首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract By contrast to females that can maximize reproductive success with only one or a few copulations, males generally increase their fitness with frequency of mating. Sperm storage and allocation is therefore crucial for both male and female fitness. Sperm storage in Aleochara bilineata (Coleoptera; Staphylinidae) is investigated by measuring the number of spermatozoa stored in the female spermatheca after single, double or triple successive copulations with different males. The potential advantages of polyandry are studied in terms of the number of sperm stored by females mated twice with the same male (i.e. repeated copulation), compared with females mated twice with two different virgin males (i.e. polyandry). Level of polygyny is also estimated by measuring sperm allocation when ten successive mates are offered to a virgin male. Aleochara bilineata females store the sperm of the same or different males additively, suggesting no advantage for polyandry in terms of the number of sperm stored. A virgin male is able to inseminate ten different females but the number of sperm transferred decreases linearly. Finally, the latencies and durations of copulations are measured in all experiments to estimate changes according to the male or female status (i.e. virgin or mated). The latency before mating is higher when females are virgin than when females have already mated.  相似文献   

2.
Sexual conflicts due to divergent male and female interests in reproduction are common in parasitic Hymenoptera. The majority of parasitoid females are monandrous, whereas males are able to mate repeatedly. Thus, accepting only a single mate might be costly when females mate with a sperm‐depleted male, which may not transfer a sufficient amount of sperm. In the present study, we investigated the reproductive performance in the parasitoid Lariophagus distinguendus Först. (Hymenoptera: Pteromalidae) and studied whether mating with experimentally sperm‐depleted males increases the tendency of females to remate. Males were able to mate with up to 17 females offered in rapid succession within a 10‐h test period. The resulting female offspring, as an indirect measure of sperm transfer, remained constant during the first six matings and then decreased successively with increasing number of copulations by the males. Experimentally sperm‐depleted males continued to mate even if they transferred only small amounts or no sperm at all. Unlike males, the majority of females mated only once during a 192‐h test period. A second copulation was observed only in a few cases (maximum 16%). The frequency of remating was not influenced by the mating status of the first male the females had copulated with, suggesting that these events are not controlled by sperm deficiency of the females. Furthermore, we investigated male courtship behaviour towards mated females. Male courtship intensity towards mated females decreased with increasing time. However, females that had mated with an experimentally sperm‐depleted male did not elicit stronger or longer‐lasting behavioural responses in courting males than those that had mated with a virgin male. As the observed behaviours in L. distinguendus are known to be elicited by a courtship pheromone, these results suggest that females no longer invest in pheromone biosynthesis after mating (as indicated by ceasing behavioural responses of courting males), irrespective of whether they have received a sufficient amount of sperm or not. We discuss the results with respect to a possible mating strategy of sperm‐depleted males.  相似文献   

3.
In polyandrous species, male reproductive success will at least partly be determined by males' success in sperm competition. To understand the potential for post‐mating sexual selection, it is therefore important to assess the extent of female remating. In the lekking moth Achroia grisella, male mating success is strongly determined by female choice based on the attractiveness of male ultrasonic songs. Although observations have indicated that some females will remate, only little is known about the level of sperm competition. In many species, females are more likely to remate if their first mating involved an already mated male than if the first male was virgin. Potentially, this is because mated males are less well able to provide an adequate sperm supply, nutrients, or substances inhibiting female remating. This phenomenon will effectively reduce the strength of pre‐copulatory sexual selection because attractive males with high mating success will be more susceptible to sperm competition. We therefore performed an experiment designed both to provide a more precise estimate of female remating probability and simultaneously to test the hypothesis that female remating is influenced by male mating history. Overall, approximately one of five females remated with a second male. Yet, although females mated to non‐virgin males were somewhat more prone to remate, the effect of male mating history was not significant. The results revealed, however, that heavier females were more likely to remate. Furthermore, we found that females' second copulations were longer, suggesting that, in accordance with theory, males may invest more sperm in situations with an elevated risk of sperm competition.  相似文献   

4.
Detection of female mating status using chemical signals and cues   总被引:1,自引:0,他引:1  
Males of many species choose their mate according to the female's reproductive status, and there is now increasing evidence that male fitness can depend on this discrimination. However, females will also aim to regulate their mating activity so as to maximize their own fitness. As such, both sexes may attempt to dictate the frequency and timing of female mating, reflecting the potentially different costs of female signaling to both sexes. Here, I review evidence that chemical cues and signals are used widely by males to discriminate between mated and unmated females, and explore the mechanisms by which female odour changes post‐mating. There is substantial empirical evidence that mated and unmated females differ in their chemical profile, and that this variation provides males with information on a female's mating status. Although there appears to be large variation among species regarding the mechanisms by which female odour is altered post‐mating, the transfer of male substances to females during or subsequent to copulation appear to play a major role. This transfer of substances by males may be part of their strategy to suppress reproduction by competing males, particularly in species where females mate more than once.  相似文献   

5.
Sperm competition is a postcopulatory sexual selection mechanism in species in which females mate with multiple males. Despite its evolutionary relevance in shaping male traits, the genetic mechanisms underlying sperm competition are poorly understood. A recently originated multigene family specific to Drosophila melanogaster, Sdic, is important for the outcome of sperm competition in doubly mated females, although the mechanistic nature of this phenotype remained unresolved. Here, we compared doubly mated females, second mated to either Sdic knockout or nonknockout males, and directly visualize sperm dynamics in the female reproductive tract. We found that a less effective removal of first‐to‐mate male's sperm within the female's sperm storage organs is consistent with a reduced sperm competitive ability of the Sdic knockout males. Our results highlight the role young genes can play in driving the evolution of sperm competition.  相似文献   

6.

Generally, males increase their reproductive success by mating with as many females as possible, whereas females increase their reproductive success by choosing males who provide more direct and indirect benefits. The difference in reproductive strategy between the sexes creates intense competition among males for access to females, therefore males spend much energy and time for competition with rival males for their reproduction. However, if they do not need to engage themselves into male competition and females are in no short supply, how many females can a male mate with and fertilize? We address this question in the two-spotted spider mite, Tetranychus urticae Koch. In this study, we investigated how many females a young, virgin male mated in 3 h, and checked whether the mated females were fertilized. We found that on average males mated with 12–13 females (range: 5–25). As latency to next mating did not change with the number of matings, the males are predicted to engage in even more matings if the mating trial were continued beyond 3 h. Copulation durations decreased with the number of matings and typically after 11 copulations with females any further copulations did not lead to fertilization, suggesting that males continued to mate with females even after sperm depletion. We discuss why spider mite males continue to display mating and copulation behaviour even after their sperm is depleted.

  相似文献   

7.
Diverse animal groups exhibit homosexual interactions, yet the evolutionary maintenance of such behaviours remains enigmatic as they do not directly increase reproductive success by generating progeny. Here, we use Tribolium castaneum flour beetles, which exhibit frequent male homosexual copulations, to empirically test several hypotheses for the maintenance of such behaviours: (1) establishing social dominance; (2) practice for future heterosexual encounters; and (3) indirect sperm translocation. We found no evidence that Tribolium males use homosexual copulations either to establish dominance or to practice behaviours that increase their subsequent heterosexual reproductive performance. Our results provide limited support for the hypothesis of indirect sperm translocation: when males from two genetic strains mated with females immediately following a homosexual copulation, females produced progeny sired not only by the directly mating male, but also by that male’s homosexual partner. However, this phenomenon was detected in only 7% of homosexual pairs, and in each case such indirectly sired progeny accounted for < 0.5% of females’ total progeny. Direct observations indicated that mounting males often released spermatophores during homosexual copulations. These observations suggest that homosexual copulations may be a behavioural mechanism that allows males to expel older, potentially low‐quality sperm. Additional work is needed to test this new hypothesis, and to determine whether sperm release during homosexual copulations occurs in other groups.  相似文献   

8.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

9.
Mating frequency and the amount of sperm transferred during mating have important consequences on progeny sex ratio and fitness of haplodiploid insects. Production of female offspring may be limited by the availability of sperm for fertilizing eggs. This study examined multiple mating and its effect on fitness of the cabbage aphid parasitoid Diaeretiella rapae McIntosh (Hymenoptera: Aphidiidae). Female D. rapae mated once, whereas males mated with on average more than three females in a single day. The minimum time lag between two consecutive matings by a male was 3 min, and the maximum number of matings a male achieved in a day was eight. Sperm depletion occurred as a consequence of multiple mating in D. rapae. The number of daughters produced by females that mated with multiple‐mated males was negatively correlated with the number of matings achieved by these males. Similarly, the proportion of female progeny decreased in females that mated with males that had already mated three times. Although the proportion of female progeny resulting from multiple mating decreased, the decrease was quicker when the mating occurred on the same day than when the matings occurred once per day over several days. Mating success of males initially increased after the first mating, but then males became ‘exhausted’ in later matings; their mating success decreased with the number of prior matings. The fertility of females was affected by mating with multiple‐mated males. The study suggests that male mating history affects the fitness of male and female D. rapae.  相似文献   

10.
A consequence of multiple mating by females can be that the sperm of two or more males directly compete for the fertilisation of ova inside the female reproductive tract. Selection through sperm-competition favours males that protect their sperm against that of rivals and strategically allocate their sperm, e.g., according to the mating status of the female and the morphology of the spermatheca. In the majority of spiders, we encounter the otherwise unusual situation that females possess two independent insemination ducts, both ending in their own sperm storage organ, the spermatheca. Males have paired mating organs, but generally can only fill one spermatheca at a time. We investigated whether males of the African golden orb-web spider Nephila madagascariensis can prevent rival males from mating into the same spermatheca and whether the mating status of the female and/or the spermatheca causes differences in male mating behaviour. There was no significant difference in the duration of copulations into unused spermathecae of virgin and mated females. We found that copulations into previously inseminated spermathecae were generally possible, but shorter than copulations into the unused side of mated females or with virgins. Thus, male N. madagascariensis may have an advantage when they mate with virgins, but cannot prevent future males from mating. However, in rare instances, parts of the male genitals can completely obstruct a female genital opening.  相似文献   

11.
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

12.
In many insects, both sexes mate multiple times and females use stored sperm for fertilizations. While males frequently engage in two distinct behaviours, multiple mating (with different females) and repeated copulations (with the same female), the reproductive consequences of these behaviours for males have been quantified for only a few species. In this study, males of the red flour beetle, Tribolium castaneum, were found to be capable of mating with as many as seven different virgin females within 15 min. Across sequential copulations with virgin females, there was no decline in either male insemination success or average female progeny production over 48 h. However, when males copulated with previously mated females, there was a significant decline in male paternity success across sequential copulations, possibly due to male sperm depletion. In separate experiments, T. castaneum males were found to engage in two to six repeated copulations with the same, individually marked female. These repeated copulations did not increase male insemination success, short-term female fecundity, or male paternity success. Repeated copulations may possibly play a role in sperm defence. This study indicates that males may frequently engage in multiple matings, but these additional matings may lead to diminishing male reproductive returns.  相似文献   

13.
Male reproductive success in the lesser wax moth Achroia grisella is strongly determined by pre‐copulatory mate choice, during which females choose among males aggregated in small leks based on the attractiveness of ultrasonic songs. Nothing is known about the potential of post‐copulatory mechanisms to affect male reproductive success. However, there is evidence that females at least occasionally remate with a second male and that males are unable to produce ejaculates quickly after a previous copulation. Here we investigated the effects of mating history on ejaculate size and demonstrate that the number of transferred sperm significantly decreased from first (i.e., virgin) to second (i.e., nonvirgin) copulation within individual males. For males of identical age, the number of sperm transferred was higher in virgin than in nonvirgin copulations, too, demonstrating that mating history, is responsible for the decrease in sperm numbers transferred and not the concomitant age difference. Furthermore, the number of transferred sperm was significantly repeatable within males. The demonstrated variation in ejaculate size both between subsequent copulations as well as among individuals suggests that there is allocation of a possibly limited amount of sperm. Because female fecundity is not limited by sperm availability in this system, post‐copulatory mechanisms, in particular sperm competition, may play a previously underappreciated role in the lesser wax moth mating system.  相似文献   

14.
A tree cricket,Truljalia hibinonis, is known to show a novel sperm removal during copulation. The pattern of copulations and ovipositions showed that the sperm removal functioned to increase reproductive success for sperm removing males. The sperm removal by males evolves under the system in which female accept multiple mating. The possible benefits of multiple mating for females are examined. Multiple mating did not seem to be necessary for avoiding sperm depletion, because females stored huge number of sperm in their sperm storage organ after finishing oviposition. The ingestion of metanotal secretion during copulation also had no effect on increasing fecundity and egg size. However, mating experience may have a positive effect on increasing fecundity slightly, though there were no differences between once- and twice-mated females. The other possible benefits for each male and female are discussed.  相似文献   

15.
Mate choice may have important consequences for offspring sex ratio and fitness of haplodiploid insects. Mate preference of females of the solitary larval parasitoid Microplitis croceipes (Cresson) (Hymenoptera: Braconidae) for virgin and mated males, and vice versa, and the reproductive consequences (i.e., the sex ratio expressed as the proportion of male offspring) were examined in choice and non‐choice experiments. In addition, the effect of repeated rapid and daily copulation of an individual male on the sex ratio of offspring of the female mates was assessed. Males preferred virgins over mated females, whereas females copulated with a male irrespective of his mating status. In both the rapid and daily copulation assay, females copulating with a male that had copulated five times or more produced a higher sex ratio than females that had copulated with a virgin male. Females that copulated with virgin males once or twice produced a significantly and considerably lower sex ratio than females that first copulated with a sperm‐depleted male followed by a virgin male. This indicates that copulating with a sperm‐depleted male has costs and limits acquisition by the female of sperm from virgin males.  相似文献   

16.
Abiotic and biotic factors affect life‐history traits and lead populations to exhibit different behavioural strategies. Due to the direct link between their behaviour and fitness, parasitoid females have often been used to test the theories explaining these differences. In male parasitoids, however, such investigations are vastly understudied, although their mating strategy directly determines their fitness. In this study, we compared the pattern of life history traits and the mating strategy of males in two populations of the Drosophila parasitoid Asobara tabida, exposed to different biotic and abiotic conditions, with the major difference being that one of them was recently exposed to strong competition with the dominant competitor Leptopilina boulardi after recent climate change, the other population being settled in a location where L. boulardi has not been recorded. The results showed that individuals of both populations have a different reproductive strategy: in one population, females produced a more female‐biased sex ratio, while males accumulated more lipids during their larval development, invested more energy in reproduction and decreased their locomotor activity, suggesting a higher proportion of matings on their emergence patch, all of these factors being possibly linked to the new competition pressure. In both populations, mating without sperm transfer may persist for several days after males become sperm‐depleted, and may be more frequent than mating with sperm transfer over their whole lifespan. This point is discussed from an evolutionary point of view.  相似文献   

17.
Theory predicts that when sperm compete numerically, selection will favor males who vary the number of sperm they transfer with the immediate level of sperm competition. In this study, I measured male mating investment in response to both female mating status (virgin vs. mated) and the number of foreign sperm stored by females in a previous mating in the scorpionfly Panorpa cognata. Female sperm storage was manipulated by interrupting copulations at different time points. Female mating status did not significantly influence male mating investment, but resource-limited males invested strategically in relation to the amount of sperm stored by females in a previous mating. I found continuously decreasing male investment in response to increasing amounts of competing sperm. These results demonstrate an unprecedented male ability to assess the number of sperm stored by females. As a result, males are capable of an extraordinarily fine-tuned reaction to the intensity of sperm competition.  相似文献   

18.
The massive numbers of sperm males transfer during a single mating are physiologically costly and the amount of sperm that can be stored is limited. Therefore, males can perform only a finite number of successive copulations without loss of fertility, and males should allocate sperm prudently. We investigated sperm availability and depletion in male black scavenger flies, Sepsis cynipsea (Diptera: Sepsidae), asking whether males adjust copula duration according to nutrition, their sperm stores, their own and their partner’s body size, as predicted by theory. We created a gradient of sperm limitation by restricting dung (their protein resource as adults) and subjecting males to a varying number of copulations. While male fertility did not depend on access to fresh dung (contrary to females), it did decline after three copulations, and more so when males were small. Larger females tended to lay more unfertilized eggs after copulating with previously mated males. However, copula duration was not influenced by a male’s number of previous copulations, and therefore apparently not by his current sperm stores. Nevertheless, copula duration varied with male size, with small males copulating longer, and with female size, as copulations lasted longer with larger females, suggesting that males are investing more sperm in larger, more fecund females. While male copula adjustments to their own nutrition and body size may be simple (proximate) physiological responses, responses to female size indicate more strategic and sophisticated sperm‐allocation strategies than previously thought.  相似文献   

19.
Male insects are expected to optimize their reproductive strategy according to the availability of sperm or other ejaculatory materials, and to the availability and reproductive status of females. Here, we investigated the reproductive strategy and sperm management of male and virgin female Aedes albopictus, a mosquito vector of chikungunya and dengue viruses. The dynamics of semen transfer to the female bursa inseminalis and spermathecae were observed. Double-mating experiments were conducted to study the effect of time lapsed or an oviposition event between two copulations on the likelihood of a female double-insemination and the use of sperm for egg fertilization; untreated fertile males and radio-sterilised males were used for this purpose. Multiple inseminations and therefore the possibility of sperm competition were limited to matings closely spaced in time. When two males consecutively mated the same female within a 40 min interval, in ca. 15% of the cases did both males sire progeny. When the intervals between the copulations were longer, all progeny over several gonotrophic cycles were offspring of the first male. The mating behavior of males was examined during a rapid sequence of copulations. Male Ae. albopictus were parceling sperm allocation over several matings; however they would also attempt to copulate with females irrespective of the available sperm supply or accessory gland secretion material. During each mating, they transferred large quantities of sperm that was not stored for egg fertilization, and they attempted to copulate with mated females with a low probability of transferring their genes to the next generation. The outcomes of this study provided in addition some essential insights with respect to the sterile insect technique (SIT) as a vector control method.  相似文献   

20.
The accessory gland protein (Acp) ejaculate molecules of male Drosophila melanogaster mediate sexual selection and sexual conflict at the molecular level. However, to date no studies have comprehensively measured the timing and magnitude of fitness benefits to males of transferring specific Acps. This is an important omission because without this information it is not possible to fully understand the strength and form of selection acting on adaptations such as Acps. Here, we measured the fitness benefits to males of ejaculate sex peptide (SP) transfer. SP is of interest because it is a candidate for mediating sexual conflict: its frequent receipt reduces female fitness. In single matings with virgin females SP is known to increase egg laying and decrease receptivity. Hence, we predicted that SP could: (i) boost a male’s absolute paternity by increasing offspring production and delaying female remating and/or (ii) boost relative paternity share. We tested these predictions using two different lines of SP‐lacking males, in both two‐mating and free‐mating assay conditions. SP transfer conferred higher absolute, but not relative, male reproductive success. In matings with virgin females, SP transfer increased mating productivity and delayed remating and hence the onset of sperm competition. In already mated females, SP transfer did not elevate absolute progeny production, but did increase intermating intervals and hence the period over which a male could gain paternity. Consistent with this, under free‐mating conditions over an extended period, we detected a ‘per‐mating’ fitness benefit for males transferring SP. These benefits are consistent with a role for SP in mediating conflict, with SP acting to maximize short‐term fitness benefits for males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号