首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We analyzed the phytoplankton present in the lower sector of the Salado River (Buenos Aires, Argentina) for 10 years (1995–2005) and detected significant changes occurring in chlorophyte abundance and species richness during La Niña event (1998–1999), which period was analyzed throughout the entire basin (main stream and tributaries). We compared the physicochemical and biologic variables between two El Niño–La Niña–Southern Oscillation (ENSO) periods – El Niño (March 1997–January 1998) and La Niña (May 1998–May 1999) – to identify possible indicators of a relationship between climatic anomalies and chlorophyte performance. Chlorophyte density increased during the La Niña. Under normal or extreme hydrologic conditions, mobile (Chlamydomonas spp.) and nonmobile (Monoraphidium spp.) chlorophytes codominated. These species belonged to Reynolds's functional groups X1 and X2, those typical of nutrient‐enriched environments. Comparative analyses between El Niño and La Niña periods indicated significant differences in physicochemical (K+, dissolved polyphenols, particulate reactive phosphorus, alkalinity, pH) and biologic (species diversity and richness, phytoplankton and chlorophyte total densities) variables between the two periods at all basin sites. During the La Niña condition, species richness was greater owing to interconnected shallow lakes and drainage‐channel inputs, while the Shannon diversity index was lower because of the high abundance values of Monoraphidium minutum. A detailed analysis of the chlorophytes in the entire basin, indicated that changes in density and species dominance occurred on a regional scale although diverse chlorophyte assemblages were identified in the different sectors of the Salado River basin. After La Niña event, the entire basin had the potential to revert to the previous density values, showing the resilience to global environmental changes and the ability to reestablish the general conditions of stability.  相似文献   

2.
Tropical rainforests play an important role in the storage and cycling of global terrestrial carbon. In the carbon cycle, net primary productivity of forests is linked to soil respiration through the production and decomposition of forest litter. Climate seasonality appears to influence the production of litter although there is considerable variability within and across forests that makes accurate estimates challenging. We explored the effects of climate seasonality on litterfall dynamics in a lowland humid rainforest over a 7‐year period from 2007 to 2013, including an El Niño/La Niña cycle in 2010/2011. Litterfall was sampled fortnightly in 24 traps of 0.50 m diameter within a 1‐ha forest plot. Total mean litterfall was 10.48 ± 1.32 (±SD, dry weight) Mg ha?1 year?1 and seasonal in distribution. The different components of litterfall were divided into LLeaf (63.5%), LWood (27.7%) and LFF[flowers & fruit] (8.8%), which all demonstrated seasonal dynamics. Peak falls in LLeaf and LWood were highly predictable, coinciding with maximum daily temperatures and 1 and 2 months prior to maximum monthly rainfall. The El Niño/La Niña cycle coincided with elevated local winter temperatures and peak falls of LLeaf and LWood. Importantly, we establish how sampling length and generalized additive models eliminate the requirement for extensive within‐site sampling when the intention is to describe dynamics in litterfall patterns. Further, a greater understanding of seasonal cycles in litterfall allows us to distinguish between endogenous controls and environmental factors, such as El Niño events, which may have significant impacts on biochemical cycles.  相似文献   

3.
Large‐scale climate modes such as El Niño Southern Oscillation (ENSO) influence population dynamics in many species, including marine top predators. However, few quantitative studies have investigated the influence of large‐scale variability on resident marine top predator populations. We examined the effect of climate variability on the abundance and temporary emigration of a resident bottlenose dolphin (Tursiops aduncus) population off Bunbury, Western Australia (WA). This population has been studied intensively over six consecutive years (2007–2013), yielding a robust dataset that captures seasonal variations in both abundance and movement patterns. In WA, ENSO affects the strength of the Leeuwin Current (LC), the dominant oceanographic feature in the region. The strength and variability of the LC affects marine ecosystems and distribution of top predator prey. We investigated the relationship between dolphin abundance and ENSO, Southern Annular Mode, austral season, rainfall, sea surface salinity and sea surface temperature (SST). Linear models indicated that dolphin abundance was significantly affected by ENSO, and that the magnitude of the effect was dependent upon season. Dolphin abundance was lowest during winter 2009, when dolphins had high temporary emigration rates out of the study area. This coincided with the single El Niño event that occurred throughout the study period. Coupled with this event, there was a negative anomaly in SST and an above average rainfall. These conditions may have affected the distribution of dolphin prey, resulting in the temporary emigration of dolphins out of the study area in search of adequate prey. This study demonstrated the local effects of large‐scale climatic variations on the short‐term response of a resident, coastal delphinid species. With a projected global increase in frequency and intensity of extreme climatic events, resident marine top predators may not only have to contend with increasing coastal anthropogenic activities, but also have to adapt to large‐scale climatic changes.  相似文献   

4.
In the wet forests of Panama, El Niño typically brings a more prolonged and severe dry season. Interestingly, many trees and lianas that comprise the wet forests increase their productivity as a response to El Niño. Here, we quantify the abundance of migrating Marpesia chiron butterflies over 17 yr and the production of new leaves of their hostplants over 9 yr to test the generality of the El Niño migration syndrome, i.e., whether increased abundance of migrating insects and productivity of their food plants are associated with El Niño and La Niña events. We find that the quantity of M. chiron migrating across the Panama Canal was directly proportional to the sea surface temperature (SST) anomaly of the Pacific Ocean, which characterizes El Niño and La Niña events. We also find that production of new leaves by its larval host trees, namely Brosimum alicastrum, Artocarpus altilis, and Ficus citrifolia, was directly proportional to the SST anomaly, with greater leaf flushing occurring during the period of the annual butterfly migration that followed an El Niño event. Combining these and our previously published results for the migratory butterfly Aphrissa statira and its host lianas, we conclude that dry season rainfall and photosynthetically active radiation can serve as primary drivers of larval food production and insect population outbreaks in Neotropical wet forests, with drier years resulting in enhanced plant productivity and herbivore abundance. Insect populations should closely track changes in both frequency and amplitude of the El Niño Southern Oscillation with climate change.  相似文献   

5.
The influence of El Niño/Southern Oscillation (ENSO) on rainfall and its possible effect on availability of food for white‐tailed deer (Odocoileus virginianus) in a tropical dry forest in the Pacific coast of Mexico was studied. From 1977 to 2003 there were three significant El Niño and La Niña events. During El Niño years rainfall decreased during the wet season ( June to October) and increased during the dry season (November to May), with the opposite effect during La Niña years. Plant diversity was monitored in permanent plots during the wet and dry seasons of 1989–1993. The results provide evidence that ENSO events affect deer food availability, particularly in the dry season.  相似文献   

6.
We censused butterflies flying across the Panama Canal at Barro Colorado Island (BCI) for 16 years and butterfly hostplants for 8 years to address the question: What environmental factors influence the timing and magnitude of migrating Aphrissa statira butterflies? The peak migration date was earlier when the wet season began earlier and when soil moisture content in the dry season preceding the migration was higher. The peak migration date was also positively associated with peak leaf flushing of one hostplant (Callichlamys latifolia) but not another (Xylophragma seemannianum). The quantity of migrants was correlated with the El Niño Southern Oscillation, which influenced April soil moisture on BCI and total rainfall in the dry season. Both hostplant species responded to El Niño with greater leaf flushing, and the number of adults deriving from or laying eggs on those new leaves was greatest during El Niño years. The year 1993 was exceptional in that the number of butterflies migrating was lower than predicted by the El Niño event, yet the dry season was unusually wet for an El Niño year as well. Thus, dry season rainfall appears to be a primary driver of larval food production and population outbreaks for A. statira. Understanding how global climate cycles and local weather influence tropical insect migrations improves the predictability of ecological effects of climate change.  相似文献   

7.

Aim

Climate oscillations are known to influence the reproductive phenology of birds. Here, we quantify the effects of cyclic climatic variation, specifically El Niño Southern Oscillation (ENSO), on birds that breed opportunistically. We aim to show how inter‐decadal climate fluctuations influence opportunistic breeding. This knowledge is essential for tracking the phenological responses of birds to climate change.

Location

Temperate and arid Australia.

Methods

We assessed variation in egg‐laying (start, peak, conclusion, length) during the three phases of ENSO (El Niño, La Niña and Neutral) for 64 temperate and 15 arid region species using ~80,000 observations. Linear mixed‐effect models and analysis of variance were used to (1) determine if, on average within each region, egg‐laying dates differed significantly among species between Neutral‐El Niño and Neutral‐La Niña phases, and (2) assess how La Niña and El Niño episodes influence egg‐laying in birds which breed early in the year.

Results

During La Niña phases, which are characterized by mild/wet conditions, most bird species in the temperate and arid regions exhibited longer egg‐laying periods relative to Neutral phases. However, there was substantial variation across species. This effect was strongly seasonal; species breeding in spring experienced the greatest increases in egg‐laying periods during La Niña. Further, we found only small differences in peak egg‐laying dates during Neutral and La Niña in the arid region; suggesting that hot temperatures may constrain breeding regardless of rainfall. The effects of El Niño on breeding phenology were not consistent in the temperate and arid regions and may be confounded by highly mobile species opportunistically moving and breeding with localized rainfall during dry periods.

Main conclusions

In both arid and temperate regions, increased rainfall associated with La Niña phases positively influences avian breeding, and likely recruitment. However, dry El Niño phases may not have the dramatic impacts on breeding phenology that are commonly assumed.
  相似文献   

8.
《Global Change Biology》2018,24(5):1894-1903
Entrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño‐Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events.  相似文献   

9.
The hypothesis that El Niño events influence the settlement patterns of the California moray Gymnothorax mordax is tested. The pelagic larval duration (PLD) of larval G. mordax is unknown, but studies on leptocephalus of related species suggest that larvae are long‐lived, up to 2 years. Gymnothorax mordax, an elusive predatory species and the only muraenid off the coast of California, is considered abundant in the waters around Catalina Island. Thirty‐three individuals were collected from Two Harbors, Catalina Island, and otoliths were taken to provide estimates of their age. Settlement year for each individual was backcalculated using estimated age from otolith measurements. These ages were then cross referenced with the Oceanic Niño Index (ONI) developed by the National Oceanographic and Atmospheric Administration (NOAA) to correlate estimated age of settlement with known El Niño years. Of the 33 individuals collected, 30 settled at Catalina Island during El Niño years. The oldest individual in the data‐set was 22 years old, placing G. mordax as one of the longer‐lived predatory fishes in the system. The present study represents the first account of wild G. mordax ages and suggests that El Niño events have an important role in driving the settlement of recruits towards the northern edge of their range.  相似文献   

10.
El Niño‐Southern Oscillation (ENSO) events can cause dramatic changes in marine communities. However, we know little as to how ENSO events affect tropical seagrass beds over decadal timescales. Therefore, a diverse array of seagrass (Thalassia hemprichii) habitat types were surveyed once every 3 months for 16 years (January 2001 to February 2017) in a tropical intertidal zone that is regularly affected by both ENSO events and anthropogenic nutrient enrichment. La Niña and El Niño events had distinct effects on the biomass and growth of T. hemprichii. During La Niña years, higher (a) precipitation levels and (b) seawater nitrogen concentrations led to increases in seagrass leaf productivity, canopy height, and biomass. However, the latter simultaneously stimulated the growth of periphyton on seagrass leaves; this led to decreases in seagrass cover and shoot density. More frequent La Niña events could, then, eventually lead to either a decline in intertidal seagrass beds or a shift to another, less drought‐resistant seagrass species in those regions already characterized by eutrophication due to local anthropogenic activity.  相似文献   

11.
A temporally high‐resolution palynological study of the uppermost section of core MD98‐2180 from Kau Bay, Halmahera, Indonesia, provides a vegetation and fire record covering the last 250 years. The record is compared with the Maluku Rainfall Index, Southern Oscillation Index (SOI) and southern hemisphere winter sea surface temperatures (SST) for the central Pacific Ocean based on instrumental data, as well as reconstructions of the SOI and the central Pacific SST and historically recorded El Niño events. The results show that significant El Niño events are generally associated with increased representation of Dipterocarpaceae pollen, probably reflecting the mass‐flowering of this taxon during El Niño‐Southern Oscillation (ENSO) droughts, and elevated charcoal levels, reflecting a greater incidence of fires during these extremely dry periods, while humid phases show increased fern numbers. Our findings demonstrate that pollen records ‘ecological’ in scale can provide useful additional proxy records of ENSO events.  相似文献   

12.
Amazon droughts have impacted regional ecosystem functioning as well as global carbon cycling. The severe dry‐season droughts in 2005 and 2010, driven by Atlantic sea surface temperature (SST) anomaly, have been widely investigated in terms of drought severity and impacts on ecosystems. Although the influence of Pacific SST anomaly on wet‐season precipitation has been well recognized, it remains uncertain to what extent the droughts driven by Pacific SST anomaly could affect forest greenness and photosynthesis in the Amazon. Here, we examined the monthly and annual dynamics of forest greenness and photosynthetic capacity when Amazon ecosystems experienced an extreme drought in 2015/2016 driven by a strong El Niño event. We found that the drought during August 2015–July 2016 was one of the two most severe meteorological droughts since 1901. Due to the enhanced solar radiation during this drought, overall forest greenness showed a small increase, and 21.6% of forests even greened up (greenness index anomaly ≥1 standard deviation). In contrast, solar‐induced chlorophyll fluorescence (SIF), an indicator of vegetation photosynthetic capacity, showed a significant decrease. Responses of forest greenness and photosynthesis decoupled during this drought, indicating that forest photosynthesis could still be suppressed regardless of the variation in canopy greenness. If future El Niño frequency increases as projected by earth system models, droughts would result in persistent reduction in Amazon forest productivity, substantial changes in tree composition, and considerable carbon emissions from Amazon.  相似文献   

13.
Methane (CH4) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH4 emissions. Decreased wetland CH4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process‐based model of global wetland CH4 emissions to investigate the impacts of the ENSO on CH4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8‐month time lag was detected between tropical wetland CH4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.  相似文献   

14.
Influence of precipitation seasonality on piñon pine cellulose δD values   总被引:1,自引:0,他引:1  
The influence of seasonal to interannual climate variations on cellulose hydrogen isotopic composition (δD) was assessed by analysing tree rings and needles of piñon pine (Pinus edulis and P. monophylla). Sites spanned a gradient of decreasing summer precipitation, from New Mexico to Arizona to Nevada. Tree rings were divided into earlywood, latewood and whole‐year increments, and annual cohorts of needles were collected. The study period (1989–96) included two La Niña events (1989, 1996) and a prolonged El Niño event (1991–95). Winter and spring moisture conditions were strongly related to October–March Southern Oscillation Index (SOI) in New Mexico and Arizona, with above‐average precipitation occurring in El Niño years. Wood δD values at these sites were correlated with winter and spring moisture conditions. Needle δD values were correlated with summer moisture conditions in New Mexico and with winter moisture and SOI in Arizona. Low cellulose δD values observed from 1991 to 1993 in both wood and needles occurred during wet El Niño years, whereas high δD values in needles were present during the dry, La Niña years of 1989 and 1996. North‐eastern Nevada does not receive precipitation anomalies related to ENSO, and thus cellulose δD values did not reflect the ENSO pattern observed at the other sites. Cellulose δD values were strongly, inversely correlated with relative humidity variations at all sites, as predicted by a mechanistic model. Contrary to predictions from the same model and observations from more mesic areas, time series of cellulose δD values were not directly correlated with interannual or seasonal variations in precipitation δD values or temperature at any of the sites. On a regional basis, however, mean δD values in needles and wood were correlated with mean annual temperature and δD values of precipitation. This suggests that temporal averaging may bias relationships between biological systems and climate.  相似文献   

15.
We conducted a 15 yr mark‐resight study of branded California sea lions (Zalophus californianus) at San Miguel Island, California, to estimate age‐specific recruitment and natality of the population. We used the Schwarz and Stobo model to estimate sighting, survival, recruitment, timing of births, abundance, and age‐specific natality from sighting histories of 1,276 parous females. The advantage of this approach was that the reproductive status of females did not have to be known for all females of reproductive age. Probability of recruitment into the reproductive population began at age 3 or 4, peaked between ages 5 and 7, and slowly declined. Age‐specific natality was similar for ages 4–16 but declined after age 17, suggesting that reproductive senescence occurs in older females. The average annual natality for parous females 4–16 yr of age was 0.77 (SE = 0.03); natality declined to 0.56 (SE = 0.10) for parous females 17–21 yr of age. Natality for both age classes was reduced during El Niño conditions by 24% and 34%, respectively. In addition to reducing natality, El Niño events may result in a delay of recruitment if females experience El Niño conditions before they turn 4 yr of age.  相似文献   

16.
Comparisons between historical and recent ecological datasets indicate that shallow reef habitats across the central Galapagos Archipelago underwent major transformation at the time of the severe 1982/1983 El Niño warming event. Heavily grazed reefs with crustose coralline algae (‘urchin barrens’) replaced former macroalgal and coral habitats, resulting in large local and regional declines in biodiversity. Following recent threat assessment workshops, a total of five mammals, six birds, five reptiles, six fishes, one echinoderm, seven corals, six brown algae and nine red algae reported from coastal environments in Galapagos are now recognized as globally threatened. The 2008 International Union for the Conservation of Nature (IUCN) Red List includes 43 of these species, while two additional species (Galapagos damsel Azurina eupalama and 24‐rayed sunstar Heliaster solaris) not seen for > 25 years also fulfil IUCN threatened species criteria. Two endemic species (Galapagos stringweed Bifurcaria galapagensis and the damselfish A. eupalama) are now regarded as probably extinct, while an additional six macroalgal species (Dictyota galapagensis, Spatoglossum schmittii, Desmarestia tropica, Phycodrina elegans, Gracilaria skottsbergii and Galaxaura barbata) and the seastar H. solaris are possibly extinct. The removal of large lobster and fish predators by artisanal fishing probably magnified impacts of the 1982/1983 El Niño through a cascade of indirect effects involving population expansion of grazing sea urchins. Marine protected areas with adequate enforcement are predicted to ameliorate but not eliminate ecosystem impacts caused by increasing thermal anomalies associated with El Niño and global climate change.  相似文献   

17.
The effect of shading by an adult canopy on blade-stage Macrocystis pyrifera (L.) C. A. Agardh was estimated by comparing the average growth rate of individuals under a canopy to that of individuals in a canopy gap. This comparison was made in 1983 during a strong El Niño and again in 1986 after the El Niño. Estimated nutrient concentrations in 1983 were two orders of magnitude below those in 1986, whereas ambient light levels were over 3 times higher. The kelp canopy caused similar proportional light reductions (20–30%) during both years. Blades grew 18% slower under the canopy than in the clearing in 1983 and about 77% slower under the canopy in 1986. Blade-stage individuals grew at the same rates in clearings in 1983 and 1986. Regardless of shading, the average growth rate of blade-stage kelp under the ambient, low-nutrient conditions of 1983 was higher than that later observed for multifronded juveniles during the same El Niño. The growth of blade-stage kelp was more like that of larger juveniles growing under high-nutrient conditions. The difference may be due to greater concentrations of nutrients very near the sea floor where single blades are growing compared to concentrations higher in the water column where larger kelp have most of their tissues.  相似文献   

18.
Coral reef ecosystems are declining worldwide and under foreseeable threat due to climate change, resulting in significant changes in reef communities. It is unknown, however, how such community changes impact interspecific interactions. Recent extreme weather events affecting the Great Barrier Reef, that is, consecutive cyclones and the 2016 El Niño event, allowed us to explore potential consequences in the mutualistic interactions involving cleaner fish Labroides dimidiatus (hereafter “cleaner”). After the perturbations, cleaner densities were reduced by 80%, disproportionally compared to the variety of reef fish clients from which cleaners remove ectoparasites. Consequently, shifts in supply and demand yielded an increase in the clients’ demand for cleaning. Therefore, clients became less selective toward cleaners, whereas cleaners were able to choose from a multitude of partners. In parallel, we found a significant decline in the ability of cleaners to manage their reputation and to learn to prioritize ephemeral food sources to maximize food intake in laboratory experiments. In other words, cleaners failed to display the previously documented strategic sophistication that made this species a prime example for fish intelligence. In conclusion, low population densities may cause various effects on individual behavior, and as a consequence, interspecific interactions. At the same time, our data suggest that a recovery of population densities would cause a recovery of previously described interaction patterns and cleaner strategic sophistication within the lifetime of individuals.  相似文献   

19.
In April/May each year from 1995 to 2000, ascidians were sampled randomly with 35 1m2 quadrats from three different reef habitats (intertidal reef tops, coastal reef walls and shallow-bank reefs) at four replicate localities (Praia do Forte, Itacimirim, Guarajuba and Abai) in northern Bahia (Brazil). As the sampling period included the 1997/1998 El Niño event, the most severe on record, for the first time these results allow a quantitative assessment of the impact of this major environmental stressor on the biodiversity of associated coral reef ascidians. Across all reef habitats, 22 ascidian species were recorded from three different orders (Aplousobranchia, Phlebobranchia and Stolidobranchia). After El Niño, all species showed significantly altered densities (ANOVA, F=602.90, p<0.0001); many species were absent from the reefs within 2 years of the El Niño period, but densities of Lissoclinum perforatum (all reefs) and Echinoclinum verrilli (subtidal reefs) increased significantly from 1998 onwards. Univariate and multivariate analyses confirmed that significant changes in assemblage composition had occurred. BIOENV analysis identified turbidity, mean temperature and cloud cover as the main factors best explaining these assemblage changes. Our results suggest that although the 1997/1998 El Niño had a differential effect on the species contributing to the ascidian assemblage of Brazilian coral reefs, most species disappeared and those remaining are likely to enhance reef degradation through their bioeroding activities.  相似文献   

20.
Development implies a change in allocation of resources from somatic growth to reproduction. In a highly variable environment, growth can vary from year to year thereby influencing the long‐term life history perspective. The Galapagos sea lion (Zalophus wollebaeki) lives in a highly unpredictable marine environment in which food abundance varies not only seasonally, but also annually due to El Niño. Galapagos sea lions are restricted to a patch of cold upwelling waters surrounding the archipelago and are closely tied to land as nursing females alternate between foraging at sea and nursing ashore. Therefore, their offspring are especially vulnerable to ocean warming causing reduced food abundance. We found a significant correlation between sea surface temperature (SST) and early growth: Both mass at birth and linear growth within the first 2 mo of life correlated negatively with SST. Absolute mass gain was higher for males, but both sexes gained equally 1.9% of birth mass per day. Until the age of 3 yr male and female juveniles showed similar growth to an asymptotic mass of 40 and 35 kg, respectively. As a consequence of the highly variable environment, the plasticity in growth strategy of Galapagos sea lion juveniles appears wider than that of all other sea lions allowing them to cope with poor conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号