首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arid savannas are regarded as one of the ecosystems most likely to be affected by climate change. In these dry conditions, even top predators like raptors are affected by water availability and precipitation. However, few research initiatives have addressed the question of how climate change will affect population dynamics and extinction risk of particular species in arid ecosystems. Here, we use an individual‐oriented modeling approach to conduct experiments on the population dynamics of long lived raptors. We investigate the potential impact of precipitation variation caused by climate change on raptors in arid savanna using the tawny eagle (Aquila rapax) in the southern Kalahari as a case study. We simulated various modifications of precipitation scenarios predicted for climate change, such as lowered annual precipitation mean, increased inter‐annual variation and increased auto‐correlation in precipitation. We found a high impact of these modifications on extinction risk of tawny eagles, with reduced population persistence in most cases. Decreased mean annual precipitation and increased inter‐annual variation both caused dramatic decreases in population persistence. Increased auto‐correlation in precipitation led only to slightly accelerated extinction of simulated populations. Finally, for various patterns of periodically fluctuating precipitation, we found both increased and decreased population persistence. In summary, our results suggest that the impacts on raptor population dynamics and survival caused by climate change in arid savannas will be great. We emphasize that even if under climate change the mean annual precipitation remains constant but the inter‐annual variation increases the persistence of raptor populations in arid savannas will decrease considerably. This suggests a new dimension of climate change driven impacts on population persistence and consequently on biodiversity. However, more investigations on particular species and/or species groups are needed to increase our understanding of how climate change will impact population dynamics and how this will influence species diversity and biodiversity.  相似文献   

2.
Although climate warming is affecting most marine ecosystems, the Mediterranean is showing earlier impacts. Foundation seagrasses are already experiencing a well‐documented regression in the Mediterranean which could be aggravated by climate change. Here, we forecast distributions of two seagrasses and contrast predicted loss with discrete regions identified on the basis of extant genetic diversity. Under the worst‐case scenario, Posidonia oceanica might lose 75% of suitable habitat by 2050 and is at risk of functional extinction by 2100, whereas Cymodocea nodosa would lose only 46.5% in that scenario as losses are compensated with gained and stable areas in the Atlantic. Besides, we predict that erosion of present genetic diversity and vicariant processes can happen, as all Mediterranean genetic regions could decrease considerably in extension in future warming scenarios. The functional extinction of Posidonia oceanica would have important ecological impacts and may also lead to the release of the massive carbon stocks these ecosystems stored over millennia.  相似文献   

3.
Concern over rapid global changes and the potential for interactions among multiple threats are prompting scientists to combine multiple modelling approaches to understand impacts on biodiversity. A relatively recent development is the combination of species distribution models, land‐use change predictions, and dynamic population models to predict the relative and combined impacts of climate change, land‐use change, and altered disturbance regimes on species' extinction risk. Each modelling component introduces its own source of uncertainty through different parameters and assumptions, which, when combined, can result in compounded uncertainty that can have major implications for management. Although some uncertainty analyses have been conducted separately on various model components – such as climate predictions, species distribution models, land‐use change predictions, and population models – a unified sensitivity analysis comparing various sources of uncertainty in combined modelling approaches is needed to identify the most influential and problematic assumptions. We estimated the sensitivities of long‐run population predictions to different ecological assumptions and parameter settings for a rare and endangered annual plant species (Acanthomintha ilicifolia, or San Diego thornmint). Uncertainty about habitat suitability predictions, due to the choice of species distribution model, contributed most to variation in predictions about long‐run populations.  相似文献   

4.
Abstract. The Mediterranean Basin harbours paleo‐endemic species with a highly restricted and fragmented distribution. Many of them might also be of the remnant type, for which the regional dynamics depends on the persistence of extant populations. Therefore, a key issue for the long‐term persistence of these species is to assess the variability and effects of ecological factors determining plant performance. We investigated the spatio‐temporal variability in plant traits and ecological factors of Ramonda myconi, a preglacial relict species with remnant dynamics, in 5 populations over 4–7 yr. Ecological factors contributing to fecundity showed a high degree of between‐year variability. Pre‐dispersal fruit predation had a minor influence on total reproductive output, and most of the variability was found among individuals within populations and years. Spatio‐temporal variability in growth and survival was rather low but significant, whereas recruitment showed important between‐population variability. Among‐year variability in fecundity and growth was related to climatic fluctuations on a regional scale, notably rainfall and temperature in a particular period, while the spatial variability in survival and recruitment was explained by within‐population (patch) habitat quality. Although R. myconi is able to withstand repeated periods of drought, water availability seems to be the most important factor affecting plant performance in all the study populations. These findings suggest that the long‐term persistence of species showing remnant population dynamics in habitats under the influence of Mediterranean climate might be threatened by increased aridity as a result of climate change.  相似文献   

5.
As climate changes, tree decline in Mediterranean‐type ecosystems is increasing worldwide, often due to decreased effective precipitation and increased drought and heat stress, and has recently been observed in coastal species of the iconic Eucalyptus (Myrtaceae) genus in the biodiversity hotspot of south‐west Western Australia. To investigate how this drought‐related decline is likely to continue in the future, we used species distribution modelling techniques to generate broad‐scale predictions of future distribution patterns under three distinct projected climate change scenarios. In a moderate climate change scenario, suitable habitat for all species was predicted to decrease by, on average, 73% by the year 2100, with most receding into southern areas of their current distribution. Although the most severe Eucalyptus declines in south‐west Western Australia have been observed in near‐coastal regions, our predictions suggest that inland species are at greater risk from climate change, with six inland species predicted to lose 95% of their suitable habitat in a moderate change scenario. This is due to the shallow environmental gradients of inland regions causing larger spatial shifts of environmental envelopes, which is likely to be relevant in many regions of the world. The knowledge gained suggests that future research and conservation efforts in south‐west Western Australia and elsewhere should avoid focussing disproportionately on coastal regions for reasons of convenience and proximity to population centres, and properly address the inland region where the biggest future impacts may occur.  相似文献   

6.
Silver fir Abies alba is an indigenous tree species present in many southern European mountain forests. Its distribution area and its adaptive capacity to climate variability, expressed in tree‐ring growth series, make it a very suitable target species for studying responses to climate particularly in a complex area like the Mediterranean basin where significant changes are expected. We used a set of 52 site chronologies (784 trees) in the Italian Alps and Apennines (38.1°– 46.6°N and 6.7°– 16.3°E) and temperature and precipitation monthly data for the period 1900–1995. Principal component analyses of the tree‐ring site network was applied to extract common modes of variability in annual radial growth among the chronologies. Climate/growth relationships and their stationarity and consistency over time were computed by means of correlation and moving correlation functions. Tree‐ring chronologies show a clear distinction between the Alpine and the Mediterranean sites and a further separation of the Alpine region in western and eastern sectors. Accordingly, we found different transient and contrasting regional responses in time with the trends found in the Mediterranean sites marking a relaxation of some of the major climate limiting factors recorded prior to the last decades. Species’ sensitivity to global change may result in distinct spatial responses reflecting the complexity of the Mediterranean climate, with large differences between various areas of the basin. It is still unclear if these contrasting tree‐ring growth to climate responses of Abies alba are due to the corresponding separation between the Alpine and Mediterranean climate modes, the atmospheric CO2 fertilization effect, the environmentally most fitted genetic pools of the southern fir ecotypes or a combination of all factors. Climate–growth analysis based on a wide site network and on long‐term weather records confirmed to be excellent tools to detect spatial and temporal variability of species’ responses to climate.  相似文献   

7.
Ancient plant species surviving in isolated small populations are particularly vulnerable to extinction, therefore understanding their population dynamics is necessary for conservation. The iteroparous perennial relic endemic Ferula sadleriana Ledeb. (Apiaceae) is restricted to seven distant localities in the Carpathian Basin, where it inhabits rocky hills. We monitored the species' largest population on the Pilis Hill, Hungary, over 14–19 years (depending on trait) between 1979 and 2010, and relationships were sought between climatic properties and population attributes. The population of 4000 ± 1509 emergent individuals underwent large interannual fluctuations, with the vegetative stage displaying sevenfold and the reproductive stage twenty‐eight‐fold differences. Spring and early summer precipitation had a marked influence on abundances and seed set. Alternating years of high and low counts of reproductive plants suggest costs of reproduction that most probably incur prolonged dormancy and retrogression to the vegetative stage. Seed set was positively influenced by number of reproductive plants over years and by plant size within a year. Ungulates nullify yearly reproductive output by grazing on reproductive individuals. This is particularly intense in dry summers, when reproductive output is already low. The strong precipitation response of abundance, absence of clonal propagation and soil seed bank, and geographical isolation of the populations place F. sadleriana at considerable risk under an increasingly variable and extreme climate. Management should seek to maintain the species' original habitat mosaic (potentially compensating for climate variation), minimize grazing damage and anthropogenic disturbance, and establish ex situ conservation programs to provide propagules for eventual reintroduction.  相似文献   

8.
S. Perea  I. Doadrio 《Molecular ecology》2015,24(14):3706-3722
The Mediterranean freshwater fish fauna has evolved under constraints imposed by the seasonal weather/hydrological patterns that define the Mediterranean climate. These conditions have influenced the genetic and demographic structure of aquatic communities since their origins in the Mid‐Pliocene. Freshwater species in Mediterranean‐type climates will likely constitute genetically well‐differentiated populations, to varying extents depending on basin size, as a consequence of fragmentation resulting from drought/flood cycles. We developed an integrative framework to study the spatial patterns in genetic diversity, demographic trends, habitat suitability modelling and landscape genetics, to evaluate the evolutionary response of Mediterranean‐type freshwater fish to seasonal fluctuations in weather. To test this evolutionary response, the model species used was Squalius valentinus, an endemic cyprinid of the Spanish Levantine area, where seasonal weather fluctuations are extreme, although our findings may be extrapolated to other Mediterranean‐type species. Our results underscore the significant role of the Mediterranean climate, along with Pleistocene glaciations, in diversification of S. valentinus. We found higher nuclear diversity in larger drainage basins, but higher mitochondrial diversity correlated to habitat suitability rather than basin size. We also found strong correlation between genetic structure and climatic factors associated with Mediterranean seasonality. Demographic and migration analyses suggested population expansion during glacial periods that also contributed to the current genetic structure of S. valentinus populations. The inferred models support the significant contribution of precipitation and temperature to S. valentinus habitat suitability and allow recognizing areas of habitat stability. We highlight the importance of stable habitat conditions, fostered by typical karstic springs found on the Mediterranean littoral coasts, for the preservation of freshwater species inhabiting seasonally fluctuating river systems.  相似文献   

9.
Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše), where significant warming occurred over this period. We then related the population trends to several species'' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta). It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.  相似文献   

10.
Aim Heterophylly is present in many plant species on oceanic islands. Almost all of these plants are island endemics, and heterophylly may have evolved as a response to feeding from large insular browsers such as giant tortoises and flightless birds. We tested this anti‐browser hypothesis by feeding Aldabra giant tortoises (Geochelone gigantea) with leaves of native Mauritian plants to see if they distinguished between juvenile and adult leaves and between heteophyllous and homophyllous species. Location Mauritius. Methods In a choice experiment we recorded feeding response of four captive Aldabra giant tortoises to 10 species of Mauritian plants, of which seven were heterophyllous and three homophyllous. Results In general, juvenile leaves of heterophyllous species showed convergence in shape and midrib coloration. Homophyllous foliage was preferred to heterophyllous, and among heterophyllous species adult foliage was preferred to juvenile. Main conclusions Several Mascarene heterophyllous plants show convergence in morphology of juvenile leaves and these are avoided by giant tortoises. This indicates a strong selection history from large browsers such as the giant tortoises. The Mascarene example is in accordance with several other comparable cases of plant‐large browser interactions from other archipelagos.  相似文献   

11.
Live and dead Kinixys spekii were collected in the Sengwa Wildlife Research Area, Zimbabwe over a 12‐year period. Live tortoises were sexable at a midline plastron length of 100 mm; females were considered sexually mature at 140 mm (reached by age 9 years) and males at 120 mm (at age 7 years). Adult females were significantly larger than males, on average by 14 mm in length and by 1.43 times in mass. Mark–recapture analysis in a 2 km2 area showed a population density of sexable tortoises of 0.16 ha?1. The survival rate was estimated by recaptures, by the frequency distribution of age at death, and by the mean age of live tortoises, and averaged 0.74 year?1. Seventy‐seven to 89% of dead tortoises showed evidence of predation, depending on the criteria used. Damage occurred in characteristic forms, loss of the front or rear of the plastron, or holes in the carapace and plastron, which were attributed to predation by mammals and ground hornbills, respectively. K. spekii had similar body size and sexual size dimorphism to Mediterranean tortoises (Testudo), but population density was much lower and the mortality rate was twice as high, probably due to the abundant African predators. High mortality was offset by a rate of juvenile growth twice that of Testudo.  相似文献   

12.
Identifying climatic drivers of an animal population's vital rates and locating where they operate steers conservation efforts to optimize species recovery. The population growth of endangered whooping cranes (Grus americana) hinges on juvenile recruitment. Therefore, we identify climatic drivers (solar activity [sunspots] and weather) of whooping crane recruitment throughout the species’ life cycle (breeding, migration, wintering). Our method uses a repeated cross‐validated absolute shrinkage and selection operator approach to identify drivers of recruitment. We model effects of climate change on those drivers to predict whooping crane population growth given alternative scenarios of climate change and solar activity. Years with fewer sunspots indicated greater recruitment. Increased precipitation during autumn migration signified less recruitment. On the breeding grounds, fewer days below freezing during winter and more precipitation during breeding suggested less recruitment. We predicted whooping crane recruitment and population growth may fall below long‐term averages during all solar cycles when atmospheric CO2 concentration increases, as expected, to 500 ppm by 2050. Species recovery during a typical solar cycle with 500 ppm may require eight times longer than conditions without climate change and the chance of population decline increases to 31%. Although this whooping crane population is growing and may appear secure, long‐term threats imposed by climate change and increased solar activity may jeopardize its persistence. Weather on the breeding grounds likely affects recruitment through hydrological processes and predation risk, whereas precipitation during autumn migration may influence juvenile mortality. Mitigating threats or abating climate change should occur within ≈30 years or this wild population of whooping cranes may begin declining.  相似文献   

13.
Developing strategies that reduce the impacts of climate change on biodiversity will require projections of the future status of species under alternative climate change scenarios. Demographic models based on empirical data that link temporal variation in climate with vital rates can improve the accuracy of such predictions and help guide conservation efforts. Here, we characterized how population dynamics and extinction risk might be affected by climate change for three spotted owl (Strix occidentalis) populations in the Southwestern United States over the next century. Specifically, we used stochastic, stage‐based matrix models parameterized with vital rates linked to annual variation in temperature and precipitation to project owl populations forward in time under three IPCC emissions scenarios relative to contemporary climate. Owl populations in Arizona and New Mexico were predicted to decline rapidly over the next century and had a much greater probability of extinction under all three emissions scenarios than under current climate conditions. In contrast, owl population dynamics in Southern California were relatively insensitive to predicted changes in climate, and extinction risk was low for this population under all scenarios. The difference in predicted climate change impacts between these areas was due to negative associations between warm, dry conditions and owl vital rates in Arizona and New Mexico, whereas cold, wet springs reduced reproduction in Southern California. Predicted changes in population growth rates were mediated more by weather‐induced changes in fecundity than survival, and were generally more sensitive to increases in temperature than declines in precipitation. Our results indicate that spotted owls in arid environments may be highly vulnerable to climate change, even in core parts of the owl's range. More broadly, contrasting responses to climate change among populations highlight the need to tailor conservation strategies regionally, and modeling efforts such as ours can help prioritize the allocation of resources in this regard.  相似文献   

14.
The distributional ranges of many species are contracting with habitat conversion and climate change. For vertebrates, informed strategies for translocations are an essential option for decisions about their conservation management. The pygmy bluetongue lizard, Tiliqua adelaidensis, is an endangered reptile with a highly restricted distribution, known from only a small number of natural grassland fragments in South Australia. Land‐use changes over the last century have converted perennial native grasslands into croplands, pastures and urban areas, causing substantial contraction of the species' range due to loss of essential habitat. Indeed, the species was thought to be extinct until its rediscovery in 1992. We develop coupled‐models that link habitat suitability with stochastic demographic processes to estimate extinction risk and to explore the efficacy of potential climate adaptation options. These coupled‐models offer improvements over simple bioclimatic envelope models for estimating the impacts of climate change on persistence probability. Applying this coupled‐model approach to T. adelaidensis, we show that: (i) climate‐driven changes will adversely impact the expected minimum abundance of populations and could cause extinction without management intervention, (ii) adding artificial burrows might enhance local population density, however, without targeted translocations this measure has a limited effect on extinction risk, (iii) managed relocations are critical for safeguarding lizard population persistence, as a sole or joint action and (iv) where to source and where to relocate animals in a program of translocations depends on the velocity, extent and nonlinearities in rates of climate‐induced habitat change. These results underscore the need to consider managed relocations as part of any multifaceted plan to compensate the effects of habitat loss or shifting environmental conditions on species with low dispersal capacity. More broadly, we provide the first step towards a more comprehensive framework for integrating extinction risk, managed relocations and climate change information into range‐wide conservation management.  相似文献   

15.
We analyzed demographic data of a long‐lived high mountain Mediterranean plant, Silene ciliata Poirret, over a 4‐yr period. Selected populations were located at contrasting altitudes at the southernmost margin of the species (Sierra de Guadarrama, central Spain), representing a local altitudinal range at the rear edge of its overall distribution. Previous studies have suggested that differences in the reproduction and performance of individuals at upper and lower populations may have implications for population dynamics. We used matrix analysis to assess their demographic behaviour. Life Table Response Experiments were used to identify the life history stages most relevant to observed differences in population growth rates between populations. Transition matrices revealed great spatio‐temporal variability in demographic traits. Seedling recruitment was very low each year in all populations. Maximum longevity of S. ciliata individuals in the lower peripheral population was much lower compared to the central population, probably due to higher adult mortality. Population growth rate (λ) showed a declining trend at the lowest altitude and a relatively stable trend at the central population. Long‐term simulations also indicated a great risk of quasi‐extinction at the lowest population. Our results suggest that rear edge populations of S. ciliata at Sierra de Guadarrama are suffering demographic processes that may be leading to the latitudinal displacement of the species' range.  相似文献   

16.
Aim We investigated the roles of lithology and climate in constraining the ranges of four co‐distributed species of Iberian saline‐habitat specialist water beetles (Ochthebius glaber, Ochthebius notabilis, Enochrus falcarius and Nebrioporus baeticus) across the late Quaternary and in shaping their geographical genetic structure. The aim was to improve our understanding of the effects of past climate changes on the biota of arid Mediterranean environments and of the relative importance of history and landscape on phylogeographical patterns. Location Iberian Peninsula, Mediterranean. Methods We combined species distribution modelling (SDM) and comparative phylogeography. We used a multi‐model inference and model‐averaging approach both for assessment of range determinants (climate and lithology) and for provision of spatially explicit estimates of the species current and Last Glacial Maximum (LGM) potential ranges. Potential LGM distributions were then contrasted with the phylogeographical and population expansion patterns as assessed using mitochondrial DNA sequence data. We also evaluated the relative importance of geographical distance, habitat resistance and historical isolation for genetic structure in a causal modelling framework. Results Lithology poses a strong constraint on the distribution of Iberian saline‐habitat specialist water beetles, with a variable, but generally moderate, additional influence by climate. The degree to which potential LGM distributions were reduced and fragmented decreased with increasing importance of lithology. These SDM‐based suitability predictions were mostly congruent with phylogeographical and population genetic patterns across the study species, with stronger geographical structure in the genetic diversity of the more temperature‐sensitive species (O. glaber and E. falcarius). Furthermore, while historical isolation was the only factor explaining genetic structure in the more temperature‐sensitive species, lithology‐controlled landscape configuration also played an important role for those species with more lithology‐determined ranges (O. notabilis and N. baeticus). Main conclusions Our data show that lithology is an important constraint on the distribution and range dynamics of endemic Iberian saline‐habitat water beetles, in interaction with climate and long‐term climate change, and overrides the latter in importance for some species. Hence, geological landscape structure and long‐term history may codetermine the overall range and the distribution of genetic lineages in endemic species with specialized edaphic requirements.  相似文献   

17.
Habitat conditions mediate the effects of climate, so neighboring populations with differing habitat conditions may differ in their responses to climate change. We have previously observed that juvenile survival in Snake River spring/summer Chinook salmon is strongly correlated with summer temperature in some populations and with fall streamflow in others. Here, we explore potential differential responses of the viability of four of these populations to changes in streamflow and temperature that might result from climate change. First, we linked predicted changes in air temperature and precipitation from several General Circulation Models to a local hydrological model to project streamflow and air temperature under two climate‐change scenarios. Then, we developed a stochastic, density‐dependent life‐cycle model with independent environmental effects in juvenile and ocean stages, and parameterized the model for each population. We found that mean abundance decreased 20–50% and the probability of quasi‐extinction increased dramatically (from 0.1–0.4 to 0.3–0.9) for all populations in both scenarios. Differences between populations were greater in the more moderate climate scenario than in the more extreme, hot/dry scenario. Model results were relatively robust to realistic uncertainty in freshwater survival parameters in all scenarios. Our results demonstrate that detailed population models can usefully incorporate climate‐change predictions, and that global warming poses a direct threat to freshwater stages in these fish, increasing their risk of extinction. Because differences in habitat may contribute to the individualistic population responses we observed, we infer that maintaining habitat diversity will help buffer some species from the impacts of climate change.  相似文献   

18.
E. T. BAUDER 《Freshwater Biology》2005,50(12):2129-2135
1. Vernal pools are small precipitation‐fed temporary wetlands once common in California. They are known for their numerous narrowly endemic plant and animal species, many of which are endangered. These pools experience the typical wet season/dry season regime of Mediterranean climates. Their hydrological characteristics are determined by a complex interaction between the highly variable climate and topographic relief. 2. Hypotheses regarding the effects on ponding of total precipitation, storm intensity and pattern were examined using long‐term weather records combined with two decades of data on the length and depth of inundation in 10 individual pools. Similarly, data on pool landscape position and microtopography allowed examination of the interactions between topography and rainfall amount and pattern. 3. The total amount of precipitation and length of inundation were strongly correlated. Landscape position affected ponding duration, with collector pools holding water longer than headwater pools. Basin microtopography interacted with climatic variability to determine the nature and extent of within‐basin microhabitats sufficiently different in hydrological and/or soil conditions to support or exclude individual species. The effect on hydroperiod of precipitation concentrated in a few months rather than spread more evenly over the season depended on total precipitation. 4. Changes in climate, the mound‐and‐depression landscape or pool microtopography could have profound impacts on the hydrology of individual pools as well as the array of hydrological conditions in the system. Given the individualistic responses of the numerous endemic species supported by vernal pools, any of these environmental changes could diminish their sustainability and increase the risk of species extinction. Conservation, restoration and management decisions should take these factors into account.  相似文献   

19.
Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. As climate change is already impacting marine biodiversity and fisheries, there is an urgent need to expand vulnerability assessment to cover a large number of species and areas. Here, we develop a modelling approach to synthesize data on species‐specific estimates of exposure, and ecological and biological traits to undertake an assessment of vulnerability (sensitivity and adaptive capacity) and risk of impacts (combining exposure to hazards and vulnerability) of climate change (including ocean acidification) for global marine fishes and invertebrates. We use a fuzzy logic approach to accommodate the variability in data availability and uncertainties associated with inferring vulnerability levels from climate projections and species' traits. Applying the approach to estimate the relative vulnerability and risk of impacts of climate change in 1074 exploited marine species globally, we estimated their index of vulnerability and risk of impacts to be on average 52 ± 19 SD and 66 ± 11 SD, scaling from 1 to 100, with 100 being the most vulnerable and highest risk, respectively, under the ‘business‐as‐usual' greenhouse gas emission scenario (Representative Concentration Pathway 8.5). We identified 157 species to be highly vulnerable while 294 species are identified as being at high risk of impacts. Species that are most vulnerable tend to be large‐bodied endemic species. This study suggests that the fuzzy logic framework can help estimate climate vulnerabilities and risks of exploited marine species using publicly and readily available information.  相似文献   

20.
Rapid global climate change is resulting in novel abiotic and biotic conditions and interactions. Identifying management strategies that maximize probability of long‐term persistence requires an understanding of the vulnerability of species to environmental changes. We sought to quantify the vulnerability of Kirtland's Warbler (Setophaga kirtlandii), a rare Neotropical migratory songbird that breeds almost exclusively in the Lower Peninsula of Michigan and winters in the Bahamian Archipelago, to projected environmental changes on the breeding and wintering grounds. We developed a population‐level simulation model that incorporates the influence of annual environmental conditions on the breeding and wintering grounds, and parameterized the model using empirical relationships. We simulated independent and additive effects of reduced breeding grounds habitat quantity and quality, and wintering grounds habitat quality, on population viability. Our results indicated the Kirtland's Warbler population is stable under current environmental and management conditions. Reduced breeding grounds habitat quantity resulted in reductions of the stable population size, but did not cause extinction under the scenarios we examined. In contrast, projected large reductions in wintering grounds precipitation caused the population to decline, with risk of extinction magnified when breeding habitat quantity or quality also decreased. Our study indicates that probability of long‐term persistence for Kirtland's Warbler will depend on climate change impacts to wintering grounds habitat quality and contributes to the growing literature documenting the importance of considering the full annual cycle for understanding population dynamics of migratory species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号