首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Nitrogen (N) fixation in moss‐associated cyanobacteria is one of the main sources of available N for N‐limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low‐frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss‐associated N2 fixation. We therefore aimed to estimate moss‐associated N2 fixation throughout the snow‐free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high‐resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha?1) and birch litter addition plots (2.8 ± 0.2 kg N ha?1), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha?1). The control plots had intermediate rates (2.2 ± 0.2 kg N ha?1). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow‐free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss‐associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species’ litter traits.  相似文献   

2.
Sphagnum‐dominated peatlands comprise a globally important pool of soil carbon (C) and are vulnerable to climate change. While peat mosses of the genus Sphagnum are known to harbor diverse microbial communities that mediate C and nitrogen (N) cycling in peatlands, the effects of climate change on Sphagnum microbiome composition and functioning are largely unknown. We investigated the impacts of experimental whole‐ecosystem warming on the Sphagnum moss microbiome, focusing on N2 fixing microorganisms (diazotrophs). To characterize the microbiome response to warming, we performed next‐generation sequencing of small subunit (SSU) rRNA and nitrogenase (nifH) gene amplicons and quantified rates of N2 fixation activity in Sphagnum fallax individuals sampled from experimental enclosures over 2 years in a northern Minnesota, USA bog. The taxonomic diversity of overall microbial communities and diazotroph communities, as well as N2 fixation rates, decreased with warming (p < 0.05). Following warming, diazotrophs shifted from a mixed community of Nostocales (Cyanobacteria) and Rhizobiales (Alphaproteobacteria) to predominance of Nostocales. Microbiome community composition differed between years, with some diazotroph populations persisting while others declined in relative abundance in warmed plots in the second year. Our results demonstrate that warming substantially alters the community composition, diversity, and N2 fixation activity of peat moss microbiomes, which may ultimately impact host fitness, ecosystem productivity, and C storage potential in peatlands.  相似文献   

3.
Climate warming will induce changes in Arctic ecosystem carbon balance, but besides climate, nitrogen availability is a critical controlling factor of carbon cycling. It is therefore essential to obtain knowledge on the influence of a changing climate on nitrogen fixation, as this process is the main source of new nitrogen to arctic ecosystems. In order to gain information on future nitrogen fixation rates in a changing climate, we studied the effects of two decades of warming with passive greenhouses, shading with sackcloth, and fertilization with NPK fertilizer on nitrogen fixation rates. To expand the knowledge on species-specific responses, we measured nitrogen fixation associated with two moss species: Hylocomium splendens and Aulacomnium turgidum. Our expectations of decreased nitrogen fixation rates in the fertilizer and shading treatments were met. However, contrary to our expectation of increased nitrogen fixation in the warming treatment, we observed either no change (Hylocomium) or a decrease (Aulacomnium) in fixation in the warmed plots. We hypothesize that this could be due to moss-specific responses or to long-term induced effects of the warming. For example, we observed that the soil temperature increase induced by the warming treatment was low and insignificant as vegetation height and total vascular plant cover of the warmed plots increased, and moss cover decreased. Hence, truly long-term studies lasting more than two decades provide insights on changes in key biogeochemical processes, which differ from more transient responses to warming in the Arctic.  相似文献   

4.
Feather mosses in boreal forests form a dense ground‐cover that is an important driver of both nutrient and carbon cycling. While moss growth is highly sensitive to moisture availability, little is known about how moss effects on nutrient and carbon cycling are affected by the dynamics of moisture input to the ecosystem. We experimentally investigated how rainfall regimes affected ecosystem processes driven by the dominant boreal feather moss Pleurozium schreberi by manipulating total moisture amount, frequency of moisture addition and moss presence/absence. Moisture treatments represented the range of rainfall conditions that occur in Swedish boreal forests as well as shifts in rainfall expected through climate change. We found that nitrogen (N) fixation by cyanobacteria in feather mosses (the main biological N input to boreal forests) was strongly influenced by both moisture amount and frequency, and their interaction; increased frequency had greater effects when amounts were higher. Within a given moisture amount, N fixation varied up to seven‐fold depending on how that amount was distributed temporally. We also found that mosses promoted vascular litter decomposition rates, concentrations of litter nutrients, and active soil microbial biomass, and reduced N release into soil solution. These effects were usually strongest under low moisture amount and/or frequency, and revealed a buffering effect of mosses on the decomposer subsystem under moisture limitation. These results highlight that both the amount and temporal distribution of rainfall, determine the effect of feather mosses on ecosystem N input and the decomposer subsystem. They also emphasize the role of feather mosses in mediating moisture effects on decomposer processes. Finally, our results suggest that projected shifts in precipitation in the Swedish boreal forest through climate change will result in increased moss growth and N2 fixation but a reduced dependency of the decomposer subsystem on feather moss cover for moisture retention.  相似文献   

5.
《Plant Ecology & Diversity》2013,6(3-4):383-392
Background: Arctic lichens and mosses are covered by snow for more than half the year and are generally considered as being dormant for most of this period. However, enhanced frequency of winter warming events due to climate change can cause increased disturbance of their protective subnivean environment.

Aim: To further understand cryptogamic responses to midwinter warming we compared the ecophysiological performance of one lichen and one moss species during a simulated warming event.

Methods: We measured photosynthesis and dark respiration in samples of the moss Hylocomium splendens and the lichen Peltigera aphthosa removed from under snow, and on natural refreezing after the warming event, which was simulated by using infrared heaters suspended above the ground.

Results: The moss exposed to light at +5 °C immediately after removal from their subnivean environment and from warmed plots showed positive net gas exchange within 332 s; the lichen required 1238 s. Photosynthesis and nitrogen fixation rates were equal to that, or higher than, during the preceding growing season. Upon refreezing after the event, moss photosynthesis declined considerably.

Conclusions: The moss, and to a lesser extent the lichen, may contribute to subnivean midwinter ecosystem respiration, and both are opportunistic, and can take advantage of warmer winter phases for photosynthesis and growth. This ought to be taken into account in vegetation change projections of cryptogam-rich ecosystems.  相似文献   

6.
Climate warming enables tree seedling establishment beyond the current alpine treeline, but to achieve this, seedlings have to establish within existing tundra vegetation. In tundra, mosses are a prominent feature, known to regulate soil temperature and moisture through their physical structure and associated water retention capacity. Moss presence and species identity might therefore modify the impact of increases in temperature and precipitation on tree seedling establishment at the arctic‐alpine treeline. We followed Betula pubescens and Pinus sylvestris seedling survival and growth during three growing seasons in the field. Tree seedlings were transplanted along a natural precipitation gradient at the subarctic‐alpine treeline in northern Sweden, into plots dominated by each of three common moss species and exposed to combinations of moss removal and experimental warming by open‐top chambers (OTCs). Independent of climate, the presence of feather moss, but not Sphagnum, strongly supressed survival of both tree species. Positive effects of warming and precipitation on survival and growth of B. pubescens seedlings occurred in the absence of mosses and as expected, this was partly dependent on moss species. P. sylvestris survival was greatest at high precipitation, and this effect was more pronounced in Sphagnum than in feather moss plots irrespective of whether the mosses had been removed or not. Moss presence did not reduce the effects of OTCs on soil temperature. Mosses therefore modified seedling response to climate through other mechanisms, such as altered competition or nutrient availability. We conclude that both moss presence and species identity pose a strong control on seedling establishment at the alpine treeline, and that in some cases mosses weaken climate‐change effects on seedling establishment. Changes in moss abundance and species composition therefore have the potential to hamper treeline expansion induced by climate warming.  相似文献   

7.
Mosses are the dominant plants in polar and boreal regions, areas which are experiencing rapid impacts of regional warming. Long‐term monitoring programmes provide some records of the rate of recent climate change, but moss peat banks contain an unrivalled temporal record of past climate change on terrestrial plant Antarctic systems. We summarise the current understanding of climatic proxies and determinants of moss growth for contrasting continental and maritime Antarctic regions, as informed by 13C and 18O signals in organic material. Rates of moss accumulation are more than three times higher in the maritime Antarctic than continental Antarctica with growing season length being a critical determinant of growth rate, and high carbon isotope discrimination values reflecting optimal hydration conditions. Correlation plots of 13C and 18O values show that species (Chorisodontium aciphyllum / Polytrichum strictum) and growth form (hummock / bank) are the major determinants of measured isotope ratios. The interplay between moss growth form, photosynthetic physiology, water status and isotope composition are compared with developments of secondary proxies, such as chlorophyll fluorescence. These approaches provide a framework to consider the potential impact of climate change on terrestrial Antarctic habitats as well as having implications for future studies of temperate, boreal and Arctic peatlands. There are many urgent ecological and environmental problems in the Arctic related to mosses in a changing climate, but the geographical ranges of species and life‐forms are difficult to track individually. Our goal was to translate what we have learned from the more simple systems in Antarctica, for application to Arctic habitats.  相似文献   

8.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

9.
Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub‐Arctic heath vegetation and its belowground micro‐arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro‐arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub‐Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub‐Arctic vegetation response to multiple pressures is not easy to predict from single‐factor responses. Therefore, while biotic and climatic events may have clear impacts, more work is needed to understand their net effect on Arctic ecosystems.  相似文献   

10.
We passively warmed tundra on the Antarctic Peninsula over four growing seasons and assessed its effect on dry mass and C and N stocks associated with the vascular plants Colobanthus quitensis (a cushion‐forming forb) and Deschampsia antarctica (a tussock grass), and mosses. Temperature treatments involved a warmed treatment that raised diurnal and diel canopy air temperatures by 2.3 and 1.3 °C, respectively, and a near‐ambient temperature treatment that raised diurnal and diel temperatures by 0.2 °C. These two different temperature regimes were achieved by wrapping filters around the frames to different extents and were nested within three UV treatments that filtered different solar UV wavebands. The experiment also included an ambient control treatment (unfiltered frames), and supplemental water and fertilizer treatments (applied to unfiltered frames). After four growing seasons, we collected cores of each vascular plant species and assessed the mass and C and N content of the aboveground current‐year biomass, the litter layer (which included nongreen live stems), and the organic soil horizon (which included roots). The thin nature of the organic soil horizon allowed us to sample this complete horizon and estimate near‐total ecosystem C and N stocks. A comparison of the warmed and near‐ambient temperature treatments found that warming led to greater aboveground biomass of C. quitensis, and more C in the aboveground biomass of both vascular plant species. Warming resulted in lower N concentrations of the aboveground biomass of both species. The water use efficiency of both species was greater under warming, based on their higher δ13C values. The mass of the litter layer under C. quitensis was greater under warming, and this layer contained more C and N and had a higher C : N ratio. The mass of the organic soil horizon under both species was greater under warming, and this horizon also contained more C and N. Warming also changed the species composition of the plant community – cover of C. quitensis increased while that of mosses declined. Warming resulted in the input of biomass into the system that had greater C : N ratios (and was likely more recalcitrant to decomposition) because (1) warming increased the C : N ratio of the biomass produced by both vascular plant species, (2) these inputs increased with warming because of greater biomass production, and (3) increases in C. quitensis cover led to greater biomass inputs by this species and its biomass had a greater C : N ratio than D. antarctica. Water or fertilizer supplements had few effects on aboveground biomass or C and N concentrations or pools, consistent with the relatively wet maritime climate and high soil nutrient levels of this system. Total C pools in the aboveground biomass, litter, and organic soil horizon were greater under warming. Warmed plots contained from 272 to 319 g m−2 more C than plots under near‐ambient temperatures, corresponding to a 23–34% increase in ecosystem C.  相似文献   

11.
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2–10 °C for 2–14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week‐long extreme winter warming events – using infrared heating lamps, alone or with soil warming cables – for two consecutive years in a sub‐Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze‐thaw cycles were 2–11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community‐weighted vertical stratification shift occurred from smaller soil dwelling (eu‐edaphic) Collembola species dominance to larger litter dwelling (hemi‐edaphic) species dominance in the canopy‐with‐soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu‐edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro‐flora affecting plant productivity and mineralization rates. Short‐term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.  相似文献   

12.
To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7–12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May–September 2011 using climate‐controlled chambers. A substrate‐induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20–30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N‐only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate‐induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2. The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N‐only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N‐P/K colimited rather than N‐limited. Negative effects of further N‐only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat‐forming Sphagnum.  相似文献   

13.
Facing an increased threat of rapid climate change in cold‐climate regions, it is important to understand the sensitivity of plant communities both in terms of degree and direction of community change. We studied responses to 3–5 years of moderate experimental warming by open‐top chambers in two widespread but contrasting tundra communities in Iceland. In a species‐poor and nutrient‐deficient moss heath, dominated by Racomitrium lanuginosum, mean daily air temperatures at surface were 1–2°C higher in the warmed plots than the controls whereas soil temperatures tended to be lower in the warmed plots throughout the season. In a species‐rich dwarf shrub heath on relatively rich soils at a cooler site, dominated by Betula nana and R. lanuginosum, temperature changes were in the same direction although more moderate. In the moss heath, there were no detectable community changes while significant changes were detected in the dwarf shrub heath: the abundance of deciduous and evergreen dwarf shrubs significantly increased (>50%), bryophytes decreased (18%) and canopy height increased (100%). Contrary to some other studies of tundra communities, we detected no changes in species richness or other diversity measures in either community and the abundance of lichens did not change. It is concluded that the sensitivity of Icelandic tundra communities to climate warming varies greatly depending on initial conditions in terms of species diversity, dominant species, soil and climatic conditions as well as land‐use history.  相似文献   

14.
Climate warming is leading to shrub expansion in Arctic tundra. Shrubs form ectomycorrhizal (ECM) associations with soil fungi that are central to ecosystem carbon balance as determinants of plant community structure and as decomposers of soil organic matter. To assess potential climate change impacts on ECM communities, we analysed fungal internal transcribed spacer sequences from ECM root tips of the dominant tundra shrub Betula nana growing in treatments plots that had received long‐term warming by greenhouses and/or fertilization as part of the Arctic Long‐Term Ecological Research experiment at Toolik Lake Alaska, USA. We demonstrate opposing effects of long‐term warming and fertilization treatments on ECM fungal diversity; with warming increasing and fertilization reducing the diversity of ECM communities. We show that warming leads to a significant increase in high biomass fungi with proteolytic capacity, especially Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. In contrast, fertilization treatments led to relatively small changes in the composition of the ECM community, but increased the abundance of saprotrophs. Our data suggest that warming profoundly alters nutrient cycling in tundra, and may facilitate the expansion of B. nana through the formation of mycorrhizal networks of larger size.  相似文献   

15.
We measured net ecosystem CO2 exchange (NEE), plant biomass and growth, species composition, peat microclimate, and litter decomposition in a fertilization experiment at Mer Bleue Bog, Ottawa, Ontario. The bog is located in the zone with the highest atmospheric nitrogen deposition for Canada, estimated at 0.8–1.2 g N m−2 yr−1 (wet deposition as NH4 and NO3). To establish the effect of nutrient addition on this ecosystem, we fertilized the bog with six treatments involving the application of 1.6–6 g N m−2 yr−1 (as NH4NO3), with and without P and K, in triplicate 3 m × 3 m plots. The initial 5–6 years have shown a loss of first Sphagnum, then Polytrichum mosses, and an increase in vascular plant biomass and leaf area index. Analyses of NEE, measured in situ with climate‐controlled chambers, indicate that contrary to expectations, the treatments with the highest levels of nutrient addition showed lower rates of maximum NEE and gross photosynthesis, but little change in ecosystem respiration after 5 years. Although shrub biomass and leaf area increased in the high nutrient plots, loss of moss photosynthesis owing to nutrient toxicity, increased vascular plant shading and greater litter accumulation contributed to the lower levels of CO2 uptake. Our study highlights the importance of long‐term experiments as we did not observe lower NEE until the fifth year of the experiment. However, this may be a transient response as the treatment plots continue to change. Higher levels of nutrients may cause changes in plant composition and productivity and decrease the ability of peatlands to sequester CO2 from the atmosphere.  相似文献   

16.
The global climate is changing rapidly and Arctic regions are showing responses to recent warming. Responses of tundra ecosystems to climate change have been examined primarily through short‐term experimental manipulations, with few studies of long‐term ambient change. We investigated changes in above‐ and belowground biomass of wet sedge tundra to the warming climate of the Canadian High Arctic over the past 25 years. Aboveground standing crop was harvested from five sedge meadow sites and belowground biomass was sampled from one of the sites in the early 1980s and in 2005 using the same methods. Aboveground biomass was on average 158% greater in 2005 than in the early 1980s. The belowground biomass was also much greater in 2005: root biomass increased by 67% and rhizome biomass by 139% since the early 1980s. Dominant species from each functional group (graminoids, shrubs and forbs) showed significant increases in aboveground biomass. Responsive species included the dominant sedge species Carex aquatilis stans, C. membranacea, and Eriophorum angustifolium, as well as the dwarf shrub Salix arctica and the forb Polygonum viviparum. However, diversity measures were not different between the sample years. The greater biomass correlated strongly with increased annual and summer temperatures over the same time period, and was significantly greater than the annual variation in biomass measured in 1980–1983. Increased decomposition and mineralization rates, stimulated by warmer soils, were likely a major cause of the elevated productivity, as no differences in the mass of litter were found between sample periods. Our results are corroborated by published short‐term experimental studies, conducted in other wet sedge tundra communities which link warming and fertilization with elevated decomposition, mineralization and tundra productivity. We believe that this is the first study to show responses in High Arctic wet sedge tundra to recent climate change.  相似文献   

17.
Little is known about the impact of changing temperature regimes on composition and diversity of cryptogam communities in the Arctic and Subarctic, despite the well‐known importance of lichens and bryophytes to the functioning and climate feedbacks of northern ecosystems. We investigated changes in diversity and abundance of lichens and bryophytes within long‐term (9–16 years) warming experiments and along natural climatic gradients, ranging from Swedish subarctic birch forest and subarctic/subalpine tundra to Alaskan arctic tussock tundra. In both Sweden and Alaska, lichen diversity responded negatively to experimental warming (with the exception of a birch forest) and to higher temperatures along climatic gradients. Bryophytes were less sensitive to experimental warming than lichens, but depending on the length of the gradient, bryophyte diversity decreased both with increasing temperatures and at extremely low temperatures. Among bryophytes, Sphagnum mosses were particularly resistant to experimental warming in terms of both abundance and diversity. Temperature, on both continents, was the main driver of species composition within experiments and along gradients, with the exception of the Swedish subarctic birch forest where amount of litter constituted the best explanatory variable. In a warming experiment in moist acidic tussock tundra in Alaska, temperature together with soil ammonium availability were the most important factors influencing species composition. Overall, dwarf shrub abundance (deciduous and evergreen) was positively related to warming but so were the bryophytes Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi; the majority of other cryptogams showed a negative relationship to warming. This unique combination of intercontinental comparison, natural gradient studies and experimental studies shows that cryptogam diversity and abundance, especially within lichens, is likely to decrease under arctic climate warming. Given the many ecosystem processes affected by cryptogams in high latitudes (e.g. carbon sequestration, N2‐fixation, trophic interactions), these changes will have important feedback consequences for ecosystem functions and climate.  相似文献   

18.
Investigations of how species compositional changes interact with other aspects of global change, such as nutrient mobilization, to affect ecosystem processes are currently lacking. Many studies have shown that mixed species plant litters exhibit non‐additive effects on ecosystem functions in terrestrial and aquatic systems. Using a full‐factorial design of three leaf litter species with distinct initial chemistries (carbon:nitrogen; C:N) and breakdown rates (Liriodendron tulipifera, Acer rubrum and Rhododendron maximum), we tested for additive and non‐additive effects of litter species mixing on breakdown in southeastern US streams with and without added nutrients (N and phosphorus). We found a non‐additive (antagonistic) effect of litter mixing on breakdown rates under reference conditions but not when nutrient levels were elevated. Differential responses among single‐species litters to nutrient enrichment contributed to this result. Antagonistic litter mixing effects on breakdown were consistent with trends in litter C:N, which were higher for mixtures than for single species, suggesting lower microbial colonization on mixtures. Nutrient enrichment lowered C:N and had the greatest effect on the lowest‐ (R. maximum) and the least effect on the highest‐quality litter species (L. tulipifera), resulting in lower interspecific variation in C:N. Detritivore abundance was correlated with litter C:N in the reference stream, potentially contributing to variation in breakdown rates. In the nutrient‐enriched stream, detritivore abundance was higher for all litter and was unrelated to C:N. Thus, non‐additive effects of litter mixing were suppressed by elevated streamwater nutrients, which increased nutrient content of all litter, reduced variation in C:N among litter species and increased detritivore abundance. Nutrients reduced interspecific variation among plant litters, the base of important food web pathways in aquatic ecosystems, affecting predicted mixed‐species breakdown rates. More generally, world‐wide mobilization of nutrients may similarly modify other effects of biodiversity on ecosystem processes.  相似文献   

19.
The extent to which increased atmospheric nitrogen (N) deposition will drive changes in plant productivity and species composition over the next century will depend on how other influential global change factors, such as climate warming, affect the N retention of ecosystems. We examined the interactive effects of simulated climate warming and N deposition on the recoveries of 15N‐labeled ammonium and 15N‐labeled nitrate tracers added as a pulse to grass‐dominated, temperate old‐field plots at spring thaw. In addition to the year‐round warming treatment, a winter‐only warming treatment was applied to a set of plots to explore the contribution of this component of climate warming to the overall warming effect. By the end of the plant growing season, there was approximately twice as much 15N enrichment in the plant roots and bulk soil from 15NH4+‐addition plots than from 15NO3?‐addition plots, but there were no effects of warming or N fertilization on 15N recovery. Over winter, approximately half of the excess 15N present in plant shoots was lost, which corresponded with large 15N losses from bulk soil in N fertilized plots and large 15N increases in bulk soil in nonfertilized plots. By the next spring, there was decreased 15N recovery in plants in response to N fertilization, which was largely offset by increases in plant 15N recovery in response to year‐round warming. However, 15N retention in bulk soil, where the major part of the 15N label was recovered, was approximately 40% higher in nonfertilized plots than in N fertilized plots. Overall, our results indicate that climate warming increases plant N sequestration in this system but this effect is overwhelmed by the overall effect of nitrogen deposition on ecosystem N losses.  相似文献   

20.
Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single‐factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old‐field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze–thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming‐induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant‐available N may overestimate the increase in terrestrial productivity and the magnitude of an important negative feedback to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号