ ovules (seed coats without enclosedembryo) were filled with a solution (pH 5.5) containing mannitol(usually 400 mM) to which various salts were added. A solutioncontaining two isotopes ((a) [2H]-sucrose/[–14C]aminoisobutyricacid (AIB) or (b) [3H]valine/[14C]asparagine mixture) was administeredto the plant via the petiole subtending the fruiting node, and[2H]solute and [14C]solute unloading from the seed coat wasmeasured, in pulse-labelling experiments of about 5 h. The presenceof 25 or 50 mM K+ in the ‘empty’ ovule enhancedthe release of sucrose from the seed coat particularly duringthe first hours of the experiment, but the stimulating effectof K+ on the release of labelled solutes derived from aminoacids was much smaller. The presence of 25 mM CaCl2 did notaffect the release of sucrose or amino acids from the seed coat.The effect of K+ on sucrose and amino acid release is explainedas an inhibition of sucrose and amino acid resorption from theseed coat apoplast into seed coat cells, after unloading fromthe seed coat unloading sites. It is suggested that amino acidrelease is much less affected by K+ than sucrose release, becausefar less resorption of amino acids by seed coat parenchyma cellstakes place during amino acid transport into the seed coat cavity. Pisum sativum, pea, assimilate transport, assimilate unloading, seed-coat exudate, seed development, sucrose resorption, surgical treatment  相似文献   

2.
Thecharacteristics of L-lactic acid transport across thetrophoblast basal membrane were investigated and compared with those across the brush-border membrane by using membrane vesicles isolated from human placenta. The uptake ofL-[14C]lactic acid into basal membranevesicles was Na+ independent, and an uphill transport wasobserved in the presence of a pH gradient([H+]out > [H+]in).L-[14C]lactic acid uptake exhibitedsaturation kinetics with a Km value of 5.89 ± 0.68 mM in the presence of a pH gradient.p-Chloromercuribenzenesulfonate and-cyano-4-hydroxycinnamate inhibited the initial uptake, whereas phloretin or 4,4'-diisothiocyanostilbene-2,2'-disulfonate did not.Mono- and dicarboxylic acids suppressed the initial uptake. Inconclusion, L-lactic acid transport in the basal membraneis H+ dependent and Na+ independent, as is alsothe case for the brush-border membrane transport, and itscharacteristics resemble those of monocarboxylic acid transporters.However, there were several differences in the effects of inhibitorsbetween basal and brush-border membrane vesicles, suggesting that thetransporter(s) involved in L-lactic acid transport in thebasal membrane of placental trophoblast may differ from those in thebrush-border membrane.

  相似文献   

3.
The hypothesis that the intracellularNa+ concentration([Na+]i)is a regulator of the epithelialNa+ channel (ENaC) was tested withthe Xenopus oocyte expression systemby utilizing a dual-electrode voltage clamp.[Na+]iaveraged 48.1 ± 2.2 meq (n = 27)and was estimated from the amiloride-sensitive reversal potential.[Na+]iwas increased by direct injection of 27.6 nl of 0.25 or 0.5 MNa2SO4.Within minutes of injection,[Na+]istabilized and remained elevated at 97.8 ± 6.5 meq(n = 9) and 64.9 ± 4.4 (n = 5) meq 30 min after theinitial injection of 0.5 and 0.25 MNa2SO4,respectively. This increase of[Na+]icaused a biphasic inhibition of ENaC currents. In oocytes injected with0.5 MNa2SO4(n = 9), a rapid decrease of inwardamiloride-sensitive slope conductance(gNa) to 0.681 ± 0.030 of control within the first 3 min and a secondary, slowerdecrease to 0.304 ± 0.043 of control at 30 min were observed.Similar but smaller inhibitions were also observed with the injectionof 0.25 MNa2SO4.Injection of isotonicK2SO4(70 mM) or isotonicK2SO4made hypertonic with sucrose (70 mMK2SO4-1.2M sucrose) was without effect. Injection of a 0.5 M concentration ofeitherK2SO4,N-methyl-D-glucamine (NMDG) sulfate, or 0.75 M NMDG gluconate resulted in a much smaller initial inhibition (<14%) and little or no secondary decrease. Thusincreases of[Na+]ihave multiple specific inhibitory effects on ENaC that can betemporally separated into a rapid phase that was complete within 2-3 min and a delayed slow phase that was observed between 5 and 30 min.

  相似文献   

4.
Excised sporophytes of the moss Funaria hygrometrica Hedw. absorbexternally applied sugar through their basal haustorium. Influxof [3H]sucrose is inhibited by metabolic uncouplers, darkness,and by the photosynthetic inhibitor DCMU. The kinetics of uptakeof glucose and sucrose suggest a biphasic mechanism of absorption.Uptake of 3-O-methyl [3H]glucose shows no saturation characteristicsand a passive mechanism is indicated. Externally applied glucoseis rapidly converted to sucrose. Good retention of productsof short-term absorption and metabolism of [3H]glucose was achievedby freeze-substitution. Autoradiography showed dense and uniformlabelling of the transfer cells of the haustorium. Vmax valuesfor uptake of sucrose and glucose, expressed in terms of theweight and external surface area of haustorium, are considerablygreater than typical values from other plant systems. However,if the surface area amplification that is brought about by thedevelopment of wall ingrowths in the transfer cells is takeninto account, fluxes per unit area of plasma membrane are reducedinto the range of typical values. The hypothesis that the surfacearea amplification that characterizes transfer cells is relatedfunctionally to processes of solute transport is therefore supportedby the data.  相似文献   

5.
Effects of unilateral exposure to anisotonic conditions on diffusional water permeability of the isolated rabbit conjunctiva were determined. A segment of the bulbar-palpebral conjunctiva was mounted between Ussing-type hemichambers under short-circuit conditions. Unidirectional water fluxes (Jdw) were measured in either direction by adding 3H2O to one hemichamber and sampling from the other. Electrical parameters were measured simultaneously. Jdw were determined under control isosmotic conditions and after introduction of either hyper- or hypotonic solutions against the tear or stromal sides of the preparations. In each of these four separate conditions, the anisotonic medium produced an 20–30% reduction in Jdw across the tissue, with the exception that to obtain such reduction with increased tonicity from the stromal side (medium osmolality increased by adding sucrose), conditions presumptively inhibiting regulatory volume increase mechanisms (e.g., pretreatment with amiloride and bumetanide) were also required. All reductions in Jdw elicited by the various anisotonic conditions were reversible on restoration of control tonicity. In experiments in which preparations were pretreated with the protein cross-linking agent glutaraldehyde, anisotonicity-elicited reductions in Jdw were not observed. Such reductions were also not observed in the presence of HgCl2, implying the involvement of aquaporins. However, it is possible that the mercurial may be toxic to the epithelium, preventing the tonicity response. Nevertheless, from concomitant changes in transepithelial electrical resistance, as well as [14C]mannitol fluxes, [14C]butanol fluxes, and Arrhenius plots, arguments are presented that the above effects are best explained as a cell-regulated reduction in membrane water permeability that occurs at the level of water-transporting channels. Presumably both apical and basolateral membranes can downregulate their water permeabilities as part of a protective mechanism to help maintain cell volume. unidirectional water fluxes; net water fluxes; Ussing chamber; short-circuit current; electrolyte transport; cell volume regulation; paracellular mannitol permeability  相似文献   

6.
Perennial ryegrass (Lolium perenne L.) cv. S23 was exposed to0, 50, and400 µg m– 3 SO2 for a 29 d period, harvested,and then exposed under the same regime for a further 22 d periodof regrowth. Leaves from plants representing each exposure concentrationwere photosynthetically fed 14CO2 for 5 min at the end of eachperiod. A significant increase in photoassimilation of 14CO2and retention of I4C, concomitant with significant decreasesin [14C]glycine and [14C]serine with increasing SO2 concentration,implied that there was an inhibition of the photorespiratorypathway. At the second harvest, leaves from plants exposed to400 µg m– 3 SO2 also exhibited significant increasesin [14C]sucrose and [14C]fructose.  相似文献   

7.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

8.
Li, Zhong-Yuan, Yasuhiro Suzuki, Mafumi Kurozumi, Hui-QingShen, and Chen-Xia Duan. Removal of a dimeric form of surfactant protein C from mouse lungs: its acceleration by reduction.J. Appl. Physiol. 84(2): 471-478, 1998.Clearance of hydrophobic surfactant-associated protein C (SP-C)and its dimeric form([SP-C]2) wasinvestigated. SP-C and[SP-C]2 obtained fromproteinosis patients were fluorescently labeled and were instilled intomouse lungs as lipid-protein complexes.[SP-C]2 was removedmore slowly than SP-C, with apparent half-lives of 30 and 18 h,respectively. A significant amount of[SP-C]2 was removed asSP-C, and the conversion rate was 0.22 µg · h1 · mouse1.By correcting the removal as SP-C, we obtained 38 h for a possible half-life of [SP-C]2.Conversion from SP-C to[SP-C]2 seemed very slow. Decrease in glutathione (GSH) in the lung inhibited the conversion of [SP-C]2to SP-C and GSH-treatment of liposomes accelerated clearance of[SP-C]2. These resultssuggest that the removal of [SP-C]2 from lung isaccelerated by reduction and that GSH acts as a reducing agent in thelung.

  相似文献   

9.
The hypothesisof this investigation was that insulin and muscle contraction, byincreasing the rate of skeletal muscle glucose transport, would biascontrol so that glucose delivery to the sarcolemma (and t tubule) andphosphorylation of glucose intracellularly would exert more influenceover glucose uptake. Because of the substantial increases in blood flow(and hence glucose delivery) that accompany exercise, we predicted thatglucose phosphorylation would become more rate determining duringexercise. The transsarcolemmal glucose gradient (TSGG; the glucoseconcentration difference across the membrane) is inversely related tothe degree to which glucose transport determines the rate of glucoseuptake. The TSGG was determined by using isotopic methods in consciousrats during euglycemic hyperinsulinemia [Ins; 20 mU/(kg · min); n = 7], during treadmill exercise (Ex,n = 6), and in sedentary,saline-infused rats (Bas, n = 13).Rats received primed, constant intravenous infusions of trace3-O-[3H]methyl-D-glucoseand [U-14C]mannitol.Then2-deoxy-[3H]glucosewas infused for the calculation of a glucose metabolic index(Rg). At the end of experiments,rats were anesthetized, and soleus muscles were excised. Total soleusglucose concentration and the steady-state ratio of intracellular toextracellular3-O-[3H]methyl-D-glucose(which distributes on the basis of the TSGG) were used to calculateranges of possible glucose concentrations ([G]) at theinner and outer sarcolemmal surfaces([G]im and[G]om, respectively).Soleus Rg was increased in Ins andfurther increased in Ex. In Ins, total soleus glucose,[G]om, and the TSGGwere decreased compared with Bas, while[G]im remained near 0. In Ex, total soleus glucose and[G]im were increasedcompared with Bas, and there was not a decrease in[G]om as was observedin Ins. In addition, accumulation of intracellular free2-deoxy-[3H]glucoseoccurred in soleus in both Ex and Ins. Taken together, these dataindicate that, in Ex, glucose phosphorylation becomes an importantlimitation to soleus glucose uptake. In Ins, both glucose delivery andglucose phosphorylation influence the rate of soleus glucose uptakemore than under basal conditions.

  相似文献   

10.
To examine effects of cytosolicNa+, K+, and Cs+ on the voltagedependence of the Na+-K+ pump, we measuredNa+-K+ pump current (Ip)of ventricular myocytes voltage-clamped at potentials(Vm) from 100 to +60 mV. Superfusates weredesigned to eliminate voltage dependence at extracellular pump sites.The cytosolic compartment of myocytes was perfused with patch pipette solutions with a Na+ concentration ([Na]pip)of 80 mM and a K+ concentration from 0 to 80 mM or withsolutions containing Na+ in concentrations from 0.1 to 100 mM and K+ in a concentration of either 0 or 80 mM. When[Na]pip was 80 mM, K+ in pipette solutionshad a voltage-dependent inhibitory effect on Ipand induced a negative slope of theIp-Vm relationship. Cs+ in pipette solutions had an effect onIp qualitatively similar to that ofK+. Increases in Ip with increasesin [Na]pip were voltage dependent. The dielectriccoefficient derived from[Na]pip-Ip relationships at thedifferent test potentials was 0.15 when pipette solutions included 80 mM K+ and 0.06 when pipette solutions were K+ free.

  相似文献   

11.
Blocker-inducednoise analysis of epithelial Na+ channels (ENaCs) was usedto investigate how inhibition of an LY-294002-sensitive phosphatidylinositol 3-kinase (PI 3-kinase) alters Na+transport in unstimulated and aldosterone-prestimulated A6 epithelia. From baseline Na+ transport rates(INa) of 4.0 ± 0.1 (unstimulated) and9.1 ± 0.9 µA/cm2 (aldosterone), 10 µM LY-294002caused, following a relatively small initial increase of transport, acompletely reversible inhibition of transport within 90 min to 33 ± 6% and 38 ± 2% of respective baseline values. Initialincreases of transport could be attributed to increases of channel openprobability (Po) within 5 min to 143 ± 17% (unstimulated) and 142 ± 10% of control (aldosterone) frombaseline Po averaging near 0.5. Inhibition oftransport was due to much slower decreases of functional channeldensities (NT) to 28 ± 4% (unstimulated)and 35 ± 3% (aldosterone) of control at 90 min. LY-294002 (50 µM) caused larger but completely reversible increases ofPo (215 ± 38% of control at 5 min) andmore rapid but only slightly larger decreases ofNT. Basolateral exposure to LY-294002 induced nodetectable effect on transport, Po or NT. We conclude that an LY-294002-sensitive PI3-kinase plays an important role in regulation of transport bymodulating NT and Po ofENaCs, but only when presented to apical surfaces of the cells.

  相似文献   

12.
We evaluated theeffects of acute hyperoxic exposure on alveolar epithelial cell (AEC)active ion transport and on expression ofNa+ pump(Na+-K+-ATPase)and rat epithelial Na+ channelsubunits. Rat AEC were cultivated in minimal defined serum-free medium(MDSF) on polycarbonate filters. Beginning on day5, confluent monolayers were exposedto either 95% air-5% CO2(normoxia) or 95% O2-5%CO2 (hyperoxia) for 48 h.Transepithelial resistance(Rt) andshort-circuit current(Isc) weredetermined before and after exposure.Na+ channel -, -, and-subunit andNa+-K+-ATPase1- and1-subunit mRNA levels werequantified by Northern analysis.Na+ pump1- and1-subunit protein abundance wasquantified by Western blotting. After hyperoxic exposure,Isc across AECmonolayers decreased by ~60% at 48 h relative to monolayersmaintained under normoxic conditions.Na+ channel -subunit mRNAexpression was reduced by hyperoxia, whereas - and -subunit mRNAexpression was unchanged. Na+ pump1-subunit mRNA was unchanged,whereas 1-subunit mRNA was decreased ~80% by hyperoxia in parallel with a reduction in1-subunit protein. Becausekeratinocyte growth factor (KGF) has recently been shown to upregulateAEC active ion transport and expression ofNa+-K+-ATPaseunder normoxic conditions, we assessed the ability of KGF to preventhyperoxia-induced changes in active ion transport by supplementingmedium with KGF (10 ng/ml) from day2. The presence of KGF prevented theeffects of hyperoxia on ion transport (as measured byIsc) relativeto normoxic controls. Levels of1 mRNA and protein wererelatively preserved in monolayers maintained in MDSF and KGF comparedwith those cultivated in MDSF alone. These results indicate that AECnet active ion transport is decreased after 48 h of hyperoxia, likelyas a result of a decrease in the number of functionalNa+ pumps per cell. KGF largelyprevents this decrease in active ion transport, at least in part, bypreserving Na+ pump expression.

  相似文献   

13.
Schepkin, V. D., I. O. Choy, and T. F. Budinger. Sodiumalterations in isolated rat heart during cardioplegic arrest. J. Appl. Physiol. 81(6):2696-2702, 1996.Triple-quantum-filtered (TQF) Na nuclearmagnetic resonance (NMR) without chemical shift reagent is used toinvestigate Na derangement in isolated crystalloid perfused rat heartsduring St. Thomas cardioplegic (CP) arrest. Theextracellular Na contribution to the NMR TQF signal of a rat heart isfound to be 73 ± 5%, as determined by wash-out experiments atdifferent moments of ischemia and reperfusion. With the use of thiscontribution factor, the estimated intracellular Na([Na+]i)TQF signal is 222 ± 13% of preischemic level after 40 min of CParrest and 30 min of reperfusion, and the heart rate pressure productrecovery is 71 ± 8%. These parameters aresignificantly better than for stop-flow ischemia: 340 ± 20% and 6 ± 3%, respectively. At 37°C, the initial delay of 15 min in[Na+]igrowth occurs during CP arrest along with reduced growth later (~4.0%/min) in comparison with stop-flow ischemia (~6.7%/min). The hypothermia (21°C, 40 min) for the stop-flow ischemia and CPdramatically decreases the[Na+]igain with the highest heart recovery for CP (~100%). These studiesconfirm the enhanced sensitivity of TQF NMR to[Na+]iand demonstrate the potential of NMR without chemical shift reagent tomonitor[Na+]iderangements.

  相似文献   

14.
Water transport and the distribution of aquaporin-1 in pulmonary air spaces   总被引:5,自引:0,他引:5  
Effros, R. M., C. Darin, E. R. Jacobs, R. A. Rogers, G. Krenz, and E. E. Schneeberger. Water transport and thedistribution of aquaporin-1 in pulmonary air spaces.J. Appl. Physiol. 83(3): 1002-1016, 1997.Recent evidence suggests that water transport between the pulmonary vasculature and air spaces can be inhibited byHgCl2, an agent that inhibitswater channels (aquaporin-1 and -5) of cell membranes. In the presentstudy of isolated rat lungs, clearances of labeled(3HOH) and unlabeled water werecompared after instillation of hypotonic or hypertonic solutions intothe air spaces or injection of a hypotonic bolus into the pulmonaryartery. The clearance of 3HOHbetween the air spaces and perfusate after intratracheal instillation and from the vasculature to the tissues after pulmonary arterial injections was invariably greater than that of unlabeled water, indicating that osmotically driven transport of water is limited bypermeability of the tissue barriers rather than the rate of perfusion.Exposure to 0.5 mM HgCl2 in theperfusate and air-space solution reduced the product of the filtrationcoefficient and surface area(PfS)of water from the air spaces to the perfusate by 28% afterinstillation of water into the trachea. In contrast, perfusion of 0.5 mM HgCl2 in air-filled lungs reducedPfSof the endothelium by 86% after injections into the pulmonary artery, suggesting that much of the action of this inhibitor is on the endothelial surfaces. Confocal laser scanning microscopy demonstrated that aquaporin-1 is on mouse pulmonary endothelium. No aquaporin-1 wasfound on alveolar type I cells with immunogold transmission electronmicroscopy, but small amounts were present on some type II cells.

  相似文献   

15.
We have clonedand functionally characterized the human Na+-dependenthigh-affinity dicarboxylate transporter (hNaDC3) from placenta. ThehNaDC3 cDNA codes for a protein of 602 amino acids with 12 transmembrane domains. When expressed in mammalian cells, the clonedtransporter mediates the transport of succinate in the presence ofNa+ [concentration of substrate necessary for half-maximaltransport (Kt) for succinate = 20 ± 1 µM]. Dimethylsuccinate also interacts with hNaDC3. TheNa+-to-succinate stoichiometry is 3:1 and concentration ofNa+ necessary for half-maximal transport(KNa+0.5) is 49 ± 1 mM as determined by uptake studies withradiolabeled succinate. When expressed in Xenopuslaevis oocytes, hNaDC3 induces Na+-dependent inwardcurrents in the presence of succinate and dimethylsuccinate. At amembrane potential of 50 mV,KSuc0.5 is 102 ± 20 µM andKNa+0.5 is 22 ± 4 mM as determined by the electrophysiological approach. Simultaneous measurements of succinate-evoked charge transfer andradiolabeled succinate uptake in hNaDC3-expressing oocytes indicate acharge-to-succinate ratio of 1:1 for the transport process, suggestinga Na+-to-succinate stoichiometry of 3:1. pH titration ofcitrate-induced currents shows that hNaDC3 accepts preferentially thedivalent anionic form of citrate as a substrate. Li+inhibits succinate-induced currents in the presence of Na+.Functional analysis of rat-human and human-rat NaDC3 chimeric transporters indicates that the catalytic domain of the transporter lies in the carboxy-terminal half of the protein. The humanNaDC3 gene is located on chromosome20q12-13.1, as evidenced by fluorescent in situ hybridization. Thegene is >80 kbp long and consists of 13 exons and 12 introns.

  相似文献   

16.
Muchevidence supports the view that hypoxic/ischemic injury is largely dueto increased intracellular Ca concentration([Ca]i) resulting from 1) decreasedintracellular pH (pHi), 2) stimulated Na/H exchangethat increases Na uptake and thus intracellular Na (Nai),and 3) decreased Na gradient that decreases or reverses net Catransport via Na/Ca exchange. The Na/H exchanger (NHE) is alsostimulated by hypertonic solutions; however, hypertonic media mayinhibit NHE's response to changes in pHi (Cala PM and Maldonado HM. J Gen Physiol 103: 1035-1054, 1994). Thus wetested the hypothesis that hypertonic perfusion attenuates acid-induced increases in Nai in myocardium and, thereby, decreasesCai accumulation during hypoxia. Rabbit hearts wereLangendorff perfused with HEPES-buffered Krebs-Henseleit solutionequilibrated with 100% O2 or 100% N2. Hypertonic perfusion began 5 min before hypoxia or normoxicacidification (NH4Cl washout). Nai,[Ca]i, pHi, and high-energyphosphates were measured by NMR. Control solutions were 295 mosM, andhypertonic solutions were adjusted to 305, 325, or 345 mosM by additionof NaCl or sucrose. During 60 min of hypoxia (295 mosM),Nai rose from 22 ± 1 to 100 ± 10 meq/kg dry wt while[Ca]i rose from 347 ± 11 to 1,306 ± 89 nM.During hypertonic hypoxic perfusion (325 mosM), increases inNai and [Ca]i were reduced by 65 and 60%, respectively (P < 0.05). Hypertonicperfusion also diminished Na uptake after normoxic acidification by87% (P < 0.05). The data are consistent with the hypothesisthat mild hypertonic perfusion diminishes acid-induced Na accumulationand, thereby, decreases Na/Ca exchange-mediated Caiaccumulation during hypoxia.

  相似文献   

17.
Insulin enhancesNa+-K+ pump activity in various noncardiactissues. We examined whether insulin exposure in vitro regulates Na+-K+ pump function in rabbit ventricularmyocytes. Pump current (Ip) was measured using thewhole-cell patch-clamp technique at test potentials(Vms) from 100 to +60 mV. When theNa+ concentration in the patch pipette([Na]pip) was 10 mM, insulin caused aVm-dependent increase in Ip.The increase was ~70% when Vm was at nearphysiological diastolic potentials. This effect persisted afterelimination of extracellular voltage-dependent steps and whenK+ and K+-congeners were excluded from thepatch pipettes. When [Na]pip was 80 mM, causingnear-maximal pump stimulation, insulin had no effect, suggesting thatit did not cause an increase in membrane pump density. Effects oftyrphostin A25, wortmannin, okadaic acid, or bisindolylmaleimide I inpipette solutions suggested that the insulin-induced increase inIp involved activation of tyrosine kinase,phosphatidylinositol 3-kinase, and protein phosphatase 1, whereasprotein phosphatase 2A and protein kinase C were not involved.

  相似文献   

18.
Assimilate distribution in leaves of Lolium temulentum was establishedby root absorption of [14C]sucrose and after exposure to 14CO2.Age determined the amount of carbon assimilated, with more labelbeing incorporated during expansion than at maturity. Duringsenescence 14C assimilation was much lower. Ethanol-solubleextracts from various tissues of root-labelled plants containedmost of the radioactivity chiefly in basic and acidic compounds.The neutral fraction was composed predominantly of sucrose. Sucrose was comparably labelled in leaves from plants fed equalamounts of either [14C]sucrose, glucose, or fructose and onlytraces of labelled monosaccharides appeared in extracts. Radioactive sucrose was translocated rapidly from mature leaveswhereas, in the expanding leaf, carbon incorporation was directedtowards growth and the greater proportion of label present atligule formation was in ethanol-insoluble material. Induced senescence, of a mature leaf fed during expansion, produceda rapid loss from the pool of insoluble 14C. This was accompaniedby a reduction in the contents of chlorophyll and soluble proteinand an accumulation of amino acids. The onset of senescencecaused changes in leaf sugar levels which were correlated withincreased rates of respiration.  相似文献   

19.
To study and define the early time-dependent response (6 h) ofblocker-sensitive epithelial Na+channels (ENaCs) to stimulation ofNa+ transport by aldosterone, weused a new modified method of blocker-induced noise analysis todetermine the changes of single-channel current (iNa) channel open probability(Po), andchannel density(NT) undertransient conditions of transport as measured by macroscopic short-circuit currents(Isc). In threegroups of experiments in which spontaneous baseline rates of transportaveraged 1.06, 5.40, and 15.14 µA/cm2, stimulation of transportoccurred due to increase of blocker-sensitive channels.NT variedlinearly over a 70-fold range of transport (0.5-35µA/cm2). Relatively small andslow time-dependent but aldosterone-independent decreases ofPo occurredduring control (10-20% over 2 h) and aldosterone experimentalperiods (10-30% over 6 h). When thePo of control andaldosterone-treated tissues was examined over the 70-fold extendedrange of Na+ transport,Po was observedto vary inversely withIsc, falling from~0.5 to ~0.15 at the highest rates ofNa+ transport or ~25% per3-fold increase of transport. Because decreases ofPo from anysource cannot explain stimulation of transport by aldosterone, it isconcluded that the early time-dependent stimulation ofNa+ transport in A6 epithelia isdue exclusively to increase of apical membraneNT.

  相似文献   

20.
We hypothesized that highextracellular K+ concentration([K+]o)-mediated stimulation ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) may result in a net gain of K+ and Cland thus lead to high-[K+]o-induced swellingand glutamate release. In the current study, relative cell volumechanges were determined in astrocytes. Under 75 mM[K+]o, astrocytes swelled by 20.2 ± 4.9%. This high-[K+]o-mediated swelling wasabolished by the NKCC1 inhibitor bumetanide (10 µM, 1.0 ± 3.1%; P < 0.05). Intracellular36Cl accumulation was increased from acontrol value of 0.39 ± 0.06 to 0.68 ± 0.05 µmol/mgprotein in response to 75 mM [K+]o. Thisincrease was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na+ concentration([Na+]i) was reduced from 19.1 ± 0.8 to16.8 ± 1.9 mM by bumetanide (P < 0.05).[Na+]i decreased to 8.4 ± 1.0 mM under75 mM [K+]o and was further reduced to5.2 ± 1.7 mM by bumetanide. In addition, the recovery rate of[Na+]i on return to 5.8 mM[K+]o was decreased by 40% in the presenceof bumetanide (P < 0.05). Bumetanide inhibitedhigh-[K+]o-induced 14C-labeledD-aspartate release by ~50% (P < 0.05).These results suggest that NKCC1 contributes tohigh-[K+]o-induced astrocyte swelling andglutamate release.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号