首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 383 毫秒
1.
Ca2+-induced phase separation in phosphatidylserine/phosphatidylethanolamine and phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine model membranes was studied using spin-labeled phosphatidylethanolamine and phosphatidylcholine and compared with that in phosphatidylserine/phosphatidylcholine model membranes studied previously. The phosphatidyl-ethanolamine-containing membranes behaved in qualitatively the same way as did phosphatidylserine/phosphatidylcholine model membranes. There were some quantitative differences between them. The degree of phase separation was higher in the phosphatidylethanolamine-containing membranes. For example, the degree of phase separation in phosphatidylserine/phosphatidylethanolamine membranes containing various mole fractions of phosphatidylserine was 94–100% at 23°C and 84–88% at 40°C, while the corresponding value for phosphatidylserine/phosphatidylcholine membranes was 74–85% at 23°C and 61–79% at 40°C. Ca2+ concentration required for the phase separation was lower for phosphatidylserine/phosphatidylethanolamine than that for phosphatidylserine/phosphatidylcholine membranes; concentration to cause a half-maximal phase separation was 1.4 · 10?7 M for phosphatidylserine-phosphatidylethanolamine and 1.2 · 10?6 M for phosphatidylserine/phosphatidylcholine membranes. The phase diagram of phosphatidylserine/phosphatidylethanolamine membranes in the presence of Ca2+ was also qualitatively the same as that of phosphatidylserine/phosphatidylcholine except for the different phase transition temperatures of phosphatidylethanolamine (17°C) and phosphatidylcholine (?15°C). These differences were explained in terms of a greater tendency for phosphatidylethanolamine, compared to phosphatidylcholine, to form its own fluid phase separated from the Ca2+-chelated solid-phase phosphatidylserine domain.  相似文献   

2.
ATP-enriched human red cells display high rates of Ca2+-dependent ATP hydrolysis (16 mmol·litre cells?1·h?1) with a high Ca2+ affinity (K0.5~0.2 μM). The finding suggests a mechanism for regulation of cell Ca2+ levels, involving highly-cooperative stimulation of active Ca2+ extrusion following binding of calmodulin to the (Ca2+ + Mg2+)-ATPase.  相似文献   

3.
The interaction of lanthanides and other cations with phosphatidylcholine bilayers present as single bilayer vesicles in 2H2O has been investigated in terms of stoichiometry, apparent binding constants and environmental conditions.Lanthanides are shown to form 2 : 1 (molar ratio) phosphatidylcholine to metal ion complexes.The apparent binding constant Kb varies as a function of the quantity of metal ion bound and as a function of the Cl? concentration. The apparent binding constant at “zero loading” is K0 = 1.25 · 104L2 · M?at 0.15 M KCl. It decreases exponentially with increased “loading” expressed as the molar ratio of metal ion bound to effective phosphatidylcholine concentration and increases exponential with Cl? concentration.The interaction of lanthanides and divalent cations such as Ca2+ and Mg2+ is independent of pH in the pH range 3–7+ and 3–10 respectively, but is sensitive to the nature of the anion. The presence of anions enhances the interaction with polyvalent cations, the chaotropic anions showing the largest effect. The order of enhancement is Cl? < Br? < NO3? < SCN? < I? < ClO4?. The nature of the monovalent counterion (cation) has little effect on the enhanced binding of lanthanides in the presence of the above anions.The affinity of other polyvalent cations for phosphatidylcholine bilayers has been determined by competition with lanthanides. The physiologically important divalent cations Ca2+ and Mg2+ both bind less strongly (by about an order of magnitude) to the lipid surface. The order of binding of cations reflects direct binding to the phosphodiester group, with UO22+ showing the highest affinity.  相似文献   

4.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 μM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 μM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z >Ca4Z >Ca2Z ? CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10?7–10?6 M Ca2+, even at a calmodulin concentration of 5 μM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 μM, corresponding to 50–80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/g membrane protein. We therefore conclude that most of the calmodulin id dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10?7 – 10?8 M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10?6 – 10?5 M.  相似文献   

5.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 μmol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 ± 9 μM and 0.25 ± 0.10 μM, respectively. Phosphorylation of plasma membranes with [γ-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

6.
Diffusion of histamine, theophylline and tryptamine through planar lipid bilayer membranes was studied as a function of pH. Membranes were made of egg phosphatidylcholine plus cholesterol (1 : 1 mol ratio) in tetradecane. Tracer fluxes and electrical conductances were used to estimate the permeabilities to nonionic and ionic species. Only the nonionic forms crossed the membrane at a significant rate. The membrane permeabilities to the nonionic species were: histamine, 3.5 · 10?5cm · s?1; theophylline, 2.9 · 10?4cm · s?1; and tryptamine, 1.8 · 10?1cm · s?1. Chemical reactions in the unstirred layers are important in the transport of tryptamine and theophylline, but not histamine. For example, as pH decreased from 10.0 to 7.5 the ratio of nonionic (B) to ionic (BH+) tryptamine decreased by 300-fold, but the total tryptamine permeability decreased only 3-fold. The relative insensitivity of the total tryptamine permeability to the ratio, [B]/[BH+], is due to the rapid interconversion of B and BH+ in the instirred layers. Our model describing diffusion and reaction in the unstirred layers can explain some ‘anomalous’ relationships between pH and weak acid/base transport through lipid bilayer and biological membranes.  相似文献   

7.
8.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [γ-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250 000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes.These results suggest that the formation of triphosphoinositide rather than the (Ca2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

9.
Renilla lumisomes produce a bioluminescent flash when the vesicles are disrupted with hypotonic solutions containing Ca2+. A flash is also observed in the presence of Ca2+ using isotonic solutions of monovalent cations under the following conditions: When the Na+K+ ratio inside the lumisomal membrane is high and when this ratio outside the membrane is low. We suggest that Na+ may be the counter ion for Ca2+ transport. Na+, when outside the membrane, inhibits Ca2+-triggered luminescence suggesting that Na+ blocks Ca2+ channels. Ca2+ uptake into the lumisomal membrane, as measured by bioluminescence, is very rapid in the presence of the ionophore A23187. X537A is much less effective. The Ca2+ triggered bioluminescence flash observed with lumisomes provides a rapid and sensitive assay for ionophores that are specific for divalent cations such as Ca2+.  相似文献   

10.
Plasma membranes from Azotobacter vinelandii contain two Ca2+ transport activities: an electrophoretic uniporter and an electroneutral Ca2+2H+ exchanger (P. Zimniak and E. M. Barnes, Jr. J. Biol. Chem.255, 10,140 (1980)). Both activities were reconstituted by the freeze-thaw technique of M. Kasahara and P. C. Hinkle (J. Biol. Chem.252, 7384 (1977)) using phosphatidylcholine/phosphatidylethanolamine (1:1) at a lipid-to-protein ratio of 40. Reconstitution was evidenced both by expansion of the intravesicular volume accessible to Ca2+ and by transfer of the transport activities to vesicles with a buoyant density less than that of native membranes. The Ca2+ transporters, reconstituted into K+-filled proteoliposomes, retained their dependence on the membrane potential or ΔpH induced by the addition of valinomycin or nigericin, respectively. The kinetic parameters of the reconstituted activities were similar to those in native membranes, as was their sensitivity to inhibitors. The sensitivities of the electrophoretic Ca2+ transporter to ruthenium red, morpholinoethanesulfonate, and external K+ and of the Ca2+2H+ antiporter to Sr2+ and heat treatment were also retained by the reconstituted system.  相似文献   

11.
The activity of calcium-stimulated and magnesium-dependent adenosinetriphosphatase which possesses a high affinity for free calcium (high-affinity (Ca2+ + Mg2+)-ATPase, EC 3.6.1.3) has been detected in rat ascites hepatoma AH109A cell plasma membranes. The high-affinity (Ca2+ + Mg2+)-ATPase had an apparent half saturation constant of 77 ± 31 nM for free calcium, a maximum reaction velocity of 9.9 ± 3.5 nmol ATP hydrolyzed/mg protein per min, and a Hill number of 0.8. Maximum activity was obtained at 0.2 μM free calcium. The high-affinity (Ca2+ + Mg2+)-ATPase was absolutely dependent on 3–10 mM magnesium and the pH optimum was within physiological range (pH 7.2–7.5). Among the nucleoside trisphosphates tested, ATP was the best substrate, with an apparent Km of 30 μM. The distribution pattern of this enzyme in the subcellular fractions of the ascites hepatoma cell homogenate (as shown by the linear sucrose density gradient ultracentrifugation method) was similar to that of the known plasma membrane marker enzyme alkaline phosphatase (EC 3.1.3.1), indicating that the ATPase was located in the plasma membrane. Various agents, such as K+, Na+, ouabain, KCN, dicyclohexylcarbodiimide and NaN3, had no significant effect on the activity of high-affinity (Ca2+ + Mg2+)-ATPase. Orthovanadate inhibited this enzyme activity with an apparent half-maximal inhibition constant of 40 μM. The high-affinity (Ca2+ + Mg2+)-ATPase was neither inhibited by trifluoperazine, a calmodulin-antagonist, nor stimulated by bovine brain calmodulin, whether the plasma membranes were prepared with or without ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Since the kinetic properties of the high-affinity (Ca2+ + Mg2+)-ATPase showed a close resemblance to those of erythrocyte plasma membrane (Ca2+ + Mg2+)-ATPase, the high-affinity (Ca2+ + Mg2+)-ATPase of rat ascites hepatoma cell plasma membrane is proposed to be a calcium-pumping ATPase of these cells.  相似文献   

12.
A. Telfer  J. Barber 《BBA》1978,501(1):94-102
1. Ionophore A23187 induces uncoupling of potassium ferricyanide-dependent O2 evolution by envelope-free chloroplasts and oxaloacetate-dependent O2 evolution by intact chloroplasts. The half maximal concentration (C12) for stimulation of oxygen evolution in both cases is approximately 4 μM · 100 μg chlorophyll · ml?1.2. Ionophore A23187 also induces inhibition of CO2 and 3-phosphoglycerate-dependent O2 evolution by intact chloroplasts in the presence of 3 mM MgCl2. The half maximal concentrations (C12) for inhibition of O2 evolution are 3 μM and 5 μM respectively · 100 μg?1 chlorophyll · ml?1.3. A very high concentration of ionophore A23187 (10 μM · 20 μg?1 chlorophyll · ml?1) plus 0.1 mM EDTA lowers the fluorescence yield of intact chloroplasts suspended in a cation-free medium in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, indicating loss of divalent cation from the diffuse double layers of the thylakoid membranes.4. These results are discussed in relation to ionophore A23187-induced divalent cation/proton exchange at both the thylakoid and the envelope membranes of intact chloroplasts.  相似文献   

13.
Two spectroscopic probes of free internal Ca2+ were used to determine the influence of H+ and anion permeation on the active transport of Ca2+ by skeletal sarcoplasmic reticulum. The studies were carried out on a well-characterized Ca2+-Mg2+-ATPase-rich sarcoplasmic reticulum fraction. Studies of D. McKinley and G. Meissner (1977, FEBS Lett., 82, 47–50) show that this fraction consists of two populations of vesicles: type I which has an electrically active monovalent cation (M+) permeability and type II which lacks it. The present study distinguishes between electrically active (charge-carrying) and electrically silent (e.g., countertransport) mechanisms of ion permeation in the two vesicles and shows how the active transport of Ca2+ is influenced by these permeabilities. The major results are as follows: (1) Both type I and II vesicles have an electrically active H+ permeability. (2) Type I vesicles have electrically active anion (A?) permeabilities; type II vesicles do not. (3) At low concentrations of nonpenetrating buffers, ion imbalances across the membrane can create pH imbalances. This is due to the coupling of M+ and A? movements with H+ movements. Following a jump in KCl concentration internal acidification is observed in type I vesicles while internal alkalinization is observed in type II vesicles. These pH gradients are dissipated on a time scale of seconds and tens of minutes for type I and II vesicles, respectively. (4) Tris(hydroxymethyl)aminomethane (Tris) was shown to be effective in dissipating pH gradients in type II vesicles. A model is proposed whereby HCl is equilibrated across the membrane by a Tris-catalyzed transport cycle involving transport of an ion pair between Tris-H+ and Cl? and return of the unprotonated form of the buffer. (5) The permeabilities of several physiological and nonphysiological anions were determined for type I and II vesicles. Electrically active permeability was demonstrated for Cl? and phosphate in type I vesicles. Type II vesicles lacked electrically active mechanisms for these two anions. Evidence is given for slow Cl?OH? exchange and for rapid Cl?HCO3? exchange in type II vesicles. Electrically silent phosphate influx probably occurs by H2PO4?OH? exchange. (6) Under normal conditions the Ca2+ uptake of type II vesicles is masked. It can be unmasked by addition of nigericin in the presence of Tris. The combination of ionophore and penetrating buffer render the type II vesicles KCl permeable, allowing the replenishment of internal K+ during active transport. The results are analyzed and shown to be in agreement with the Ca2+-Mg2+-ATPase pump acting as a Ca2+K+ exchanger. The results are shown to be in disagreement with electrogenic models of pump function.  相似文献   

14.
15.
Secretory vesicles isolated from adrenal medulla were found to fuse in vitro in response to incubation with Ca2+. Intervesicular fusion was detected by electron microscopy and was indicated by the appearance of twinned vesicles in freeze-fractured suspensions of vesicles and in thin-sectioned pellet. Two types of fusion could be distinguished: Type I, occurring between 10?7 M and 10?4 M Ca2+, was specific for Ca2+, was inhibited by other divalent cations and was abolished by pretreatment of vesicles with glutaraldehyde, neuraminidase or trypsin. Fusion type I was linear with temperature. A second type of intervesicular fusion was elicited by Ca2+ in concentrations higher than 2.5 mM and was morphologically characterized by multiple fusions of secretory vesicles. This type of fusion was found to be similar to fusion of liposomes prepared from the membrane lipids of adrenal medullary secretory vesicles: Ca2+ could be replaced by other divalent cations, the effect of different divalent cations was additive and pretreatments attacking membrane proteins were ineffective. Fusion type II of intact secretory vesicles as well as liposome fusion was discontinuous with temperature. Liposome fusion could be detected within 35 ms and persisted for 180 min. Using liposomes containing defined Ca2+ concentrations we have not found a major influence of Ca2+ asymmetry on fusion. Incorporation of the ganglioside GM3, which is present in the membranes of intact adrenal medullary secretory vesicles did not change the properties of liposomes fusion. Using a Ca2+-selective electrode we have identified in secretory vesicle membranes both high affinity binding sites for Ca2+ (Kd = 1.6 · 10?6M) and low affinity sites (Kd = 1.2 · 10?4M).  相似文献   

16.
The interactions between calmodulin, ATP and Ca2+ on the red cell Ca2+ pump have been studied in membranes stripped of native calmodulin or rebound with purified red cell calmodulin. Calmodulin stimulates the maximal rate of (Ca2+ + Mg2+)-ATPase by 5–10-fold and the rate of Ca2+-dependent phosphorylation by at least 10-fold. In calmodulin-bound membranes ATP activates (Ca2+ + Mg2+)-ATPase along a biphasic concentration curve (Km1 ≈ 1.4 μM, Km2 ≈ 330 μM), but in stripped membranes the curve is essentially hyperbolic (Km ≈ 7 μM). In calmodulin-bound membranes Ca2+ activates (Ca2+ + Mg2+)-ATPase at low concentrations (Km < 0.28 μM) in stripped membranes the apparent Ca2+ affinities are at least 10-fold lower.The results suggest that calmodulin (and perhaps ATP) affect a conformational equilibrium between E2 and E1 forms of the Ca2+ pump protein.  相似文献   

17.
Renal basal-lateral and brush border membrane preparations were phosphorylated in the presence of [γ-32P]ATP. The 32P-labeled membrane proteins were analysed on SDS-polyacrylamide gels. The phosphorylated intermediates formed in different conditions are compared with the intermediates formed in well defined membrane preparations such as erythrocyte plasma membranes and sarcoplasmic reticulum from skeletal muscle, and with the intermediates of purified renal enzymes such as (Na+ + K+)-ATPase and alkaline phosphatase. Two Ca2+-induced, hydroxylamine-sensitive phosphoproteins are formed in the basal-lateral membrane preparations. They migrate with a molecular radius Mr of about 130 000 and 100 000. The phosphorylation of the 130 kDa protein was stimulated by La3+-ions (20 μM) in a similar way as the (Ca2+ + Mg2+)-ATPase from erythrocytes. The 130 kDa phosphoprotein also comigrated with the erythrocyte (Ca2+ + Mg2+)-ATPase. In addition in the same preparation, another hydroxylamine-sensitive 100 kDa phosphoprotein was formed in the presence of Na+. This phosphoprotein comigrates with a preparation of renal (Na+ + K+)-ATPase. In brush border membrane preparations the Ca2+-induced and the Na+-induced phosphorylation bands are absent. This is consistent with the basal-lateral localization of the renal Ca2+-pump and Na+-pump. The predominant phosphoprotein in brush border membrane preparations is a 85 kDa protein that could be identified as the phosphorylated intermediate of renal alkaline phosphatase. This phosphoprotein is also present in basal-lateral membrane preparations, but it can be accounted for by contamination of those membranes with brush border membranes.  相似文献   

18.
Calcium uptake by adipocyte endoplasmic reticulum was studied in a rapidly obtained microsomal fraction. The kinetics and ionic requirements of Ca2+ transport in this preparation were characterized and compared to those of (Ca2+ + Mg2+)-ATPase activity. The time course of Ca2+ uptake in the presence of 5 mM oxalate was nonlinear, approaching a steady-state level of 10.8–11.5 nmol Ca2+/mg protein after 3–4 min of incubation. The rate of Ca2+ transport was increased by higher oxalate concentrations with a near linear rate of uptake at 20 mM oxalate. The calculated initial rate of calcium uptake was 18.5 nmol Ca2+/mg protein per min. The double reciprocal plot of ATP concentration against transport rate was nonlinear, with apparent Km values of 100 μM and 7 μM for ATP concentration ranges above and below 50 μM, respectively. The apparent Km values for Mg2+ and Ca2+ were 132 μM and 0.36–0.67 μM, respectively. The energy of activation was 23.4 kcal/mol. These kinetic properties were strikingly similar to those of the microsomal (Ca2+ + Mg2+)-ATPase. The presence of potassium was required for maximum Ca2+ transport activity. The order of effectiveness of monovalent cations in stimulating both Ca2+ transport and (Ca2+ + Mg2+-ATPase activity was K+ >Na+ = NH4+ >Li+ . Ca2+ transport and (Ca2+ + Mg2+)-ATPase activity were both inhibited 10–20% by 6 mM procaine and less than 10% by 10 mM sodium azide. Both processes were completely inhibited by 3 mM dibucaine or 50 μM p-chloromercuribenzene sulfonate. The results indicate that Ca2+ transport in adipocyte endoplasmic reticulum is mediated by a (Ca2+ + Mg2+)-ATPase and suggest an important role for endoplasmic reticulum in control of intracellular Ca2+ distribution.  相似文献   

19.
Depletion of mitochondrial divalent cations by addition of the ionophore A23187 results in a marked increase in passive 42K+K+ exchange activity. The exchange is activated by increasing pH and temperature and inhibited by added divalent cations. The reaction is independent of the amount of A23187 present, but depends on the concentration of external K+ (Km = 25 mm). Intramitochondrial 42K+ in cation-depleted mitochondria exchanges passively with external Na+ and Li+, but not with choline+. The evidence suggests that removal of mitochondrial divalent cations by A23187 activates the endogenous K+H+ exchange component of the mitochondrion and that the activated exchanger promotes cation/cation exchange in the absence of a metabolic pH gradient.  相似文献   

20.
Basolateral membranes isolated from hog kidney cortex, enriched 12- to 15-fold in (Na+ + K+)-ATPase activity, were 80% oriented inside-out as determined by assay of oubain-sensitive (Na+ + K+)-ATPase activity before and after opening of the membrane vesicle preparation with a mixture of deoxycholate and EDTA. In these membrane preparations 80% of total phosphatidylethanolamine was accessible to trinitrophenylation by trinitrobenzenesulfonic acid at 4°C, while at 37°C all of phosphatidylethanolamine fraction was chemically modified. Phospholipase C treatment resulted in hydrolysis of 80% phosphatidylethanolamine, 40% phosphatidylcholine and 35% of phosphatidylserine. Sphingomyelinase treatment resulted in 20% hydrolysis of sphingomyelin, presumably derived from right-side-out oriented vesicles. Results indicate that phosphatidylethanolamine is oriented exclusively on the outer leaflet of the lipid bilayer of inside-out oriented vesicles. Methylation of phospholipids in basolateral membranes with S-adenosyl[methyl-3H]methionine resulted in the three successive methylation of ethanolamine moiety of phosphatidylethanolamine to phosphatidylcholine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 and 10. Basolateral membranes incubated in the presence of methyl donor, S-adenosylmethionine, exhibited increased (12–15%) (Ca2+ + Mg2+)-ATPase activity and increased ATP-dependent uptake of calcium. ATP-dependent calcium uptake in these vesicles was insensitive to oligomycin and ouabain but was abolished completely by 50 μM vanadate. The increase in ATP-dependent calcium uptake was due to an increase in Vmax and not due to a change in Km for Ca2+. Preincubation of membranes with S-adenosylhomocysteine, a methyltransferase inhibitor, abolished the stimulatory effect of phospholipid methylation on calcium uptake. Phospholipid methylation at both low and high pH did not result in a change in bulk membrane fluidity as determined by the fluorescence polarization of diphenylhexatriene. These results suggest that phospholipid methylation may regulate transepithelial calcium flux in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号