首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Small unilamellar liposomes containing carboxyfluorescein (CF) and composed of various unsaturated and saturated phospholipids with or without cholesterol were incubated in the presence of mouse serum at 37°C. Liposomes composed of egg L-α-phosphatidylcholine (PC), L-α-dioleoylphosphatidylcholine (DOPC) or sphingomyelin (SM) became rapidly permeable to entrapped CF but incorporation of cholesterol into such liposomes reduced CF leakage. Under similar conditions, CF leakage from cholesterol-free liposomes composed of saturated phospholipids of increasing fatty acid chain length was dependant on the liquid-crystalline phase transition temperature (Tc) of the phospholipid component. Thus, L-α-dilaureoylphos-phatidylcholine (DLPC), L-α-dimyristoyl phosphatidylcholine (DMPC) and L-α-dipalmitoylphosphatidylcholine (DPPC) with Tc's below or near the temperature of the incubation (37°C) released CF rapidly whereas L-α-diheptedecanoyl phosphatidylcholine (DHPC), L-α-distearoylphosphatidylcholine (DSPC) and hydrogenated egg PC (HPC) liposomes with Tc's above 37°C retained the dye quantitatively. After incorporation of cholesterol into liposomes composed of saturated phospholipids, CF release was reduced for DLPC and DMPC and increased for DPPC, DSPC, DHPC and HPC vesicles. Liposomes with or without cholesterol exhibiting greatest stability (in terms of CF retention) in the presence of serum were injected intravenously into mice and rates of clearance of quenched CF from the circulation measured. Observed clearance rates were linear and, when liposomes contained tritiated phospholipid, identical to those of the radiolabel suggesting retention of liposomal integrity in the intravascular space. However, half-lifes of liposomes ranging from 0.1 to 16 h did not correlate with the physical characteristics of their phospholipid component. After intraperitoneal injection, there was quantitative entry of quenched CF (stable liposomes) into the blood from which it was eliminated at rates corresponding to those observed after intravenous injection. These results suggest that solute retention by liposomes and their half-life in the circulation can be controlled by the appropriate manipulation of liposomal membrane fluidity and composition.  相似文献   

2.
Lecithin: cholesterol acyltransferase (LCAT) was more highly activated by apolipoprotein A-I (apoA-I) with dimyristoyl phosphatidylcholine (DMPC) than with dilinoleoyl phosphatidylcholine (DLPC) when lipid dispersion of cholesterol and each phosphatidylcholine was used as a substrate. When the enzyme reactions were activated by whole apolipoproteins of high density lipoproteins (HDL), DLPC was more available to the LCAT reaction than DMPC with high concentrations of apoHDL in an incubation mixture. However, no detectable enzyme reaction was observed with dipalmitoyl phosphatidylcholine (DPPC) under both conditions. On the other hand, all of these phosphatidylcholines acted as substrates of LCAT when they were incorporated into HDL coupled to Sepharose. The order of their relative reactivities to cholesterol was DMPC, DPPC, AND DLPC under the conditions used.  相似文献   

3.
Interaction of melittin with phosphatidylcholine molecules in pure vesicles, binary mixtures and a ternary mixture of dimyristoylphosphatidylcholine IDMPC), dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated by differential scanning calorimetry. Melittin binds preferentially with DMPC, and results in segregation of DMPC in binary mixtures of DMPC/DPPC and DMPC/DSPC and in a ternary mixture of DMPC/DPPC/DSPC. The results indicate that the hydrophobic part of peptide interacts preferentially with the phospholipid which has the same size of hydrophobic region or fatty acyl chains.  相似文献   

4.
Phospholipase A(2) (PLA(2)) is an interfacially active enzyme whose hydrolytic activity is known to be enhanced in one-component phospholipid bilayer substrates exhibiting dynamic micro-heterogeneity. In this study the activity of PLA(2) towards large unilamellar vesicles composed of DPPC:SMPC and DMPC:DSPC:SMPC is investigated using fluorescence and HPLC techniques. Phase diagrams of the mixtures are established by differential scanning calorimetry and the PLA(2) activity, monitored by the lag time, is correlated with the phase behavior of the mixtures. In addition, the degree of lipid hydrolysis in the DMPC:DSPC:SMPC lipid mixtures is detected by HPLC. The PLA(2) activity is found to be significantly increased in the temperature range of the coexistence region where the lipid mixtures exhibit lateral gel-fluid phase separation. Furthermore, in the entire temperature range it is demonstrated that PLA(2) preferentially hydrolyzes the short chain DMPC lipid. This discriminative effect becomes less pronounced when the asymmetric lipid SMPC is present in the lipid substrate. Inclusion of SMPC into either DPPC or DMPC:DSPC vesicles prolongs the lag time. The results clearly show that the PLA(2) activity is significantly enhanced by lipid bilayer micro-heterogeneity in both one-component and multi-component lipid bilayer substrates. The PLA(2) activity measurements are discussed in terms of dynamic gel-fluid lipid domain formation due to density fluctuations and static lipid domain formation due to gel-fluid phase separation.  相似文献   

5.
The interaction between amphotericin B and egg yolk phosphatidylcholine, dimyristoyl (DMPC) and dipalmitoyl phosphatidylcholine (DPPC) phospholipid bilayer vesicles has been monitored by the circular dichroism (CD) spectra of amphotericin B at a 1 · 10?5 M concentration. This method has revealed that amphotericin B may be present in a number of different forms depending on the time elapsed after the mixing, the cholesterol content of the vesicles and the vesicles' physical state. Some striking features of these CD detected species are the following: with egg yolk phosphatidylcholine and a molar cholesterol percentage lower than 25, at 25°C several forms are coexistent, their amount is time-dependent; with dipalmitoyl or dimyristoyl phosphatidylcholines without cholesterol or with a cholesterol molar percentage lower than 25, in the gel state, a form different from the former appears very rapidly; with egg yolk phosphatidylcholine, DMPC and DPPC at a molar cholesterol percentage between 25 and 50 a new form is monitored, identical in the three cases and observed in the liquid crystalline state as well as in the gel state. In the case of the three phospholipids without cholesterol a definite interaction with the antibiotic is observed but with different characteristics according to the nature of lipid.With amphotericin B ‘Fungizone’ the same species are monitored but their appearance is much slower.Two explanations are proposed for the origin of the discrepancies between CD and electronic absorption.  相似文献   

6.
Ouellet M  Doucet JD  Voyer N  Auger M 《Biochemistry》2007,46(22):6597-6606
We have investigated the interaction between a synthetic amphipathic 14-mer peptide and model membranes by solid-state NMR. The 14-mer peptide is composed of leucines and phenylalanines modified by the addition of crown ethers and forms a helical amphipathic structure in solution and bound to lipid membranes. To shed light on its membrane topology, 31P, 2H, 15N solid-state NMR experiments have been performed on the 14-mer peptide in interaction with mechanically oriented bilayers of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylcholine (DPPC). The 31P, 2H, and 15N NMR results indicate that the 14-mer peptide remains at the surface of the DLPC, DMPC, and DPPC bilayers stacked between glass plates and perturbs the lipid orientation relative to the magnetic field direction. Its membrane topology is similar in DLPC and DMPC bilayers, whereas the peptide seems to be more deeply inserted in DPPC bilayers, as revealed by the greater orientational and motional disorder of the DPPC lipid headgroup and acyl chains. 15N{31P} rotational echo double resonance experiments have also been used to measure the intermolecular dipole-dipole interaction between the 14-mer peptide and the phospholipid headgroup of DMPC multilamellar vesicles, and the results indicate that the 14-mer peptide is in contact with the polar region of the DMPC lipids. On the basis of these studies, the mechanism of membrane perturbation of the 14-mer peptide is associated to the induction of a positive curvature strain induced by the peptide lying on the bilayer surface and seems to be independent of the bilayer hydrophobic thickness.  相似文献   

7.
A phenomenological model is proposed to describe the membrane phase equilibria in binary mixtures of saturated phospholipids with different acyl-chain lengths. The model is formulated in terms of thermodynamic and thermomechanic properties of the pure lipid bilayers, specifically the chain-melting transition temperature and enthalpy, the hydrophobic bilayer thickness, and the lateral area compressibility modulus. The model is studied using a regular solution theory made up of a set of interaction parameters which directly identify that part of the lipid-lipid interaction which is due to hydrophobic mismatch of saturated chains of different lengths. It is then found that there is effectively a single universal interaction parameter which, in the full composition range, describes the phase equilibria in mixtures of DMPC/DPPC, DPPC/DSPC, DMPC/DSPC, and DLPC/DSPC, in excellent agreement with experimental measurements. The model is used to predict the variation with temperature and composition of the specific heat, as well as of the average membrane thickness and area in each of the phases. Given the value of the universal interaction parameter, the model is then used to predict the phase diagrams of binary mixtures of phospholipids with different polar head groups, e.g., DPPC/DPPE, DMPC/DPPE and DMPE/DSPC. By comparison with experimental results for these mixtures, it is shown that difference in acyl-chain lengths gives the major contribution to deviation from ideal mixing. Application of the model to mixtures with non-saturated lipids is also discussed.  相似文献   

8.
We used liposomes made with phospholipids of fatty acid chain length ranging from C12:0 to C16:0 to modify the cAMP dependent protein kinase (PK) activity of HT 29 cells induced by VIP or forskolin. Both VIP and forskolin effects were inhibited in dilauroylphosphatidylcholine (DLPC) treated cells. PK activity was slightly lowered when cells were treated by dimyristoylphosphatidylcholine (DMPC) liposomes. However neither VIP nor forskolin-induced PK activities were affected with dipalmitoylphosphatidylcholine (DPPC) liposomes. Furthermore, the binding of [125I]VIP to DLPC treated cells was drastically lowered whereas no change was observed when cells were incubated with DMPC or DPPC liposomes. On the other hand, the interaction of HT 29 cells with DLPC vesicles provoked a decrease in membrane cholesterol content with subsequent increase in membrane fluidity. These findings provide evidence that, in HT 29 cells, the mechanisms of VIP-receptor interaction and of adenylate cyclase activation is lipid dependent and is regulated by membrane fluidity.  相似文献   

9.
Giant unilamellar vesicles (GUVs) composed of different phospholipid binary mixtures were studied at different temperatures, by a method combining the sectioning capability of the two-photon excitation fluorescence microscope and the partition and spectral properties of 6-dodecanoyl-2-dimethylamino-naphthalene (Laurdan) and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE). We analyzed and compared fluorescence images of GUVs composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DLPC/DPPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DLPC/DSPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-diarachidoyl-sn-glycero-3-phosphocholine (DLPC/DAPC), 1, 2-dimyristoyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DMPC/DSPC) (1:1 mol/mol in all cases), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine/1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPE/DMPC) (7:3 mol/mol) at temperatures corresponding to the fluid phase and the fluid-solid phase coexistence. In addition, we studied the solid-solid temperature regime for the DMPC/DSPC and DMPE/DMPC mixtures. From the Laurdan intensity images the generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domains. We found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region for all of the lipid mixtures. At temperatures corresponding to phase coexistence we observed concurrent fluid and solid domains in the GUVs independent of the lipid mixture. In all cases the lipid solid domains expanded and migrated around the vesicle surface as we decreased the temperature. The migration of the solid domains decreased dramatically at temperatures close to the solid-fluid-->solid phase transition. For the DLPC-containing mixtures, the solid domains showed line, quasicircular, and dendritic shapes as the difference in the hydrophobic chain length between the components of the binary mixture increases. In addition, for the saturated PC-containing mixtures, we found a linear relationship between the GP values for the fluid and solid domains and the difference between the hydrophobic chain length of the binary mixture components. Specifically, at the phase coexistence temperature region the difference in the GP values, associated with the fluid and solid domains, increases as the difference in the chain length of the binary mixture component increases. This last finding suggests that in the solid-phase domains, the local concentration of the low melting temperature phospholipid component increases as the hydrophobic mismatch decreases. At the phase coexistence temperature regime and based on the Laurdan GP data, we observe that when the hydrophobic mismatch is 8 (DLPC/DAPC), the concentration of the low melting temperature phospholipid component in the solid domains is negligible. This last observation extends to the saturated PE/PC mixtures at the phase coexistence temperature range. For the DMPC/DSPC we found that the nonfluorescent solid regions gradually disappear in the solid temperature regime of the phase diagram, suggesting lipid miscibility. This last result is in contrast with that found for DMPE/DMPC mixtures, where the solid domains remain on the GUV surface at temperatures corresponding to that of the solid region. In all cases the solid domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This last finding extends previous observations of GUVs composed of DPPE/DPPC and DLPC/DPPC mixtures (, Biophys. J. 78:290-305).  相似文献   

10.
The interaction of organophosphorus insecticides bromfenvinfos and methyl bromfenvinfos with model and native membranes was investigated by the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe located in the hydrophobic core of the bilayer and 1,3-bis-(1-pyrene)propane, a probe distributed in the outer region of the bilayer. DPH reported a broadening of the transition profile and solidifying effects in the fluid phase of liposomes formed from dimyristoyl (DMPC), dipalmitoyl (DPPC), and distearoyl (DSPC) phosphatidylcholine in the presence of the insecticides. A shift of the transition temperature towards a lower temperature was observed in DPPC- and DSPC-bromfenvinfos-treated vesicles. Py(3)Py detected an ordering effect of the insecticides in the fluid state of the lipids and abolished pre-transition in DPPC and DSPC vesicles. These results suggest that the insecticides localize in the co-operative region of the bilayer. Cholesterol added to DMPC decreased the influence of the insecticides as reported by both DPH and Py(3)Py. The effect of the insecticides on the fluidity of some native membranes, namely erythrocytes, lymphocytes, brain microsomes, and sarcoplasmic reticulum, depended on the cholesterol content in these membranes, the higher the cholesterol content, the smaller the solidifying effect. The physical mechanism of action of the insecticides on membrane lipids can be similar to that of cholesterol. All observed effects were more pronounced for bromfenvinfos than for its methylated analogue which correlates with the toxicity of these compounds for mammals.  相似文献   

11.
The products resulting from the association of human apo A-I with binary phospholipid mixtures of dimyristoyl phosphatidylcholine (DMPC) and either dipalmitoyl (DPPC) or distearoyl (DSPC) phosphatidylcholine have been isolated and characterized. Effective lipid . protein complex formation was found to occur at the onset temperature for melting of the gel state, and equal incorporation of both lipid components of the binary mixture was observed. Two sizes of products were obtained, one containing 2 A-I molecules per complex and the other containing 3; the proportions of these two products depended upon the initial phospholipid/protein ratio employed. these two product species were found to be resolvable by density gradient centrifugation as well as gel filtration, reflecting substantial differences in composition as well as size. The ratio of DMPC to DPPC or DSPC was the same in the isolated complexes as in the initial mixture, suggesting that th protein does not associate preferentially with the fluid phase lipid, but with lipid domains in which the components are randomly distributed. Electron microscopy of recombinant particles containing a 2:1 ratio (w/w) of DSPC to DMPC revealed stacks of discs whose thickness was proportionately greater than for discs containing DMPC alone. Also of significance was the finding that recombinant discs containing 3 A-I molecules possessed a diameter approximately 1.5 times larger than recombinant discs containing 2 A-I molecules. These data are consistent with the model for the recombinant particles described by Tall et al. (Tall, A.R., Small, D.M., Deckelbau, R.J., and Shipley, G.G. (1977) J. Biol. Chem. 252; 4701-4711), in which the phospholipid is found as a circular bilayer, the thickness of which is dependent upon the length of the acyl chain, and around which the protein is distributed as an annulus.  相似文献   

12.
Gramicidin A was studied by continuous wave electron spin resonance (CW-ESR) and by double-quantum coherence electron spin resonance (DQC-ESR) in several lipid membranes (using samples that were macroscopically aligned by isopotential spin-dry ultracentrifugation) and vesicles. As a reporter group, the nitroxide spin-label was attached at the C-terminus yielding the spin-labeled product (GAsl). ESR spectra of aligned membranes containing GAsl show strong orientation dependence. In DPPC and DSPC membranes at room temperature the spectral shape is consistent with high ordering, which, in conjunction with the observed high polarity of the environment of the nitroxide, is interpreted in terms of the nitroxide moiety being close to the membrane surface. In contrast, spectra of GAsl in DMPC membranes indicate deeper embedding and tilt of the NO group. The GAsl spectrum in the DPPC membrane at 35 degrees C (the gel to Pbeta phase transition) exhibits sharp changes, and above this temperature becomes similar to that of DMPC. The dipolar spectrum from DQC-ESR clearly indicates the presence of pairs in DMPC membranes. This is not the case for DPPC, rapidly frozen from the gel phase; however, there are hints of aggregation. The interspin distance in the pairs is 30.9 A, in good agreement with estimates for the head-to-head GAsl dimer (the channel-forming conformation), which matches the hydrophobic thickness of the DMPC bilayer. Both DPPC and DSPC, apparently as a result of hydrophobic mismatch between the dimer length and bilayer thickness, do not favor the channel formation in the gel phase. In the Pbeta and Lalpha phases of DPPC (above 35 degrees C) the channel dimer forms, as evidenced by the DQC-ESR dipolar spectrum after rapid freezing. It is associated with a lateral expansion of lipid molecules and a concomitant decrease in bilayer thickness, which reduces the hydrophobic mismatch. A comparison with studies of dimer formation by other physical techniques indicates the desirability of using low concentrations of GA (approximately 0.4-1 mol %) accessible to the ESR methods employed in the study, since this yields non-interacting dimer channels.  相似文献   

13.
V Schram  H N Lin    T E Thompson 《Biophysical journal》1996,71(4):1811-1822
The influence of the lipid mixing properties on the lateral organization in a two-component, two-phase phosphatidylcholine bilayer was investigated using both an experimental (fluorescence recovery after photobleaching (FRAP)) and a simulated (Monte Carlo) approach. With the FRAP technique, we have examined binary mixtures of 1-stearoyl-2-capryl-phosphatidylcholine/1,2-distearoyl-phosphat idylcholine (C18C10PC/DSPC), and 1-stearoyl-2-capryl-phosphatidylcholine/1,2-dipalmitoyl-phospha tid ylcholine (C18C10PC/DPPC). Comparison with the 1,2-dimyristoyl-phosphatidylcholine/1,2-distearoyl-phosphatidylcholine (DMPC/DSPC) previously investigated by FRAP by Vaz and co-workers (Biophys. J., 1989, 56:869-876) shows that the gel phase domains become more effective in restricting the diffusion coefficient when the ideality of the mixture increases (i.e., in the order C18C10PC/DSPC-->C18C10PC/DPPC-->DMPC/DSPC). However, an increased lipid miscibility is accompanied by an increasing compositional dependence: the higher the proportion of the high-temperature melting component, the less efficient the gel phase is in compartmentalizing the diffusion plane, a trend that is best accounted for by a variation of the gel phase domain shape rather than size. Computer-simulated fluorescence recoveries obtained in a matrix obstructed with obstacle aggregates of various fractal dimension demonstrate that: 1) for a given obstacle size and area fraction, the relative diffusion coefficient increases linearly with the obstacle fractal dimension and 2) aggregates with a lower fractal dimension are more efficient in compartmentalizing the diffusion plane. Comparison of the simulated with the experimental mobile fractions strongly suggests that the fractal dimension of the gel phase domains increases with the proportion of high-temperature melting component in DMPC/DSPC and (slightly) in C18C10PC/DPPC.  相似文献   

14.
The effect of a series of n-alcohols on the permeability of small, unilamellar dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC) and distearoyl phosphatidylcholine (DSPC) vesicles at the gel-to-liquid crystal phase transition temperature was investigated. It was found that the permeability took the form of the transient lysis of a fraction of the population of vesicles. The effect on this lysis of the n-alcohols was seen to be very chain-length dependent, with a minimum at n = 8 (octan-1-ol) for DPPC vesicles. A similar minimum was observed in the presence of 0.1 mM Triton X-100, but the detergent could then interact with certain of the alcohols to produce permanent channels. The results are discussed in terms of the semi-empirical model of Brasseur et al. (1985) Biochim. Biophys. Acta 814, 227-236, for the interaction of the n-alcohols with a DPPC membrane. The effect of various n-alcohols on the outer and inner monolayers of DPPC vesicles was also studied and the results related to their fluidising effect, allowing channels to open at the phase transition temperature.  相似文献   

15.
31P- and 1H-NMR spectroscopy of small, unilamellar egg yolk phosphatidylcholine (PC) vesicles in the presence of the lanthanide ion Dy3+ have been used to study the effect of various n-alcohols on the permeability induced by the action of the enzyme phospholipase A2 (PLA2). The method allows the monitoring of the number of PC and lysoPC molecules in the outer and inner monolayers. The results indicate that the initial rate of hydrolysis of PC by PLA2 is increased by all the n-alcohols but in a chain-length dependent manner and that the maximum rate occurs at n = 8 (octan-1-ol). The subsequent rate is dependent upon the rate of transbilayer lipid exchange (flip-flop) of PC molecules from the inner to the outer monolayer. The vesicles only become permeable to the Dy3+ ions when lysoPC is mobilised in the flip-flop process of exchange of lipid molecules between the two monolayers. The n-alcohols affect both the time taken to initiate flip-flop of inner monolayer PC and the subsequent rate of permeability to Dy3+. The n-alcohols are seen to affect all the above rates in an identical chain-length dependent manner, indicating a common cause for all observations which we identify as the degree of clustering of the n-alcohol molecules in the bilayer. The results are discussed in terms of the chain-length dependent mechanism of n-alcohol interactions with the membrane and the mechanism by which the vesicles become permeable to Dy3+ ions.  相似文献   

16.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (T(m)=24 degrees C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at T(m) but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at T(m). These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above T(m) in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above T(m), because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   

17.
Enzyme electrodes have been described for measuring glucose but have been limited by the saturation kinetics of the glucose oxidase not allowing clinically relevant glucose concentrations to be measured (0-25 mM). One way of alleviating this problem is to use diffusion-controlled membranes which result in the enzyme experiencing a smaller substrate concentration than that of the bulk solution. As an extension of this concept we have encapsulated glucose oxidase in liposomes whereby the lipid bilayer wall provides the diffusion-limiting membrane as well as providing a biocompatible layer which is of particular relevance when blood glucose is to be measured. Linear ranges were found to embrace the required glucose concentrations and moreover by using liposomes prepared from different lipids, e.g., dimyristoyl (14:0) phosphatidylcholine (DMPC), dipalmitoyl (16:0) phosphatidylcholine (DPPC) and distearoyl (18:0) phosphatidylcholine (DSPC), the electrode response was shown to depend on the bilayer permeabilities in relation to the lipid phase transition temperatures and as a consequence the linear ranges were duly altered.  相似文献   

18.
S Ali  D Zakim 《Biophysical journal》1993,65(1):101-105
The thermotropic properties of multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC), as a function of the concentration of bilirubin in the range of 0.1 to 1 mol%, were measured. The exact effects of bilirubin depended on the chain length of the polymethylene chains. But the general effects of bilirubin were the same in all systems. At the lowest concentrations tested (0.1 mol bilirubin/100 mol phospholipid (0.1 mol%)), bilirubin broadened and shifted to higher temperatures the main phase transitions of all bilayers. For DPPC and DSPC, but not DMPC, this concentration of bilirubin was associated with a new transition at 25 degrees C (DPPC) or 34 degrees C (DSPC). Bilirubin at 0.2 mol% was required for the detection of a similar transition (at 13.7 degrees C) in DMPC. Higher concentrations of bilirubin (> 0.2 mol%) suppressed completely the main phase transitions in all bilayers but increased the enthalpy of the new transition. Maximal values of delta H for these transitions were reached at 0.5, 0.25, and 0.2 mol% bilirubin in DMPC, DPPC, and DSPC, respectively. Values of delta H and delta S for these transitions were far larger than for the corresponding gel-to-liquid crystal transitions in pure lipid bilayers but were equal to those expected for a transition between crystalline and liquid crystalline phases.  相似文献   

19.
The gel to liquid-crystalline phase transition of aqueous dispersions of phospholipid mixtures was investigated by means of the repartition of the spin label 2,2,6,6-tetramethylpiperidine-I-oxyl between aqueous space and lipid hydrocarbon region. The dimyristoylphosphatidylcholine (DMPC)/dibehenoylphosphatidylcholine (DBPC) and dipalmitoylphosphatidylcholine (DPPC)/DBPC phase diagrams indicate gel phase immiscibility, whereas the distearoylphosphatidylcholine (DSPC)/DBPC phase diagram indicates non-ideal gel phase miscibility at low DBPC molar fractions. Aqueous dispersions of DMPC/DPPC/DBPC ternary mixtures show two distinct phase transitions, the first associated with the melting of a DMPC/DPPC phase and the second with the melting of a DBPC phase. Aqueous dispersions of DMPC/DSPC/DBPC ternary mixtures show to phase transitions at low DSPC molar fractions; the first is probably associated with the melting of a DMPC/DSPC phase, and the second with the melting of a DBPC/DSPC phase. At high DSPC molar fractions, only one phase transition is observed; this suggests that all the lipids are mixed in gel state membranes.  相似文献   

20.
Nonhydrolyzable matrices of ether-linked phosphatidylcholines (PCs) and sphingomyelin have been used to study the mechanism of action of lipolytic enzymes. Since ether PCs, sphingomyelin, and ester PCs vary in the number of hydrogen bond donors and acceptors in the carbonyl region of the bilayer, we have examined several physical properties of ether PCs and sphingomyelin in model systems to validate their suitability as nonhydrolyzable lipid matrices. The intermolecular interactions of ether PCs with ester PCs, sphingomyelin, and cholesterol were investigated by differential scanning calorimetry. Phase diagrams constructed from the temperature dependence of the gel to liquid-crystalline phase transition of 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine (DPPC-ether) and 1,2-O-ditetradecyl-sn-glycero-3-phosphocholine (DMPC-ether) with both 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) demonstrated complete lipid miscibility in the gel and liquid-crystalline phases. Additionally, phase diagrams of egg yolk sphingomyelin (EYSM) with DMPC or DMPC-ether and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) or 1,2-O-dioctadecyl-sn-glycero-3-phosphocholine (DSPC-ether) demonstrated no major differences in miscibility of EYSM in ester and ether PCs. The effect of 10 mol % cholesterol on the thermal transitions of mixtures of ester and ether PCs also indicates little preference of cholesterol for either lipid. The fusion of small single bilayer vesicles of DMPC, DMPC-ether, DPPC, and DPPC-ether to larger aggregates as determined by gel filtration indicated that the ester PC vesicles were somewhat more stable.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号