首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When fed ad libitum (AL), ectothermic animals usually grow faster and have higher metabolic rate at higher ambient temperature. However, if food supply is limited, there is an energy tradeoff between growth and metabolism. Here we hypothesize that for ectothermic animals under food restriction (FR), high temperature will lead to a high metabolic rate, but growth will slow down to compensate for the high metabolism. We measure the rates of growth and metabolism of 4 cohorts of 5th instar hornworms (Manduca sexta larvae) reared at 2 levels of food supply (AL and FR) and 2 temperatures (20 and 30 °C). Our results show that, compared to the cohorts reared at 20 °C, the ones reared at 30 °C have high metabolic rates under both AL and FR conditions, but a high growth rate under AL and a low growth rate under FR, supporting this hypothesis.  相似文献   

2.
1. Diel vertical migrations (DVM) are typical for many cold‐water fish species such as Pacific salmons (Oncorhynchus spp.) and coregonids (Coregonus spp.) inhabiting deep lakes. A comprehensive recent overview of DVM in freshwater fish has not been available, however. 2. The main proximate trigger of DVM in freshwater fish is the diel change in light intensity, with declining illumination at dusk triggering the ascent and the increase at dawn triggering the descent. Additional proximate cues are hydrostatic pressure and water temperature, which may guide fish into particular water layers at night. 3. Ultimate causes of DVM encompass bioenergetics efficiency, feeding opportunities and predator avoidance. None of these factors alone can explain the DVM in all cases. Multi‐factorial hypotheses, such as the ‘antipredation window’ combined with the thermal niche hypothesis, are more likely to explain DVM. It is suggested that planktivorous fish move within a layer sufficiently well illuminated to capture zooplankton, but too dark for predators to feed upon the migrating fish. In complete darkness, fish seek layers with a temperature that optimises bioenergetics efficiency. The strength of each factor may differ from lake to lake, and hence system‐specific individual analyses are needed. 4. Mechanistic details that are still poorly explored are the costs of buoyancy regulation and migration, the critical light thresholds for feeding of planktivorous and piscivorous fish, and predator assessment by (and size‐dependent predation risk of) the prey fish. 5. A comprehensive understanding of the adaptive value of DVM can be attained only if the behaviour of individual fish within migrating populations is explicitly taken into account. Size, condition and reproductive value differ between individuals, suggesting that migrating populations should split into migrants and non‐migrants for whom the balance between mortality risk and growth rate can differ. There is increasing evidence for this type of partial DVM within populations. 6. Whereas patterns of DVM are well documented, the evolution of DVM is still only poorly understood. Because experimental approaches at realistic natural scales remain difficult, a combination of comprehensive data sets with modelling is likely to resolve the relative importance of different proximate and ultimate causes behind DVM in fish.  相似文献   

3.
Food consumption, standard metabolism, and growth of juvenile snakehead, Channa striatus, a cannibalistic and air-breathing fish were measured at 24–26 °C under controlled laboratory condition. Snakehead weighing 3.2–29.5 g were evaluated, and were fed smaller snakehead. Based on our observations, we determined bioenergetics relationships between specific food consumption, metabolic rates, and body weight. These values, along with other published parameter values allowed us to construct a bioenergetics model for snakehead. We then verified our model with growth and food consumption measurements from an independent feeding trial. Predicted fish growth closely matched observed growth. Our model underestimated cumulative food consumption when a constant activity value was used, but consumption estimates improved when we used non-constant activity values (1-5 times of standard metabolism). Predicted fish maintenance ration was 1.7% of body weight per day. Food conversion efficiency was greatest (0.59) when fed 2% body weight daily, but declined when daily consumption exceeded 6% body weight. This model provides a useful approach for assessing food requirements of snakehead under controlled condition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In order to test the effect of temperature variation on the growth of a common coral-reef fish, Acanthochromis polyacanthus, juveniles, sub-adults and adults were reared on either high or low food rations at temperatures corresponding to the long-term (14 year) minimum, average and maximum summer sea-surface temperatures (26, 28 and 31°C respectively) at Orpheus Island, Great Barrier Reef, Australia. Both temperature and food supply affected the growth of juvenile and adult A. polyacanthus. Individuals grew more on high food rations, but growth declined with increasing temperature. Importantly, at 31°C, the growth of juveniles and adults on the high food ration was nearly identical to growth on the low food ration. This indicates that the capacity for growth is severely limited at higher ocean temperatures that are predicted to become the average for Orpheus Island within the next 100 years as a result of rapid climate change. Communicated by Biology Editor Dr Mark McCormick  相似文献   

5.
This comparative study explores how low temperatures affect the mortality and growth of first generation hatchery-reared progeny of subarctic populations of Arctic charr (Salvelinus alpinus L.) and European whitefish (Coregonus lavaretus L.). Replicate fish groups where held under simulated natural light regimes (70°N) at three constant temperatures (1, 3 and 6°C). The mortality of Arctic charr was low (≤1.4%) at all temperature treatments, whereas the mortality of whitefish increased with decreasing temperature from 6% at 6°C to 33% at 1°C. The Arctic charr exhibited higher growth rates than whitefish at all three temperature regimes. All groups of Arctic charr increased in weight, whereas whitefish held at 1°C did not gain weight throughout the experimental period of 133 days. Arctic charr exhibited a large intraspecific variability in growth leading to large variations in size-structure, whereas whitefish in contrast showed very homogenous growth and size-structure patterns; a dissimilarity probably related to species-specific differences in antagonistic behaviour. Evidently, Arctic charr are more cold water adapted than whitefish and are able to maintain growth at extremely low temperatures. Arctic charr thus appear to be the most suitable species for aquaculture at low water temperatures.  相似文献   

6.
Antarctic fishes display slower annual growth rates than congeneric species from temperate zones. For an analysis of growth in relation to energy turnover, body composition was analysed in two benthic fish species to establish a whole animal energy budget. The Antarctic eelpout, Pachycara brachycephalum, was maintained at 0, 2, 4 and 6°C and the boreal eelpout, Zoarces viviparus at 4, 6, 12 and 18°C. At maximum food supply the weight gain was highest for P. brachycephalum at 4°C. Routine metabolic rate in acclimated Antarctic eelpouts did not differ between temperatures, whereas in Z. viviparus maximized growth benefited from a reduction of metabolic energy demands at 12°C. The lipid content of liver declined with increasing temperature in both species. The thermal window for growth is based on food conversion efficiency and the level of metabolic energy demand and is limited according to the level of aerobic scope available between pejus temperatures.  相似文献   

7.
A new set of bioenergetic parameters for adult roach (Rutilus rutilus) was fitted to the Wisconsin bioenergetics model (Fish Bioenergetics 3.0). These parameters describing rates of maximum food consumption, routine metabolism, egestion and excretion were derived from laboratory studies with adult roach over a wide range of fish sizes (1.2–300 g) and water temperatures (5–20°C). The new parameter set was compared with the only previously published set for adult roach, where parameters were taken from different life stages and compiled from different studies. In both a simulation and a field study, the new set resulted in a smaller increase of energy losses and a larger increase of energy intake with temperature compared with the previous set. The intermodel differences were most distinct at high (>20°C) and low (<10°C) temperatures, and can be mainly explained by differences in the temperature dependence of the respiration rate between the two sets. At moderate temperatures, the two parameter sets gave similar results.  相似文献   

8.
1. In the absence of fish predation, Daphnia exploiting a deep‐water algal maximum are faced with a trade‐off. They can either dwell in the epilimnion where development in the warm water is fast, but food shortage causes low egg production, or in the hypolimnion, where food availability is high but development is slow because of low temperatures. 2. We tested the hypotheses that (i) depth distributions of various ontogenetic stages (size classes and egg‐bearing females) differ because daphnids react to light with size‐specific diel vertical migration (DVM) even in the absence of fish (residual predator avoidance hypothesis) and (ii) differently sized daphnids select different depths because the relative importance of temperature and food varies for ontogenetic stages (physiological hypothesis). We used large indoor mesocosms (Plankton Towers) to test these hypotheses experimentally. 3. Temperature was the strongest factor governing the distribution, with larger proportions of the population dwelling in the food‐rich hypolimnion if the temperature gradient was shallow. There were small but significant differences between ontogenetic stages during the day, but not at night. This suggested the existence of a ‘residual’ effect of light on depth distribution in the absence of a fish cue. 4. Although large individuals exhibited greater amplitude of DVM, the physiological hypothesis had to be rejected. A stage‐specific physiological effect is unlikely to be directly triggered by light, hence vertical movement of the individuals should not be synchronised. Rather, being forced into deeper layers by the residual light response during the day, large and egg‐bearing females experience a lower average temperature during day than juveniles. They probably compensate for this by spending longer time periods in warm waters at night.  相似文献   

9.
Gastric evacuation rates were determined for different sizes of Arctic cod (Boreogadus saida) at sub-zero temperatures (−1.4 and −0.5°C). These temperatures represent ambient conditions for Arctic cod in the Canadian high Arctic. Evacuation half-times, the time required for half of the content of the stomach to be evacuated, were longer (36–70 h; mean=51 h) than those reported in studies carried out on other fish species. Gastric evacuation rates at low temperatures were equal to, or below, those predicted by extrapolation from experiments conducted at higher temperatures. There were no significant differences in evacuation rates among fish size-groups or diets, but evacuation rates were slower for fish that had been starved prior to experiments. Estimated daily rations for Arctic cod in Resolute Bay, N.W.T., were 0.51% body weight for small fish (4.5 g) and 1.13% body weight for large fish (51 g). Slow stomach evacuation rates at low temperatures may limit daily food intake when food is seasonally abundant. This may contribute to slow growth rates and limited maximum size of Arctic cod in Canadian high Arctic waters. Received: 14 July 1997 / Accepted: 15 November 1997  相似文献   

10.
Marine organisms living at low temperatures tend to have larger genomes and larger cells which suggest that these traits can be beneficial in colder environments. In fish, triploidy (three complete sets of chromosomes) can be induced experimentally following fertilization, which provides a model system to investigate the hypothesis that larger cells and genomes offers a physiological advantage at low temperatures. We tested this hypothesis by measuring metabolic rates and swimming performance of diploid and triploid Atlantic salmon (Salmo salar) post smolts acclimated to 3 or 10.5 °C. At 10.5 °C, triploids had significantly lower maximum metabolic rates which resulted in a lower aerobic scope compared to diploids. In addition, triploids initiated ram ventilation at lower swimming speeds, providing further evidence of a reduced capacity to meet oxygen demands during strenuous activity at 10.5 °C. However, at 3 °C, metabolic rates and critical swimming speeds were similar between both ploidies, and as expected substantially lower than at 10.5 °C. Therefore, triploidy in colder environments did not provide any advantage over diploidy in terms of metabolic rate traits or swimming performance in Atlantic salmon. We therefore conclude that traits, other than aerobic scope and swimming performance, contribute to the trend for increased cell and genome size in marine ectotherms living in cold environments.  相似文献   

11.
1. Predicted increases in the temperature of freshwaters is likely to affect how prey species respond to predators. We investigated how the predator avoidance behaviour of the freshwater pulmonate snail Lymnaea stagnalis is influenced by the temperature at which it was reared and that at which behavioural trials were carried out. 2. Crawl‐out behaviour of juvenile snails from two populations (high predation risk versus low predation risk) reared at either 15 or 20 °C was assessed in response to predation cues (predatory fish kairomones and conspecific alarm cues) in behavioural trials at both 15 and 20 °C. 3. Trial temperature had a significant effect on the time that snails spent in avoidance, regardless of their population of origin. Crawl‐out behaviour was greater during behavioural trials at 15 °C, but there was no effect of trial temperature on the speed with which animals showed avoidance behaviour. 4. There was no interactive effect of rearing temperature (RT) and trial temperature, but the effect of RT on avoidance behaviour did differ between populations. For an RT of 15 °C, snails from the South Drain (high risk) population showed a more rapid and longer avoidance response than those from the Chilton Moor (low risk) population. In contrast, for snails reared at 20 °C, there was no difference between populations for the duration of the avoidance response and snails from Chilton Moor crawled out faster than those from South Drain. 5. Hence, whilst (predictable) differences relative to natural predation threat in crawl‐out behaviour were apparent at 15 °C, raising the developmental temperature to 20 °C eliminated or, in the case of latency, reversed these differences. This suggests that L. stagnalis populations that cohabit with predatory fish and experience high developmental temperatures may have a reduced ability to respond to fish predation risk.  相似文献   

12.
This study investigates the effects of temperature on the survival, food intake, oxygen consumption and growth during long-term live holding of captive male snow crab (Chionoecetes opilio) (average?=?0.7?kg). The crabs were held at three different temperatures, 3, 6 and 9°C. The trials were done using groups of snow crabs held in nine land-based holding tanks (three replicates per temperature treatment). The results showed that temperature had a significant effect on survival. The survival rate at 3°C (61%) was significantly higher than at 6°C (33%) and at 9°C (28%). Specific oxygen consumption rates of unfed crab at 6°C were significantly higher than at 9°C and 3°C. In summary, the current study shows that the Barents Sea snow crab have a narrow temperature range in which they thrive compared with the Barents Sea red king crab (Paralithodes camtschaticus). Barents Sea snow crab has similar metabolic and physiological attributes to other major snow crab populations. In conditions when ambient temperatures are approximately 6°C, it may prove beneficial for animal welfare and also be financially advantageous to reduce ambient water temperatures in live snow crab holding facilities on boat or on land.  相似文献   

13.
Abstract. The present experiments are part of a larger study designed to investigate the influence of husbandry parameters on the life history of the ramshorn snail, Marisa cornuarietis, in order to identify suitable husbandry conditions for maintaining multi‐generation populations in the laboratory for use in ecotoxicological testing. In this paper we focus on the effects of a combination of food types and feeding frequencies (i.e., the frequency with which the snails were offered food) on juvenile growth and survival at different temperatures. Offspring produced in the laboratory by wild specimens of M. cornuarietis, from Puerto Rico, were used to test the effects of three types of food (lettuce, alginate with fish food, alginate with snail mix) fed at three frequencies (given ad libitum on 4/4, 2/4, or 1/4 d) on juvenile survival and growth. The 4‐d feeding regimens were repeated four times, giving a total of 16 d for the experiments. The experiments were conducted at two temperatures (22° and 25°C) under a 12 h light:12 h dark photoperiod. Juvenile growth rates increased with increasing feeding frequency for all food types. The most rapid growth rates occurred in the high‐frequency lettuce treatments and the slowest growth rates in the low‐frequency lettuce and alginate with snail mix treatments. Juvenile snails grew faster at 25° than at 22°C, and mortality was about twice as high at the lower temperature. Growth rates were used to provide a rough estimate of time to maturity, which was determined to take about twice as long at 22° than at 25°C. The results showed that lettuce is the best food if supplied in abundance, but effects on growth are very dependent on feeding frequency and temperature. We conclude that 25°C is a more appropriate temperature for maintaining populations than 22°C, that lettuce provides a suitable food source, and that food should be supplied continuously for husbandry and toxicity testing of populations of M. cornuarietis.  相似文献   

14.
Mats of coenocytic “snow molds” are commonly observed covering the soil and litter of alpine and subalpine areas immediately following snow melt. Here, we describe the phylogenetic placement, growth rates, and metabolic potential of cold-adapted fungi from under-snow mats in the subalpine forests of Colorado. SSU rDNA sequencing revealed that these fungi belong to the zygomycete orders Mucorales and Mortierellales. All of the isolates could grow at temperatures observed under the snow at our sites (0°C and −2°C) but were unable to grow at temperatures above 25°C and were unable to grow anaerobically. Growth rates for these fungi were very high at −2°C, approximately an order of magnitude faster than previously studied cold-tolerant fungi from Antarctic soils. Given the rapid aerobic growth of these fungi at low temperatures, we propose that they are uniquely adapted to take advantage of the flush of nutrient that occurs at the soil–snow interface beneath late winter snow packs. In addition, extracellular enzyme production was relatively high for the Mucorales, but quite low for the Mortierellales, perhaps indicating some niche separation between these fungi beneath the late winter snow pack.  相似文献   

15.
Egg maturation in Calliphora vicina is known to occur within a wide range of temperatures, from 12°C to nearly 30°C (Vinogradova, 1991). Photoperiodism has no effect on this process. Some females enter diapause already at 20°C; their fraction increases at lower temperatures and reaches 100% at 6°C. Reproducing females with eggs can survive for a long time and even lay eggs at low temperatures (4–5°C). Experiments with C. vicina from Leningrad Province revealed some effects of the diet (liver or fish) and temperature on the fly reproduction. At 20 and 25°C, 7–10-day old females begin to oviposit, but at 20°C egg maturation is observed in 98% of females feeding on liver and in only 5% of females feeding on fish. On the liver diet, the mean daily fecundity is significantly correlated with the day of oviposition but not with the temperature. At 20°C a significant correlation is observed between the mean daily fecundity and both the day of oviposition and food. The total number of eggs laid by flies after feeding on fish is half that produced after feeding on liver. The optimal conditions for Calliphora vicina cultivation are a 16-h light day, temperatures within the range from 20 to 25°C, and liver as food.  相似文献   

16.
The influence of different temperatures 10, 15, 20, and 25°C on the food consumption, growth, moulting rate, and respiration of Palaemon pacificus (Stimpson) from Langebaan Lagoon, west coast of South Africa, was studied under laboratory conditions. At 10°C mortality was high so that food consumption and moulting rate could not be determined as these were very low. At higher temperatures, food consumption was found to be temperature dependent, the rate at 25°C being twice that at 15°C. Growth rate was most favourable at 25°C. At 28°C growth rate was lower than at 20°C but higher than at 15°C. The intermoult period was 17 days at 15°C, and 11 and 10 days at 20, and 25°C, respectively. It seems that from an energetic point of view, 25°C is the most favourable temperature for P. pacificus. Several indices of growth efficiency at different temperatures are presented. The appearance of this prawn in South African west coast localities such as Langebaan during the summer and its disappearance during winter, can be explained by its temperature preferences. The possibility that thermal pollution from a nuclear power station may be beneficial to this prawn, is discussed.  相似文献   

17.
1. We examined effects of water temperature on the community structure of a three trophic level food chain (predatory fish, herbivorous caddisfly larvae and periphyton) in boreal streams. We used laboratory experiments to examine (i) the effects of water temperature on feeding activities of fish and caddisfly larvae and on periphyton productivity, to evaluate the thermal effects on each trophic level (species‐level experiment), and (ii) the effects of water temperature on predation pressure of fish on abundance of the lower trophic levels, to evaluate how temperature affects top‐down control by fish (community‐level experiment). 2. In the species‐level experiment, feeding activity of fish was high at 12 °C, which coincides with the mean summer temperature in forested streams of Hokkaido, Japan, but was depressed at 3 °C, which coincides with the mean winter temperature, and also above 18 °C, which coincides with the near maximum summer temperatures. Periphyton productivity increased over the range of water temperatures. 3. In the community‐level experiments, a top‐down effect of fish on the abundance of caddisfly larvae and periphyton was clear at 12 °C. This effect was not observed at 3 and 21 °C because of low predation pressure of fish at these temperatures. 4. These experiments revealed that trophic cascading effects may vary with temperature even in the presence of abundant predators. Physiological depression of predators because of thermal stress can alter top‐down control and lead to changes in community structure. 5. We suggest that thermal habitat alteration can change food web structure via combinations of direct and indirect trophic interactions.  相似文献   

18.
Oxygen demand generally increases in ectotherms as temperature rises in order to sustain oxidative phosphorylation by mitochondria. The thermal plasticity of ectotherm metabolism, such as that of fishes, dictates a species survival and is of importance to understand within an era of warming climates. Within this study the whole animal O2 consumption rate of a common New Zealand intertidal triplefin fish, Forsterygion lapillum, was investigated at different acclimation temperatures (15, 18, 21, 24 or 25 °C) as a commonly used indicator of metabolic performance. In addition, the mitochondria within permeabilised skeletal muscle fibres of fish acclimated to a moderate temperature (18 °C Cool acclimation group—CA) and a warm temperature (24 °C. Warm acclimation group—WA) were also tested at 18, 24 and 25 °C in different states of coupling and with different substrates. These two levels of analysis were carried out to test whether any peak in whole animal metabolism reflected the respiratory performance of mitochondria from skeletal muscle representing the bulk of metabolic tissue. While standard metabolic rate (SMR- an indicator of total maintenance metabolism) and maximal metabolic rate ( \(\dot{M}\) O2 max) both generally increased with temperature, aerobic metabolic scope (AMS) was maximal at 24 °C, giving the impression that whole animal (metabolic) performance was optimised at a surprisingly high temperature. Mitochondrial oxygen flux also increased with increasing assay temperature but WA fish showed a lowered response to temperature in high flux states, such as those of oxidative phosphorylation and in chemically uncoupled states of respiration. The thermal stability of mitochondria from WA fish was also noticeably greater than CA fish at 25 °C. However, the predicted contribution of respirational flux to ATP synthesis remained the same in both groups and WA fish showed higher anaerobic activity as a result of high muscle lactate loads in both rested and exhausted states. CA fish had a comparably lower level of resting lactate and took 30 % longer to fatigue than WA fish. Despite some apparent acclimation capacity of skeletal muscle mitochondria, the ATP synthesis capacity of this species is constrained at high temperatures, and that a greater fraction of metabolism in skeletal muscle appears to be supported anaerobically at higher temperatures. The AMS peak at 24 °C does not therefore represent utilisation efficiency of oxygen but, rather, the temperature where scope for oxygen flow is greatest.  相似文献   

19.
The winter syndrome in the gilthead sea bream Sparus aurata indicates that the species is exposed to critically low temperatures in Mediterranean aquaculture in winter. The present study of metabolic patterns and molecular stress responses during cold exposure was carried out to investigate this “disease”, in light of the recent concept of oxygen and capacity limited thermal tolerance. The metabolic profile of fuel oxidation was examined by determining the activities of the enzymes hexokinase (HK), aldolase (Ald), pyruvate kinase (PK), l-lactate dehydrogenase (l-LDH), citrate synthase (CS), malate dehydrogenase (MDH) and 3-hydroxyacyl CoA dehydrogenase (HOAD) in heart, red and white muscle after exposure to temperatures of 10, 14 and 18°C. Especially, the increase in LDH activity combined with the accumulation of l-lactate in tissues indicates that temperatures below 14°C are critical for Sparus aurata and stimulate the anaerobic component of metabolism. Increase in the activity of HOAD suggests that oxidation of free fatty acids might contribute to ATP turnover at low temperatures. The expression of Hsp70 and Hsp90 in all tissues examined revealed a cellular stress response during cooling below 18°C. In the light of winter temperatures in S. aurata cultures around 10°C, our data suggest that the fish are exposed to stressful conditions at the low end of their thermal tolerance window. These conditions likely impair the aerobic capacity of the fish, compromise the rates of growth and reproduction and may contribute to elicit pathological conditions.  相似文献   

20.
The lipid deposition of juvenile sablefish Anoplopoma fimbria was examined, in particular, the changes in allocation over time. Growth rates of early juveniles (initial size 36–50 mm total length, LT) were manipulated using two temperatures (10 and 20° C) and two rations (ad libitum and 3–4% body mass day?1). Fish LT, mass and lipid content were measured every 3 weeks for 15 weeks. Irrespective of treatment, the relationship of total lipid content with body size was clearly hyperallometric; small juveniles allocated relatively more energy to growth and less to lipid storage than large juveniles. After adjusting for the influence of body size, temperature and ration significantly influenced body composition but these effects varied over the course of the experiment. In the first 3 week time period, fish on the high ration, high temperature treatment had reduced lipid storage relative to other treatments, but in all subsequent time periods their lipid concentrations were similar to or higher than those of fish on other treatments. In contrast, fish held at low rations and low temperatures initially had average levels of lipid concentration, but after 6 weeks their levels were lower than other treatments. Estimation of allocation to lipid storage over time (proportion of dry mass increase comprised of lipid) suggested that fish in all of the treatments were approaching an asymptotic level of lipid concentration (c. 50–60% of dry mass) but with different rates of lipid increase. Within a treatment, it was predicted that individual differences in allocation would result in trade‐offs between somatic growth and storage. This trade‐off was evident only for fish held on low rations at low temperatures. In contrast, fish held on high rations at high temperatures exhibited the opposite pattern of a positive correlation between somatic growth and storage. These results suggest that lipostatic regulation of appetite is unlikely in juvenile sablefish. When resources are unlimited, this species appears to adopt a maximizing strategy for both somatic growth and lipid accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号