首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Z. Tan  K. Xing  T. Yang  Y. Pan  Y. Wang  S. Mi  D. Sun  C. Wang 《Animal genetics》2018,49(2):127-131
Using the PorcineSNP80 BeadChip, we performed a genome‐wide association study for seven reproductive traits, including total number born, number born alive, litter birth weight, average birth weight, gestation length, age at first service and age at first farrowing, in a population of 1207 Large White pigs. In total, we detected 12 genome‐wide significant and 41 suggestive significant SNPs associated with six reproductive traits. The proportion of phenotypic variance explained by all significant SNPs for each trait ranged from 4.46% (number born alive) to 11.49% (gestation length). Among them, 29 significant SNPs were located within known QTL regions for swine reproductive traits, such as corpus luteum number, stillborn number and litter size, of which one QTL region associated with litter size contained the ALGA0098819 SNP for total number born. Subsequently, we found that 376 functional genes contained or were near these significant SNPs. Of these, 14 genes—BHLHA15, OCM2, IL1B2, GCK, SMAD2, HABP2, PAQR5, GRB10, PRELID2, DMKN, GPI, GPIHBP1, ADCY2 and ACVR2B—were considered important candidates for swine reproductive traits based on their critical roles in embryonic development, energy metabolism and growth development. Our findings contribute to the understanding of the genetic mechanisms for reproductive traits and could have a positive effect on pig breeding programs.  相似文献   

2.
Cho IC  Park HB  Yoo CK  Lee GJ  Lim HT  Lee JB  Jung EJ  Ko MS  Lee JH  Jeon JT 《Animal genetics》2011,42(6):621-626
Haematological traits play important roles in disease resistance and defence functions. The objective of this study was to locate quantitative trait loci (QTL) and the associated positional candidate genes influencing haematological traits in an F2 intercross between Landrace and Korean native pigs. Eight blood‐related traits (six erythrocyte traits, one leucocyte trait and one platelet trait) were measured in 816 F2 progeny. All experimental animals were genotyped with 173 informative microsatellite markers located throughout the pig genome. We report that nine chromosomes harboured QTL for the baseline blood parameters: genomic regions on SSC 1, 4, 5, 6, 8, 9, 11, 13 and 17. Eight of twenty identified QTL reached genome‐wide significance. In addition, we evaluated the KIT locus, an obvious candidate gene locus affecting variation in blood‐related traits. Using dense single nucleotide polymorphism marker data on SSC 8 and the marker‐assisted association test, the strong association of the KIT locus with blood phenotypes was confirmed. In conclusion, our study identified both previously reported and novel QTL affecting baseline haematological parameters in pigs. Additionally, the positional candidate genes identified here could play an important role in elucidating the genetic architecture of haematological phenotype variation in swine and in humans.  相似文献   

3.
Objectives: To investigate possible obesity candidate genes in regions of porcine quantitative trait loci (QTL) for fat deposition and obesity‐related phenotypes. Research Methods and Procedures: Chromosome mapping and QTL analyses of obesity candidate genes were performed using DNA panels from a reference pig family. Statistical association analyses of these genes were performed for fat deposition phenotypes in several other commercial pig populations. Results: Eight candidate genes were mapped to QTL regions of pig chromosomes in this study. These candidate genes also served as anchor loci to determine homologous human chromosomal locations of pig fat deposition QTL. Preliminary analyses of relationships among polymorphisms of individual candidate genes and a variety of phenotypic measurements in a large number of pigs were performed. On the basis of available data, gene‐gene interactions were also studied. Discussion: Comparative analysis of obesity‐related genes in the pig is not only important for development of marker‐assisted selection on growth and fat deposition traits in the pig but also provides for an understanding of their genetic roles in the development of human obesity.  相似文献   

4.
Respiratory disease is the most important health concern for the swine industry. Genetic improvement for disease resistance is challenging because of the difficulty in obtaining good phenotypes related with disease resistance; however, identification of genes or markers associated with disease resistance can help in the genetic improvement of pig health. The purpose of our study was to investigate whether quantitative trait loci (QTL) associated with disease resistance were segregated in a purebred population of Landrace pigs that had been selected for meat production traits and mycoplasmal pneumonia of swine (MPS) scores over five generations. We analysed 1395 pigs from the base to the fifth generation of this population. Two respiratory disease traits [MPS scores and atrophic rhinitis (AR) scores] and 11 immune‐capacity traits were measured in 630–1332 animals at 7 weeks of age and when the animal's body weight reached 105 kg. Each of the pigs, except sires in the base population, was genotyped using 109 microsatellite markers, and then, QTL analysis of the full‐sib family population with a multi‐generational pedigree structure was performed. Variance component analysis was used to detect QTL associated with MPS or AR scores, and the logarithm of odds (LOD) score and genotypic heritability of the QTL were estimated. Five significant (LOD > 2.51) and 18 suggestive (LOD > 1.35) QTL for respiratory disease traits and immune‐capacity traits were detected. The significant QTL for Log‐MPS score, located on S. scrofa chromosome 2, could explain 87% of the genetic variance of this score in this analysis. This is the first report of QTL associated with respiratory disease lesions.  相似文献   

5.
Lyme arthritis (LA), a late disease manifestation of Borrelia burgdorferi infection, usually resolves with antibiotic therapy. However, some patients develop proliferative synovitis lasting months to several years after spirochetal killing, called postinfectious LA. In this study, we phenotyped haematopoietic and stromal cell populations in the synovial lesion ex vivo and used these findings to generate an in vitro model of LA using patient‐derived fibroblast‐like synoviocytes (FLS). Ex vivo analysis of synovial tissue revealed high abundance of IFNγ‐producing T cells and NK cells. Similar to marked IFNγ responses in tissue, postinfectious LA synovial fluid also had high levels of IFNγ. HLA‐DR‐positive FLS were present throughout the synovial lesion, particularly in areas of inflammation. FLS stimulated in vitro with Bburgdorferi, which were similar to conditions during infection, expressed 68 genes associated primarily with innate immune activation and neutrophil recruitment. In contrast, FLS stimulated with IFNγ, which were similar to conditions in the postinfectious phase, expressed >2,000 genes associated with pathogen sensing, inflammation, and MHC Class II antigen presentation, similar to the expression profile in postinfectious synovial tissue. Furthermore, costimulation of FLS with Bburgdorferi and IFNγ induced greater expression of IL‐6 and other innate immune response proteins and genes than with IFNγ stimulation alone. These results suggest that Bburgdorferi infection, in combination with IFNγ, initiates the differentiation of FLS into a highly inflammatory phenotype. We hypothesise that overexpression of IFNγ by lymphocytes within synovia perpetuates these responses in the postinfectious period, causing proliferative synovitis and stalling appropriate repair of damaged tissue.  相似文献   

6.
Changes affecting the status of health and robustness can bring about physiological alterations including hematological parameters in swine. To identify quantitative trait loci (QTL) associated with eight hematological traits (one leukocyte trait, six erythrocyte traits and one platelet trait), we conducted a genome‐wide association study using the PorcineSNP60K BeadChip in a resource population derived from an intercross between Landrace and Korean native pigs. A total of 36 740 SNPs from 816 F2 progeny were analyzed for each blood‐related trait after filtering for quality control. Data were analyzed by the genome‐wide rapid association using mixed model and regression (GRAMMAR) approach. A total of 257 significant SNPs (P < 1.36 × 10?6) on SSC3, 6, 8, 13 and 17 were identified for blood‐related traits in this study. Interestingly, the genomic region between 17.9 and 130 Mb on SSC8 was found to be significantly associated with red blood cell, mean corpuscular volume and mean corpuscular hemoglobin. Our results include the identification of five significant SNPs within five candidate genes (KIT, IL15, TXK, ARAP2 and ERG) for hematopoiesis. Further validation of these identified SNPs could give valuable information for understanding the variation of hematological traits in pigs.  相似文献   

7.
A QTL study of live animal and carcass traits in beef cattle was carried out in New Zealand and Australia. Back‐cross calves (385 heifers and 398 steers) were generated, with Jersey and Limousin backgrounds. This paper reports on weights of eight organs (heart, liver, lungs, kidneys, spleen, gastro‐intestinal tract, fat, and rumen contents) and 12 fat composition traits (fatty acid (FA) percentages, saturated and monounsaturated FA subtotals, and fat melting point). The New Zealand cattle were reared and finished on pasture, whilst Australian cattle were reared on grass and finished on grain for at least 180 days. For organ weights and fat composition traits, 10 and 12 significant QTL locations (P < 0.05), respectively, were detected on a genome‐wide basis, in combined‐sire or within‐sire analyses. Seven QTL significant for organ weights were found at the proximal end of chromosome 2. This chromosome carries a variant myostatin allele (F94L), segregating from the Limousin ancestry, and this is a positional candidate for the QTL. Ten significant QTL for fat composition were found on chromosomes 19 and 26. Fatty acid synthase and stearoyl‐CoA desaturase (SCD1), respectively, are positional candidate genes for these QTL. Two FA QTL found to be common to sire groups in both populations were for percentages of C14:0 and C14:1 (relative to all FAs) on chromosome 26, near the SCD1 candidate gene.  相似文献   

8.
Bawei Longzuan granule (BLG) is a representative Zhuang medicine preparation. The present work aims to characterize the chemical constituents of BLG and evaluate its anti‐arthritic activity. The major chemical constituents of BLG were tentatively identified by ultra‐performance liquid chromatography‐quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS), which revealed the presence of some alkaloids (e. g., magnoflorine, sinomenine and nitidine) and flavonoids (e. g., hesperidin, diosmin and sinensetin) that may be partly responsible for the anti‐arthritic effect of BLG. In addition, the collagen‐induced arthritis (CIA) model in rats was induced by intradermal injection of bovine collagen‐II in complete Freund's adjuvant at the base of tail. The CIA rats received oral administration of BLG (1.25, 2.5 and 5 g/kg) for 30 days. Then, various indicators were determined to evaluate its anti‐arthritic activity, including paw swelling, arthritic score, body weight, knee joint pathology, thymus index and spleen index. Additionally, the serum levels of tumor necrosis factor (TNF)‐α, interferon (IFN)‐γ, interleukin (IL)‐1β, IL‐6, IL‐4 and IL‐10 were measured to determine the underlying mechanisms. The results showed that BLG efficiently ameliorated the severity of arthritis in CIA rats by decreasing paw swelling and arthritis score and improving the histological lesions of knee joint. Moreover, the serum levels of several pro‐inflammatory cytokines (i. e., IL‐1β, TNF‐α, IL‐6 and IFN‐γ) were downregulated, whereas two anti‐inflammatory factors (i. e., IL‐4 and IL‐10) were upregulated after BLG administration. These results indicated that BLG possessed promising therapeutic effect on collagen‐induced arthritis by inhibiting inflammatory responses. BLG can be used as a complementary or alternative traditional medicine to treat rheumatoid arthritis.  相似文献   

9.
The IGF‐1 signaling pathway plays an important role in regulating longevity. To identify the genetic loci and genes that regulate plasma IGF‐1 levels, we intercrossed MRL/MpJ and SM/J, inbred mouse strains that differ in IGF‐1 levels. Quantitative trait loci (QTL) analysis of IGF‐1 levels of these F2 mice detected four QTL on chromosomes (Chrs) 9 (48 Mb), 10 (86 Mb), 15 (18 Mb), and 17 (85 Mb). Haplotype association mapping of IGF‐1 levels in 28 domesticated inbred strains identified three suggestive loci in females on Chrs 2 (13 Mb), 10 (88 Mb), and 17 (28 Mb) and in four males on Chrs 1 (159 Mb), 3 (52 and 58 Mb), and 16 (74 Mb). Except for the QTL on Chr 9 and 16, all loci co‐localized with IGF‐1 QTL previously identified in other mouse crosses. The most significant locus was the QTL on Chr 10, which contains the Igf1 gene and which had a LOD score of 31.8. Haplotype analysis among 28 domesticated inbred strains revealed a major QTL on Chr 10 overlapping with the QTL identified in the F2 mice. This locus showed three major haplotypes; strains with haplotype 1 had significantly lower plasma IGF‐1 and extended longevity (P < 0.05) than strains with haplotype 2 or 3. Bioinformatic analysis, combined with sequencing and expression studies, showed that Igf1 is the most likely QTL gene, but that other genes may also play a role in this strong QTL.  相似文献   

10.
K. Dong  Y. Pu  N. Yao  G. Shu  X. Liu  X. He  Q. Zhao  W. Guan  Y. Ma 《Animal genetics》2015,46(2):101-109
We performed genome‐wide CNV detection based on SNP genotyping data of 96 Chinese‐native Tibetan, Dahe and Wuzhishan pigs. These pigs are particularly interesting because of their excellent adaptation to hypoxia or small body size, which facilitates the use of them as models of different human diseases in addition to valuable agricultural animals. A total of 105 CNV regions (CNVRs) were identified, encompassing 16.71 Mb of the pig genome. Seven of 10 (70%) CNVRs selected randomly were validated by quantitative real‐time PCR. Comparison with previous studies revealed 25 (23.81%) novel CNVRs, indicating that CNV coverage of the pig genome is still incomplete and there exists large diversity between pig breeds. Functional analysis of genes located in these CNVRs confirmed the high representation of genes involved in sensory perception, neurological system processes and other basic metabolic processes. In addition, the majority of these CNVRs were detected to span reported pig QTL that affect various traits, which highlighted three biologically interesting genes with copy number changes (i.e., ANKRD34B, FAM110B and ABCG1). These genes may have economic importance in pig breeding and are worth being further investigated. We also obtained some CNVRs harboring genes that had human orthologs involved in human diseases such as cardiovascular disease and Alzheimer's disease. The findings of this study are a significant extension of the coverage of CNVRs in the pig genome and provide valuable resources for follow‐up‐associated studies of CNVs in pig complex traits as well as important implications of human diseases.  相似文献   

11.
The ability of macrophages to eradicate intracellular pathogens is normally greatly enhanced by IFNγ, a cytokine produced mainly after onset of adaptive immunity. However, adaptive immunity is unable to provide sterilizing immunity against mycobacteria, suggesting that mycobacteria have evolved virulence strategies to inhibit the bactericidal effect of IFNγ‐signalling in macrophages. Still, the host–pathogen interactions and cellular mechanisms responsible for this feature have remained elusive. We demonstrate that the ESX‐1 type VII secretion systems of Mycobacterium tuberculosis and Mycobacterium marinum exploit type I IFN‐signalling to promote an IL‐12low/IL‐10high regulatory macrophage phenotype characterized by secretion of IL‐10, IL‐27 and IL‐6. This mechanism had no impact on intracellular growth in the absence of IFNγ but suppressed IFNγ‐mediated autophagy and growth restriction, indicating that the regulatory phenotype extends to function. The IFNγ‐refractory phenotype was partly mediated by IL‐27‐signalling, establishing functional relevance for this downstream cytokine. These findings identify a novel macrophage‐modulating function for the ESX‐1 secretion system that may contribute to suppress the efficacy of adaptive immunity and provide mechanistic insight into the antagonistic cross talk between type I IFNs and IFNγ in mycobacterial infection.  相似文献   

12.
Platycodin D2 ( 1 ), a less hemolytic saponin from the root of Platycodon grandiflorum than platycodin D ( 2 ), was evaluated for the potential to enhance specific cellular and humoral immune responses to hepatitis B surface antigen (HBsAg) in mice. It significantly increased the concanavalin A (Con A)‐, lipopolysaccharide (LPS)‐, and HBsAg‐induced splenocyte proliferation in HBsAg‐immunized mice (P<0.05, P<0.01, and P<0.001, resp.). HBsAg‐specific IgG, IgG1, IgG2a, and IgG2b antibody titers in the serum were also markedly enhanced by 1 compared to the HBsAg control group (P<0.01 or P<0.001). Moreover, 1 significantly promoted the production of Th1 (IL‐2 and IFN‐γ) and Th2 (IL‐4 and IL‐10) cytokines from splenocytes in the HBsAg‐immunized mice (P<0.001). The adjuvant potential of 1 on splenocyte proliferation, serum HBsAg‐specific IgG2a and IgG2b antibody response, as well as Th1‐cytokine secretion from splenocytes in the HBsAg‐immunized mice was higher than that of Alum. The results suggest that 1 could improve both cellular and humoral immune responses to HBsAg in mice. Hence, 1 might be a promising adjuvant for hepatitis B vaccine with dual Th1‐ and Th2‐potentiating activity.  相似文献   

13.
Uncovering the genetic basis of agronomic traits in wheat landraces is important for ensuring global food security via the development of improved varieties. Here, 723 wheat landraces from 10 Chinese agro‐ecological zones were evaluated for 23 agronomic traits in six environments. All accessions could be clustered into five subgroups based on phenotypic data via discriminant function analysis, which was highly consistent with genotypic classification. A genome‐wide association study was conducted for these traits using 52 303 DArT‐seq markers to identify marker‐trait associations and candidate genes. Using both the general linear model and the mixed linear model, 149 significant markers were identified for 21 agronomic traits based on best linear unbiased prediction values. Considering the linkage disequilibrium decay distance in this study, significant markers within 10 cM were combined as a quantitative trait locus (QTL), with a total of 29 QTL identified for 15 traits. Of these, five QTL for heading date, flag leaf width, peduncle length, and thousand kernel weight had been reported previously. Twenty‐five candidate genes associated with significant markers were identified. These included the known vernalization genes VRN‐B1 and vrn‐B3 and the photoperiod response genes Ppd and PRR. Overall, this study should be helpful in elucidating the underlying genetic mechanisms of complex agronomic traits and performing marker‐assisted selection in wheat.  相似文献   

14.
Feed efficiency and growth are the most important traits in pig production, and very few genetic markers have been reported to be associated with feed efficiency. The suppressor of cytokine signalling‐2 (encoded by SOCS2) is the main negative regulator of somatic growth, and the knockout of SOCS2 and naturally mutant mice have high‐growth phenotypes. Porcine SOCS2 was selected as a primary positional candidate for feed efficiency, because it is located on chromosome 5q, in the vicinity of a Quantitative Trait Locus (QTL) region for food conversion ratio in pigs. Here, we report five single nucleotide polymorphisms identified by sequencing of the promoter region and exon 1. One PCR–RFLP assay was designed for genotyping the polymorphism c.1667A > G (GenBank Accession No AY312266 ). Association analyses were performed in an Australian mapping resource pedigree population (PRDC‐US43) for food conversion ratio, backfat, IGF1 level and growth traits and showed significant effects on average daily gain on test (ADG2) (P < 0.01) and marginal association with food conversion ratio (FCR) (P < 0.08).  相似文献   

15.
Kernel size‐related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 × 10?6) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P < 1 × 10?3) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable‐effect SNPs and the co‐localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co‐localized SNPs, of which zma‐miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma‐miR164e resulted in the down‐regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker‐assisted selection (MAS) for high‐yield breeding in maize.  相似文献   

16.
This study investigates the in vitro modulatory effects of interferon‐γ (IFN‐γ) and interleukin‐4 (IL‐4) on both proliferative bovine T cell responses and IL‐10 production induced by different antigens [crude larval extract and the purified fractions hypodermin A, B and C (HyA, HyB, HyC)] obtained from first instars of Hypoderma lineatum (Diptera: Oestridae), alone or in the presence of the mitogen concanavalin A. Incubation with the different parasitic antigens resulted in significant inhibition of T cell proliferation and IL‐10 production, which, in general, did not revert after the addition of IFN‐γ and IL‐4. In the absence of antigens, IL‐4 induced significant inhibition of mitogen‐induced T cell responses. Exogenous IFN‐γ exhibited an inhibitory effect on cell proliferation in the presence of the purified fractions HyB and HyC. These in vitro data suggest that far from neutralizing the effects of larval antigens, the addition of IFN‐γ potentiates their anti‐proliferative activity; by contrast, IL‐4 had no consistent effects on proliferative responses to Hypoderma. IL‐4 provoked an increment of IL‐10 levels in supernatants of HyB‐stimulated cells. In conclusion, exogenous IFN‐γ and IL‐4 were unable to counteract the suppressor effects of H. lineatum antigens.  相似文献   

17.
For detecting QTL in the whole swine genome, 1068 pigs from three F2 populations constructed by crossing European Wild boar and Pietrain (W×P), Meishan and Pietrain (M×P), and Wild Boar and Meishan (W × M) were genotyped for genetic markers evenly spaced at approximately 20 cM intervals. AQTL analysis was performed using a least-squares method. Here the results of the QTL analysis on the porcine chromosome 7 are presented. QTL for carcass composition (e.g. head weight, carcass length, backfat depth, abdominal fat and bacon meat) were mapped in the chromosomal region CYPA/CYPD-TNFB-S0102 in M×P and W×M, but not in W×P. The QTL explained 5.3%–27.2% of the F2 phenotypic variance in the two F2 populations. Most traits affected by the mapped QTL were related to carcass fatness. The mode of gene action of QTL was additive. Surprisingly, in contrast to the parental phenotype, the QTL alleles from fatty Meishan were associated with thinner backfat than Pietrain and Wild Boar alleles, suggesting that the genome of the fatty Meishan pig contains genes which can reduce fat content of carcass substantially.  相似文献   

18.
We performed a genome‐wide association study using the porcine 60K SNP array to detect QTL regions for nine traits in a three‐generational Duroc samples (n = 651), viz. generations 1, 2 and 3 from a population selected over five generations using a closed nucleus breeding scheme. We applied a linear mixed model for association mapping to detect SNP effects, adjusting for fixed effects (sex and season) and random polygenic effects (reflecting genetic relatedness), and derived a likelihood ratio statistic for each SNP using the efficient mixed‐model association method. We detected a region on SSC6 for backfat thickness (BFT) and on SSC7 for cannon bone circumference (CANNON), with a genome‐wide significance of < 0.01 after Bonferroni correction. These regions had been detected previously in other pig populations. Six genes are located in the BFT‐associated region, while the CANNON‐associated region includes 66 genes. In the future, significantly associated SNPs, derived by sequencing the coding regions of the six genes in the BFT region, can be used in marker‐assisted selection of BFT, whereas haplotypes constructed from the SSC7 region with strong LD can be used to select for the CANNON trait in our resource family.  相似文献   

19.
A genome‐wide association study of 2098 progeny‐tested Nordic Holstein bulls genotyped for 36 387 SNPs on 29 autosomes was conducted to confirm and fine‐map quantitative trait loci (QTL) for mastitis traits identified earlier using linkage analysis with sparse microsatellite markers in the same population. We used linear mixed model analysis where a polygenic genetic effect was fitted as a random effect and single SNPs were successively included as fixed effects in the model. We detected 143 SNP‐by‐trait significant associations (P < 0.0001) on 20 chromosomes affecting mastitis‐related traits. Among them, 21 SNP‐by‐trait combinations exceeded the genome‐wide significant threshold. For 12 chromosomes, both the present association study and the previous linkage study detected QTL, and of these, six were in the same chromosomal locations. Strong associations of SNPs with mastitis traits were observed on bovine autosomes 6, 13, 14 and 20. Possible candidate genes for these QTL were identified. Identification of SNPs in linkage disequilibrium with QTL will enable marker‐based selection for mastitis resistance. The candidate genes identified should be further studied to detect candidate polymorphisms underlying these QTL.  相似文献   

20.
In this work, we analysed 11 genetic markers localized on OAR11 in a commercial population of Spanish Churra sheep to detect QTL that underlie milk fatty acid (FA) composition traits. Following a daughter design, we analysed 799 ewes distributed in 15 half‐sib families. Eight microsatellite markers and three novel SNPs identified in two genes related to fatty acid metabolism, acetyl‐CoA carboxylase α (ACACA) and fatty acid synthase (FASN), were genotyped in the whole population under study. The phenotypic traits considered in the study included 22 measurements related to the FA composition of the milk and three other milk production traits (milk protein percentage, milk fat percentage and milk yield). Across‐family regression analysis revealed four significant QTL at the 5% chromosome‐wise level influencing contents of capric acid (C10:0), lauric acid (C12:0), linoleic conjugated acid (CLA) and polyunsaturated fatty acids (PUFA) respectively. The peaks of the QTL affecting C10:0 and PUFA contents in milk map close to the FASN gene, which has been evaluated as a putative positional candidate for these QTL. The QTL influencing C12:0 content reaches its maximum significance at 58 cM, close to the gene coding for the glucose‐dependent insulinotropic polypeptide. We were not able to find any candidate genes related to fat metabolism at the QTL influencing CLA content, which is located at the proximal end of the chromosome. Further research efforts will be needed to confirm and refine the QTL locations reported here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号