首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alteration in palaeodrainage river connections has shaped patterns of speciation, genetic diversity and the geographical distribution of the species‐rich freshwater fauna of North America. The integration of ancestral range reconstruction methods and divergence time estimates provides an opportunity to infer palaeodrainage connectivity and test alternative palaeodrainage hypotheses. Members of the Orangethroat Darter clade, Ceasia, are endemic to southeastern North America and occur north and south of the Pleistocene glacial front, a distributional pattern that makes this clade of closely related species an ideal system to investigate the number and location of glacial refugia and compare alternative hypotheses regarding the proposed evolution of the Teays‐Mahomet palaeodrainage. This study utilized time‐calibrated mitochondrial and nuclear gene phylogenies and present‐day geographical distributions to investigate hypothesized Teays‐Mahomet River connections through time using a dispersal–extinction–cladogenesis (DEC) framework. Results of DEC ancestral area reconstructions indicate that the Teays‐Mahomet River was a key dispersal route between disjunct highland regions connecting the Mississippi River tributaries to the Old‐Ohio Drainage minimally at two separate occasions during the Pleistocene. There was a dynamic interplay between palaeodrainage connections through time and postglacial range expansion from three glacial refugia that shaped the current genetic structure and geographical distributions of the species that comprise Ceasia.  相似文献   

2.
How Quaternary climatic oscillations affected range distributions and intraspecific divergence of alpine plants on the Qinghai‐Tibetan Plateau (QTP) remains largely unknown. Here, we report a survey of chloroplast DNA (cpDNA) and nuclear ribosomal internal transcribed spacer (ITS) DNA variation aimed at exploring the phylogeographical history of the QTP alpine endemic Aconitum gymnandrum. We sequenced three cpDNA fragments (rpl20–rps12 intergenic spacer, the trnV intron and psbA‐trnH spacer) and also the nuclear (ITS) region in 245 individuals from 23 populations sampled throughout the species’ range. Two distinct lineages, with eastern and western geographical distributions respectively, were identified from a phylogenetic analysis of ITS sequence variation. Based on a fast substitution rate, these were estimated to have diverged from each other in the early Pleistocene approximately 1.45 Ma. The analysis of cpDNA variation identified nine chlorotypes that clustered into two major clades that were broadly congruent in geographical distribution with the two ITS lineages. The east–west split of cpDNA divergence was supported by an amova which partitioned approximately half of the total variance between these two groups of populations. Analysis of the spatial distribution of chlorotypes showed that each clade was subdivided into two groups of populations such that a total of four population groups existed in the species. It is suggested that these different groups derive from four independent glacial refugia that existed during the Last Glacial Maximum (LGM), and that three of these refugia were located at high altitude on the QTP platform itself at that time. Coalescent simulation of chlorotype genealogies supported both an early Pleistocene origin of the two main cpDNA clades and also the ‘four‐refugia’ hypothesis during the LGM. Two previous phylogeographical studies of QTP alpine plants indicated that such plants retreated to refugia at the eastern/south‐eastern plateau edge during the LGM and/or previous glacial maxima. However, the results for A. gymnandrum suggest that at least some of these cold‐tolerant species may have also survived centrally on the QTP platform throughout the Quaternary.  相似文献   

3.
In this paper, we use mitochondrial NADH dehydrogenase subunit 2 sequences to test Pleistocene refugial hypotheses for the pygmy nuthatch (Sitta pygmaea). Pygmy nuthatches are a common resident of long-needle pine forests in western North America and demonstrate a particular affinity with ponderosa pine (Pinus ponderosa). Palaeoecological and genetic data indicate that ponderosa pine was isolated in two Pleistocene refugia corresponding to areas in the southern Sierra Nevada in the west and southern Arizona and New Mexico in the east. We use coalescent simulations to test the hypothesis that pygmy nuthatches tracked the Pleistocene history of their preferred habitat and persisted in two refugia during the periods of glacial maxima. Coalescent simulation of population history does not support the hypothesis of two Pleistocene refugia for the pygmy nuthatch. Instead, our data are consistent with a single refuge model. Nucleotide diversity is greatest in the western populations of southern and coastal California. We suggest that the pygmy nuthatch expanded from a far western glacial refuge into its current distribution since the most recent glacial maximum.  相似文献   

4.
Research over the past 20 years has shown, with the help of molecular markers, that the population genetics and distribution patterns of freshwater invertebrates in North America are often more complex than was previously believed. Here we extend this research to an, as yet, unstudied but widespread and common group, the freshwater bryozoans. Colonies of the bryozoan Cristatella mucedo were collected from a number of lakes across central North America, and were characterized genetically by analysis of microsatellite loci and mitochondrial DNA (mtDNA) cytochrome b sequences. The microsatellites illustrate a pattern of generally diverse and highly differentiated populations that contain little evidence of recent gene flow. The mtDNA sequences yielded highly variable levels of divergence, ranging from 0.0 to 8.8% within populations, and 0.0 to 9.8% among populations. The multiple divergent mtDNA lineages within populations provide evidence for repeated colonization events. The lack of clustering of haplotypes by site suggests that there has been widespread dispersal of multiple genetic lineages since the last ice age. While some of the haplotype lineages may have evolved in disjunct glacial refugia, the maximum levels of divergence predate the time since the last glacial-interglacial cycles. It is likely that multiple factors including vicariance events, patterns of dispersal, localized extinction, and an unusual life history, explain the unique phylogeographic patterns evident today in populations of C. mucedo.  相似文献   

5.
The phylogeography of the lacertid lizard Gallotia atlantica from the small volcanic island of Lanzarote (Canary Islands) was analysed based on 1075 bp of mitochondrial DNA (mtDNA) sequence (partial cytochrome b and ND2) for 157 individuals from 27 sites (including three sites from neighbouring islets). Levels of sequence divergence were generally low, with the most distant haplotypes separated by only 14 mutational steps. MtDNA divergence appears to coincide with formation of the middle Pleistocene lowland that united formerly separate ancient islands to form the current island of Lanzarote, allowing rejection of a two-island model of phylogeographical structure. There was evidence of large-scale population expansion after island unification, consistent with the colonization of new areas. A nested clade phylogeographical analysis (NCPA) revealed significant phylogeographical structuring. Two-step and higher-level clades each had disjunct distributions, being found to the east and west of a common area with a north-south orientation that extends between coasts in the centre-east of the island (El Jable). Other clades were almost entirely restricted to the El Jable region alone. Bayesian Markov chain Monte Carlo analyses were used to separate ongoing gene flow from historical associations. These supported the NCPA by indicating recent (75,000-150,000 years ago) east-west vicariance across the El Jable region. Lava flows covered El Jable and other parts of the central lowland at this time and likely led to population extinctions and temporary dispersal barriers, although present-day evidence suggests some populations would have survived in small refugia. Expansion of the latter appears to explain the presence of a clade located between the eastern and western components of the disjunct clades. Direct relationships between mtDNA lineages and morphology were not found, although one of two morphological forms on the island has a disjunct distribution that is broadly concordant with east-west components of the phylogeographical pattern. This work demonstrates how recent volcanic activity can cause population fragmentation and thus shape genetic diversity on microgeographical scales.  相似文献   

6.
Phylogeographical inferences based on multiple molecular markers from different modes of inheritance (i.e. mtDNA and nucDNA) can help to explore drivers of current species divergence over different timescales and allow a deeper understanding of evolutionary processes. River systems and mountains, owing to their drainage networks and complex topography, are often a high priority when inferring external causes of phylogeographical patterns. Here, we selected the Chinese endemic freshwater crab Sinopotamon acutum inhabiting drainage networks across the Qinling–Daba Mountains, a watershed that divides northern from southern fauna in China, as a model species (1) to investigate whether river networks and mountain systems act as barriers in shaping the phylogeography of freshwater crabs and (2) to test the impact of historic environments and ecological habitats on crab distribution. Phylogenetic tree and network analyses based on mtDNA revealed divergence between eastern and western populations, but microsatellite DNA did not recover this. Frequent and male‐biased gene flow is evident. The adjacent tributaries, such as Weihe River 1 and Hanjiang River 1, although isolated by Qinling Mts, have low genetic variation in mtDNA. In addition, microsatellite DNA showed low variation between all rivers. Frequent gene flow, genetic variation and mitochondrial genetic structure in S. acutum indicated that the Qinling–Daba Mountains have had no effect on divergence in this species; instead, hydrological networks across these mountains serve as a continuous migration corridor for these crabs. Glacial refugia are probably responsible for the initial isolation of the eastern and western clades, and local adaptations after dispersal have further driven divergence. Cytonuclear discordance in phylogeographical patterns may be attributable to ongoing male‐biased gene flow.  相似文献   

7.
Aim Understanding the history of the mesic‐adapted plant species of eastern British Columbia and northern Idaho, disjunct from their main coastal distribution, may suggest how biotas reorganize in the face of climate change and dispersal barriers. For different species, current evidence supports establishment of the disjunction via an inland glacial refugium, via recent dispersal from the coast, or via a combination of both. In this study, the modern distributions of the coastal‐disjunct vascular plants are analysed with respect to modern climate to examine how refugia and/or dispersal limitation control regional patterns in species richness. Location North‐west North America. Methods The distributions of nine tree and 58 understorey species with a coastal‐disjunct pattern were compiled on a 50‐km grid. The relationship between species richness and an estimate of available moisture was calculated separately for formerly glaciated and unglaciated portions of the coastal and inland regions. Growth habit and dispersal mode were assessed as possible explanatory variables for species distributions. Results Species richness shows a strong relationship to climate in coastal‐unglaciated areas but no relationship to climate in inland‐glaciated areas. In inland‐glaciated areas, richness is c. 70% lower than that expected from climate. Species with animal‐dispersed seeds occupy a larger portion of coastal and inland regions than species with less dispersal potential. Main conclusions Modern patterns of diversity are consistent with both refugia and dispersal processes in establishing the coastal‐disjunct pattern. The inland glacial refugium is marked by locally high diversity and several co‐distributed endemics. In the inland‐glaciated area, dispersal limitation has constrained diversity despite the nearby refugia. Onset of mesic climate within only the last 3000 years and the low dispersal capacity of many species in the refugium may explain this pattern. This study suggests that vascular plant species will face significant challenges responding to climate change on fragmented landscapes.  相似文献   

8.
Beatty GE  Provan J 《Molecular ecology》2010,19(22):5009-5021
Previous phylogeographical and palaeontological studies on the biota of northern North America have revealed a complex scenario of glacial survival in multiple refugia and differing patterns of postglacial recolonization. Many putative refugial regions have been proposed both north and south of the ice sheets for species during the Last Glacial Maximum, but the locations of many of these refugia remain a topic of great debate. In this study, we used a phylogeographical approach to elucidate the refugial and recolonization history of the herbaceous plant species Orthilia secunda in North America, which is found in disjunct areas in the west and east of the continent, most of which were either glaciated or lay close to the limits of the ice sheets. Analysis of 596 bp of the chloroplast trnS-trnG intergenic spacer and five microsatellite loci in 84 populations spanning the species' range in North America suggests that O. secunda persisted through the Last Glacial Maximum (LGM) in western refugia, even though palaeodistribution modelling indicated a suitable climate envelope across the entire south of the continent. The present distribution of the species has resulted from recolonization from refugia north and south of the ice sheets, most likely in Beringia or coastal regions of Alaska and British Columbia, the Washington/Oregon region in the northwest USA, and possibly from the region associated with the putative 'ice-free corridor' between the Laurentide and Cordilleran ice sheets. Our findings also highlight the importance of the Pacific Northwest as an important centre of intraspecific genetic diversity, owing to a combination of refugial persistence in the area and recolonization from other refugia.  相似文献   

9.
The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia.  相似文献   

10.
Aim Glacial refugia during the Pleistocene had major impacts on the levels and spatial apportionment of genetic diversity of species in northern latitude ecosystems. We characterized patterns of population subdivision, and tested hypotheses associated with locations of potential Pleistocene refugia and the relative contribution of these refugia to the post‐glacial colonization of North America and Scandinavia by common eiders (Somateria mollissima). Specifically, we evaluated localities hypothesized as ice‐free areas or glacial refugia for other Arctic vertebrates, including Beringia, the High Arctic Canadian Archipelago, Newfoundland Bank, Spitsbergen Bank and north‐west Norway. Location Alaska, Canada, Norway and Sweden. Methods Molecular data from 12 microsatellite loci, the mitochondrial DNA (mtDNA) control region, and two nuclear introns were collected and analysed for 15 populations of common eiders (n = 716) breeding throughout North America and Scandinavia. Population genetic structure, historical population fluctuations and gene flow were inferred using F‐statistics, analyses of molecular variance, and multilocus coalescent analyses. Results Significant inter‐population variation in allelic and haplotypic frequencies were observed (nuclear DNA FST = 0.004–0.290; mtDNA ΦST = 0.051–0.927). Whereas spatial differentiation in nuclear genes was concordant with subspecific designations, geographic proximity was more predictive of inter‐population variance in mitochondrial DNA haplotype frequency. Inferences of historical population demography were consistent with restriction of common eiders to four geographic areas during the Last Glacial Maximum: Belcher Islands, Newfoundland Bank, northern Alaska and Svalbard. Three of these areas coincide with previously identified glacial refugia: Newfoundland Bank, Beringia and Spitsbergen Bank. Gene‐flow and clustering analyses indicated that the Beringian refugium contributed little to common eider post‐glacial colonization of North America, whereas Canadian, Scandinavian and southern Alaskan post‐glacial colonization is likely to have occurred in a stepwise fashion from the same glacial refugium. Main conclusions Concordance of proposed glacial refugia used by common eiders and other Arctic species indicates that Arctic and subarctic refugia were important reservoirs of genetic diversity during the Pleistocene. Furthermore, suture zones identified at MacKenzie River, western Alaska/Aleutians and Scandinavia coincide with those identified for other Arctic vertebrates, suggesting that these regions were strong geographic barriers limiting dispersal from Pleistocene refugia.  相似文献   

11.
Fossil, archaeological, and morphometric data suggest that indigenous red foxes in North America were derived from vicariance in two disjunct refugia during the last glaciation: one in Beringia and one in the contiguous USA. To test this hypothesis, we conducted a phylogeographical analysis of the North American red fox within its presettlement range. We sequenced portions of the mitochondrial cytochrome b (354 bp) gene and D-loop (342 bp) from 220 historical red fox specimens. Phylogenetic analysis of the cytochrome b gene produced two clades that diverged c . 400 000 years before present ( bp ): a Holarctic and a Nearctic clade. D-loop analyses of the Nearctic clade indicated three distinct subclades (≥ 99% Bayesian posterior probability); two that were more recently derived (rho estimate c . 20 000 bp ) and were restricted to the southwestern mountains and the eastern portion of North America, and one that was older (rho estimate c . 45 000 bp ) and more widespread in North America. Populations that migrated north from the southern refugium following deglaciation were derived from the colonization of North America during or prior to the Illinoian glaciation (300 000–130 000 bp ), whereas populations that migrated south from the northern refugium represent a more recent colonization event during the Wisconsin glaciation (100 000–10 000 bp ). Our findings indicate that Nearctic clade red foxes are phylogenetically distinct from their Holarctic counterparts, and reflect long-term isolation in two disjunct forest refugia during the Pleistocene. The montane lineage, which includes endangered populations, may be ecologically and evolutionarily distinct.  相似文献   

12.
The eastern Asian (EA)–eastern North American (ENA) floristic disjunction represents a major pattern of phytogeography of the Northern Hemisphere. Despite 20 years of studies dedicated to identification of taxa that display this disjunct pattern, its origin and evolution remain an open question, especially regarding post‐isolation evolution. The blue‐ or white‐fruited dogwoods (BW) are the most species‐rich among the four major clades of Cornus L., consisting of ~35 species divided into three subgenera (subg. Yinquania, subg. Mesomora, and subg. Kraniopsis). The BW group provides an excellent example of the EA–ENA floristic disjunction for biogeographic study due to its diversity distribution centered in eastern Asia and eastern North America, yet its species relationships and delineation have remained poorly understood. In this study, we combined genome‐wide markers from RAD‐seq, morphology, fossils, and climate data to understand species relationships, biogeographic history, and ecological niche and morphological evolution. Our phylogenomic analyses with RAxML and MrBayes recovered a strongly supported and well‐resolved phylogeny of the BW group with three intercontinental disjunct clades in EA and ENA or Eurasia and North America, of which two are newly identified within subg. Kraniopsis. These analyses also recovered a potential new species but failed to resolve relationships within the C. hemsleyiC. schindleri complex. In an effort to develop an approach to reduce computation time, analysis of different nodal age settings in treePL suggests setting a node's minimum age constraint to the lower bound of a fossil's age range to obtain similar ages to that of BEAST. Divergence time analyses with BEAST and treePL dated the BW stem back to the very Late Cretaceous and the divergence of the three subgenera in the Paleogene. By integrating fossil ages and morphology, a total evidence‐based dating approach was used in conjunction with time‐slice probabilities of dispersal under a DEC model to resolve ancestral ranges of each disjunct in the Miocene: Eurasia and ENA (disjunct 1), EA and western North America (disjunct 2), and EA (disjunct 3). The dated biogeographic history supports dispersal via the North Atlantic Land Bridge in the late Paleogene in disjunct 1 and dispersal via the Bering Land Bridge in the Miocene for disjuncts 2 and 3. Character mapping with a stochastic model in phytools and comparison of ecological niche, morphospace, and rate of evolution indicated differential divergence patterns in morphology, ecological niche, and molecules between disjunct sisters. Although morphological stasis was observed in most of the characters, evolutionary changes in growth habit and some features of leaf, flower, and fruit morphology occurred in one or both sister clades. A significant differentiation of ecological habitats in temperature, precipitation, and elevation between disjunct sisters was observed, suggesting a role of niche divergence in morphological evolution post‐isolation. The patterns of evolutionary rate between morphology and molecules varied among disjunct clades and were not always congruent between morphology and molecules, suggesting cases of non‐neutral morphological evolution driven by ecological selection. Our phylogenetic evidence and comparisons of evolutionary rate among disjunct lineages lend new insights into the formation of the diversity anomaly between EA and ENA, with particular support of an early diversification in EA. These findings, in conjunction with previous studies, again suggest that the EA–ENA disjunct floras are an assembly of lineages descended from the Mesophytic Forests that evolved from the early Paleogene “boreotropical flora” through varied evolutionary pathways across lineages.  相似文献   

13.
Pollen cores and plant and animal fossils suggest that global climate changes at the end of the last glacial period caused range expansions in organisms indigenous to the North American desert regions, but this suggestion has rarely been investigated from a population genetic perspective. In order to investigate the impact of Pleistocene climate changes and glacial/interglacial cycling on the distribution and population structure of animals in North American desert communities, biogeographical patterns in the flightless, warm-desert cactus beetles, Moneilema gigas and Moneilema armatum, were examined using mitochondrial DNA (mtDNA) sequence data from the cytochrome oxidase I (COI) gene. Gene tree relationships between haplotypes were inferred using parsimony, maximum-likelihood, and Bayesian analysis. Nested clade analysis and coalescent modelling using the programs mdiv and fluctuate were used to identify demographically independent populations, and to test the hypothesis that Pleistocene climate changes caused recent range expansions in these species. A sign test was used to evaluate the probability of observing concerted population growth across multiple, independent populations. The phylogeographical and nested clade analyses reveal a history of northward expansion in both of these species, as well as a history of past range fragmentation, followed by expansion from refugia. The coalescent analyses provide highly significant evidence for independent range expansions from multiple refugia, but also identify biogeographical patterns that predate the most recent glacial period. The results indicate that widespread desert environments are more ancient than has been suggested in the past.  相似文献   

14.
Phylogeographic structures of two weakly dispersing Mysis sibling species, one with a circumarctic coastal, the other with a boreal lacustrine-Baltic distribution, were studied from mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Mysis segerstralei showed high overall diversity and little phylogeographic structure across the Arctic, indicating late-glacial dispersal among coastal and lake populations from Alaska, Siberia and the north of Europe. A strongly divergent refugial lineage was however identified in Beringia. The boreal 'glacial relict'Mysis salemaai in turn displayed clear structuring among postglacially isolated Scandinavian lake populations. The inferred pattern of intralake mitochondrial DNA (mtDNA) monophyly in Scandinavia suggested relatively small population sizes and a remarkably fast postglacial mtDNA divergence rate (0.27% per 10 000 years). Nevertheless, the broader phylogeographic pattern did not support distinct eastern and western glacial refugia in Northern Europe, unlike in some other aquatic taxa. In all, the two species comprised three equidistant mitochondrial lineages (approximately 2% divergence), corresponding to M. salemaai, to the bulk of M. segerstralei, and to the Beringian M. segerstralei lineage. The lack of reciprocal monophyly of the two species in respect to their mitochondrial genealogy could indicate postspeciation mitochondrial introgression, also exemplified by an evidently more recent capture of M. segerstralei mitochondria in a Karelian population of M. salemaai. Overall, the data suggest that the continental boreal M. salemaai has a relatively recent ancestry in arctic coastal waters, whereas two other boreal 'glacial relict'Mysis sibling species in Europe (Mysis relicta) and North America (Mysis diluviana) have colonized inland waters much earlier (approximately 8% COI divergence).  相似文献   

15.
We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.  相似文献   

16.
The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman, Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades of S. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia.  相似文献   

17.
Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ∼1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou) using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544–22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou.  相似文献   

18.
Smith MA  Green DM 《Molecular ecology》2004,13(12):3723-3733
Many of the species that recolonized previously glaciated areas in the Great Lakes basin of North America over the past 10-12,000 years exhibit genetic evidence of multiple invasion routes and present-day secondary contact between deeply divergent lineages. With this in mind, we investigated the phylogeographical structure of genetic variability in Fowler's toads (Bufo fowleri) at the northern edge of its distribution where its range encircles the Lake Erie basin. Because B. fowleri is so closely tied to habitats along the Lake Erie shoreline, we would expect to find clear evidence of the number of invasions leading to the species' colonization of the northern shore. A 540 bp sequence from the mitochondrial control region was amplified and analysed for 158 individuals from 21 populations. Interpopulation sequence variation ranged from 0% to 6%. Phylogenetic analysis of p-distance using the neighbor-joining method revealed two deeply divergent (6% sequence divergence) mtDNA lineages (Phylogroup 1 and 2), possibly arising as a result of secondary contact of populations that entered the region from two separate glacial refugia. However, the phylogeographical pattern was not simple. The populations at Long Point, on the north shore of Lake Erie, clustered with the population from Indiana Dunes on Lake Michigan to form Phylogroup 2 whereas all other B. fowleri populations examined from both sides of Lake Erie constituted Phylogroup 1. Furthermore, mtDNA sequences from the related species Bufo americanus, obtained from populations outside the range of B. fowleri, clustered with mtDNA haplotypes of B. fowleri Phylogroup 1, indicating the possibility of partial introgression of mitochondria from one species to the other.  相似文献   

19.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

20.
The barn swallow (Hirundo rustica) is one of most widely distributed swallows, owing in part to its recent switch from natural nest sites to human structures. We conducted phylogenetic analysis of mitochondrial (mt) and nuclear DNA to explore the recent evolutionary history of this species. Strongly supported mtDNA clades corresponded to Europe, Asia and North America plus the Baikal region of Asia. Analysis of sequence data from a sex-linked nuclear gene was unable to recover the phylogenetic splits in the mtDNA tree, confirming that the main clades evolved recently. The phylogenetic pattern suggests that the ancestral area of the barn swallow was the holarctic; most divergence events are consistent with vicariance. Most unexpectedly, analyses show that barn swallows from North America colonized the Baikal region in the recent past (one fixed substitution). This dispersal direction is opposite of that for most nearctic-palearctic taxon exchanges. Although this invasion was envisioned to coincide with the appearance of new types of human dwelling in the Baikal region, calibration of molecular divergence suggests an older dispersal event. A recent history of gene flow within the main palearctic clades is consistent with range and population expansion owing to new nesting opportunities provided by human settlements. Contrary to expectation, populations in North America appear historically larger and more stable than those in the palearctic. The Baikal population apparently has not increased greatly since colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号