首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Central proinflammatory cytokines and pain enhancement   总被引:11,自引:0,他引:11  
Enhanced pain is a component of the 'sickness response' which is an evolutionarily adaptive constellation of responses that enhance the survival of the host. Proinflammatory cytokines mediate these sickness behaviors, and whether proinflammatory cytokines are involved in exaggerated pain has become an intriguing question. Studies suggest that spinal cord glial cells (astrocytes and microglia) are activated in conditions that lead to enhanced pain. Not only is glial activation associated with enhanced pain, but it is also integral to the induction and maintenance of these pain states. Proinflammatory cytokines can be released by activated astrocytes and microglia within the central nervous system. This review will discuss the role of proinflammatory cytokines in experimental models of prolonged pain states. Administration of exogenous proinflammatory cytokines facilitates pain, and agents that antagonize proinflammatory cytokine actions have been shown to block and/or reverse enhanced pain. These findings suggest that blocking the synthesis and/or release of proinflammatory cytokines may be viable strategies for the treatment of pathological pain. Gene therapy to augment the endogenous anti-inflammatory cytokine, interleukin-10, is one of the more promising therapies currently under study.  相似文献   

2.
Metabotropic Glutamate Receptors in Glial Cells   总被引:1,自引:1,他引:0  
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) and exerts its actions via a number of ionotropic glutamate receptors/channels and metabotropic glutamate (mGlu) receptors. In addition to being expressed in neurons, glutamate receptors are expressed in different types of glial cells including astrocytes, oligodendrocytes, and microglia. Astrocytes are now recognized as dynamic signaling elements actively integrating neuronal inputs. Synaptic activity can evoke calcium signals in astrocytes, resulting in the release of gliotransmitters, such as glutamate, ATP, and d-serine, which in turn modulate neuronal excitability and synaptic transmission. In addition, astrocytes, and microglia may play an important role in pathology such as brain trauma and neurodegeneration, limiting or amplifying the pathologic process leading to neuronal death. The present review will focus on recent advances on the role of mGlu receptors expressed in glial cells under physiologic and pathologic conditions. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

3.
Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that appears to be particularly suitable for further development towards clinical application in treating the traumatically injured or diseased human central nervous system.  相似文献   

4.
Chemokines are small secreted proteins that are essential for the recruitment and activation of specific leukocyte subsets at sites of inflammation and for the development and homeostasis of lymphoid and nonlymphoid tissues. During the past decade, chemokines and their receptors have also emerged as key signaling molecules in neuroinflammatory processes and in the development and functioning of the central nervous system. Neurons and glial cells, including astrocytes, oligodendrocytes, and microglia, have been identified as cellular sources and/or targets of chemokines produced in the central nervous system in physiological and pathological conditions. In this article, we provide an update of chemokines and chemokine receptors expressed by glial cells focusing on their biological functions and implications in neurological diseases.  相似文献   

5.
The developing central nervous system of vertebrates contains an abundant cell type designated radial glial cells. These cells are known as guiding cables for migrating neurons, while their role as precursor cells is less clear. Since radial glial cells express a variety of astroglial characteristics and differentiate as astrocytes after completing their guidance function, they have been considered as part of the glial lineage. Using fluorescence-activated cell sorting, we show here that radial glial cells also are neuronal precursors and only later, after neurogenesis, do they shift towards an exclusive generation of astrocytes. These results thus demonstrate a novel function for radial glial cells, namely their ability to generate two major cell types found in the nervous system, neurons and astrocytes.  相似文献   

6.
Reactive gliosis, also known as glial scar formation, is an inflammatory response characterized by the proliferation of microglia and astrocytes as well as astrocytic hypertrophy following injury in the central nervous system (CNS). The glial scar forms a physical and molecular barrier to isolate the injured area from adjacent normal nervous tissue for re-establishing the integrity of the CNS. It prevents the further spread of cellular damage but represents an obstacle to regrowing axons. In this review, we integrated the current findings to elucidate the tightly reciprocal modulation between activated microglia and astrocytes in reactive gliosis and proposed that modification of cellular response to the injury or cellular reprogramming in the glial scar could lead advances in axon regeneration and functional recovery after the CNS injury.  相似文献   

7.
Microglia are a subset of tissue-macrophages that are ubiquitously distributed throughout the entire CNS. In health, they remain largely dormant until activated by a pathological stimulus. The availability of more sensitive detection techniques has allowed the early measurement of the cell responses of microglia in areas with few signs of active pathology. Subtle neuronal injury can induce microglial activation in retrograde and anterograde projection areas remote from the primary lesion focus. There is also evidence that in cases of long-standing abnormal neuronal activity, such as in patients after limb amputation with chronic pain and phantom sensations, glial activation may occur transsynaptically in the thalamus. Such neuronally driven glial responses may be related to the emergence central sensitisation in chronic pain states or plasticity phenomena in the cerebral cortex. It is suggested, that such persistent low-level microglial activation is not adequately described by the traditional concept of phagocyte-mediated tissue damage that largely evolved from studies of acute brain lesion models or acute human brain pathology. Due to the presence of signal molecules that can act on neurons and microglia alike, the communication between neurons and microglia is likely to be bi-directional. Persistent subtle microglial activity may modulate basal synaptic transmission and thus neuronal functioning either directly or through the interaction with astrocytes. The activation of microglia leads to the emergence of microstructural as well as functional compartments in which neurokines, interleukins and other signalling molecules introduce a qualitatively different, more open mode of cell-cell communication that is normally absent from the healthy adult brain. This 'neo-compartmentalisation', however, occurs along predictable neuronal pathways within which these glial changes are themselves under the modulatory influence of neurons or other glial cells and are subject to the evolving state of the pathology. Depending on the disease state, yet relatively independent of the specific disease cause, fluctuations in the modulatory influence by non-neuronal cells may form the cellular basis for the variability of brain plasticity phenomena, i.e. the plasticity of plasticity.  相似文献   

8.
Traumatic damage to the central nervous system (CNS) destroys the blood-brain barrier (BBB) and provokes the invasion of hematogenous cells into the neural tissue. Invading leukocytes, macrophages and lymphocytes secrete various cytokines that induce an inflammatory reaction in the injured CNS and result in local neural degeneration, formation of a cystic cavity and activation of glial cells around the lesion site. As a consequence of these processes, two types of scarring tissue are formed in the lesion site. One is a glial scar that consists in reactive astrocytes, reactive microglia and glial precursor cells. The other is a fibrotic scar formed by fibroblasts, which have invaded the lesion site from adjacent meningeal and perivascular cells. At the interface, the reactive astrocytes and the fibroblasts interact to form an organized tissue, the glia limitans. The astrocytic reaction has a protective role by reconstituting the BBB, preventing neuronal degeneration and limiting the spread of damage. While much attention has been paid to the inhibitory effects of the astrocytic component of the scars on axon regeneration, this review will cover a number of recent studies in which manipulations of the fibroblastic component of the scar by reagents, such as blockers of collagen synthesis have been found to be beneficial for axon regeneration. To what extent these changes in the fibroblasts act via subsequent downstream actions on the astrocytes remains for future investigation.  相似文献   

9.
神经病理性疼痛是一种临床的常见疾病,严重影响了患者及家属的生活质量,给社会带来了沉重的负担。神经病理性疼痛的发病机制及有效治疗仍在探索中。中枢神经系统内有三种胶质细胞,包括小胶质细胞、星形胶质细胞以及少突胶质细胞。近来有研究发现,这三种胶质细胞可通过活化、产生和释放细胞因子等途径参与神经病理性疼痛的调节。探索神经胶质细胞的多种复杂功能或作用机制来充分认识胶质细胞的特点,为今后神经病理性疼痛的临床治疗提供新的思路。本文通过研究小胶质细胞、星形胶质细胞以及少突胶质细胞的特点及其对神经病理性疼痛的影响,并分析中枢神经系统胶质细胞与疼痛治疗之间的相关性,旨在总结神经病理性疼痛的发生和发展过程中小胶质细胞、星状胶质细胞及少突胶质细胞的调节作用。  相似文献   

10.
Following trauma or ischemia to the central nervous system (CNS), there is a marked increase in the expression of cell cycle-related proteins. This up-regulation is associated with apoptosis of post-mitotic cells, including neurons and oligodendrocytes, both in vitro and in vivo. Cell cycle activation also induces proliferation of astrocytes and microglia, contributing to the glial scar and microglial activation with release of inflammatory factors. Treatment with cell cycle inhibitors in CNS injury models inhibits glial scar formation and neuronal cell death, resulting in substantially decreased lesion volumes and improved behavioral recovery. Here we critically review the role of cell cycle pathways in the pathophysiology of experimental stroke, traumatic brain injury and spinal cord injury, and discuss the potential of cell cycle inhibitors as neuroprotective agents. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

11.
Glial cell type-specific responses to menadione-induced oxidative stress   总被引:7,自引:0,他引:7  
Glial cell types in the central nervous system are continuously exposed to reactive oxygen species (ROS) due to their high oxygen metabolism and demonstrate differential susceptibility to certain pathological conditions believed to involve oxidative stress. The purpose of the current studies was to test the hypothesis that mtDNA damage could contribute to the differential susceptibility of glial cell types to apoptosis induced by oxidative stress. Primary cultures of rat astrocytes, oligodendrocytes, and microglia were utilized, and menadione was used to produce the oxidative stress. Apoptosis was detected and quantitated in menadione-treated oligodendrocytes and microglia (but not astrocytes) using either positive annexin-V staining or positive staining for 3'-OH groups in DNA. The apoptotic pathway that was activated involved the release of cytochrome c from the intermitochondrial space and activation of caspase 9. Caspase 8 was not activated after exposure to menadione in any of the cells. Using equimolar concentrations of menadione, more initial damage was observed in mtDNA from oligodendrocytes and microglia. Additionally, using concentrations of menadione that resulted in comparable initial mtDNA damage, more efficient repair was observed in astrocytes compared to either oligodendrocytes or microglia. The differential susceptibility of glial cell types to oxidative damage and apoptosis did not appear related to cellular antioxidant capacity, because under the current culture conditions astrocytes had lower total glutathione content and superoxide dismutase activity than oligodendrocytes and microglia. These results show that the differential susceptibility of glial cell types to menadione-induced oxidative stress and apoptosis appears to correlate with increased oxidative mtDNA damage and support the hypothesis that mtDNA damage could participate in the initiation of apoptosis through the enhanced release of cytochrome c and the activation of caspase 9.  相似文献   

12.
Glial cells of the central nervous system express receptors for the main inhibitory and excitatory neurotransmitters, GABA and glutamate. The glial GABA and glutamate receptors share many properties with the neuronal GABAA and kainate/quisqualate receptors, but are molecularly and, in some aspects, pharmacologically distinct from their neuronal counterparts. The functional role of these receptors is as yet speculative: They have been proposed to control proliferation of astrocytes, serve to balance ion changes at GABAergic synapses, or they could enable the glial cell to detect neuronal synaptic activity.  相似文献   

13.
Liu W  Tang Y  Feng J 《Life sciences》2011,89(5-6):141-146
Microglia and astrocytes in the central nervous system are now recognized as active participants in various pathological conditions such as trauma, stroke, or chronic neurodegenerative disorders. Their activation is closely related with the development and severity of diseases. Interestingly, activation of microglia and astrocytes occurs with a spatially and temporarily distinct pattern. The present review explores the cross talk in the process of their activation. Microglia, activated earlier than astrocytes, promote astrocytic activation. On the other hand, activated astrocytes not only facilitate activation of distant microglia, but also inhibit microglial activities. Molecules contributing to their intercommunication include interleukin-1 (IL-1), adenosine triphosphate (ATP), and transforming growth factor beta (TGF-β). A better understanding about the cross talk between activation of microglia and astrocytes would be helpful to elucidate the role of glial cells in pathological conditions, which could accelerate the development of treatment for various diseases.  相似文献   

14.
Microglia are mononuclear phagocytes of the central nervous system and are considered to derive from circulating bone marrow progenitors that colonize the developing human nervous system in the second trimester. They first appear as ameboid forms and progressively differentiate to process-bearing "ramified" forms with maturation. Signals driving this transformation are known to be partly derived from astrocytes. In this investigation we have used cocultures of astrocytes and microglia to demonstrate the relationship between motility and morphology of microglia associated with signals derived from astrocytes. Analysis of progressive cultures using time-lapse video microscopy clearly demonstrates the dynamic nature of microglia. We observe that ameboid microglial cells progressively ramify when cocultured with astrocytes, mirroring the "differentiation" of microglia in situ during development. We further demonstrate that individual cells undergo morphological transformations from "ramified" to "bipolar" to "tripolar" and "ameboid" states in accordance with local environmental cues associated with astrocytes in subconfluent cultures. Remarkably, cells are still capable of migration at velocities of 20-35 microm/h in a fully ramified state overlying confluent astrocytes, as determined by image analysis of motility. This is in keeping with the capacity of microglia for a rapid response to inflammatory cues in the CNS. We also demonstrate selective expression of the chemokines MIP-1alpha and MCP-1 by confluent human fetal astrocytes in cocultures and propose a role for these chemotactic cytokines as regulators of microglial motility and differentiation. The interchangeable morphological continuum of microglia supports the view that these cells represent a single heterogeneous population of resident mononuclear phagocytes capable of marked plasticity.  相似文献   

15.
Glial cells   总被引:13,自引:0,他引:13  
The nervous system is built from two broad categories of cells, neurones and glial cells. The glial cells outnumber the neurones and the two cell types occupy a comparable amount of space in nervous tissue. The main glial cell types are, in the central nervous system, astrocytes and oligodendrocytes and, in the peripheral nervous system, Schwann cells, enteric glial cells and satellite cells. In the embryo, glial cells form a cellular framework that permits the development of the rest of the nervous system, and regulate neuronal survival and differentiation. The best known function of glia in the adult is the formation of myelin sheaths around axons thus allowing the fast conduction of signalling essential for nervous system function. Glia also maintain appropriate concentrations of ions and neurotransmitters in the neuronal environment. Increasing body of evidence indicates that glial cells are essential regulators of the formation, maintenance and function of synapses, the key functional unit of the nervous system.  相似文献   

16.
Damage to the central nervous system (CNS) leads to increased production of TNF-α and TGF-β1 cytokines that have pro- or anti-inflammatory actions, respectively. To define whether astrocytes or microglia express these cytokines, prior studies have used mixed glial cultures (MGC) to represent astrocytes, thought these results are inevitably complicated by the presence of contaminating microglia within MGC. To clarify the cellular source of these cytokines, here we employed a recently described method of preparing microglia-free astrocyte cultures, in which neural stem cells (NSC) are differentiated into astrocytes. Using ELISA to quantify cytokine production in three types of glial culture: MGC, pure microglia or pure astrocytes, this showed that microglia but not astrocytes, produce TNF-α, and that this expression is increased by LPS, IFN-γ, and to a lesser extent by vitronectin, but decreased by TGF-β1. In contrast, TGF-β1 was produced by microglia and astrocytes, though at 10-fold higher levels by microglia. TGF-β1 expression in microglia was increased by vitronectin and to a lesser extent by TNF-α and LPS, but astrocyte TGF-β1 expression was not regulated by any factor tested. In summary, our data reveal that microglia, not astrocytes are the major source of TNF-α and TGF-β1 in postnatal glial cultures, and that microglial production of these antagonistic cytokines is tightly regulated by cytokines, LPS, and vitronectin.  相似文献   

17.
Finsen B  Owens T 《FEBS letters》2011,585(23):3806-3812
In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II receptors on astrocytes and immunoregulatory mediators such as Type I interferons which regulate cellular traffic. Myeloid cells at the blood-brain barrier present antigen to T cells and influence cytokine effector function. Myelin-specific T cells interact with microglia and promote differentiation of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy.  相似文献   

18.
The Transforming Growth Factor-βs (TGF-β) are a group of multifunctional proteins whose cellular sites of production and action are widely distributed throughout the body, including the central nervous system (CNS). Within the CNS, various isoforms of TGF-β are produced by both glial and neural cells. When evaluated in either cell culture or in vivo models, the various isoforms of TGF-β have been shown to have potent effects on the proliferation, function, or survival of both neurons and all three glial cell types, astrocytes, microglia and oligodendrocytes. TGF-β has also been shown to play a role in several forms of acute CNS pathology including ischemia, excitotoxicity and several forms of neurodegenerative diseases including multiple sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease.  相似文献   

19.
Kinins are produced and act at the site of injury and inflammation in various tissues. They are likely to initiate a particular cascade of inflammatory events, which evokes physiological and pathophysiological responses including an increase in blood flow and plasma leakage. In the central nervous system (CNS), kinins are potent stimulators of the production and release of pro-inflammatory mediators represented by prostanoids and cytotoxins. They are known to induce neural tissue damage. Many of the cytotoxins such as cytokines and free radicals and prostanoids are released from glial cells. Among glial cells, astrocytes and oligodendrocytes are known to possess bradykinin (BK) B(2) receptors that phosphoinositide (PI) turnover and raise intracellular Ca(2+) concentration. The presence of bradykinin receptors in microglia has been of great significance. We recently showed that rat primary microglia express kinin receptors. In resting microglia, B(2) receptors but not B(1) receptors are expressed. When the microglia are activated by bradykinin, B(1) receptors are up-regulated, while B(2) receptors are down-regulated. As observed in other glial cells, electrophysiological measurements suggest that B(2) receptors in phosphoinositide turnover and intracellular Ca(2+) concentration in microglia. Release of cytotoxins is likely consequent upon the activation of BK receptors. Our study provides the first evidence that microglia express functional kinin receptors and suggests that microglia play an important role in CNS inflammatory responses.  相似文献   

20.
The contribution of the cells within the central nervous system (CNS) toward adaptive immune responses is emerging and incompletely understood. Recent findings indicate important functional interactions between T-cells and glial cells within the CNS that may contribute to disease and neuropathology through antigen presentation. Although glia are not classically considered antigen-presenting cell (APC) types, there is growing evidence indicating that glial antigen presentation plays an important role in several neurological diseases. This review discusses these findings which incriminate microglia, astrocytes, and oligodendrocyte lineage cells as CNS-resident APC types with implications for understanding disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号