首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Methane (CH4) is a particularly potent greenhouse gas with a radiative forcing 23 times that of CO2 on a per mass basis. Flooded rice paddies are a major source of CH4 emissions to the Earth's atmosphere. A free‐air CO2 enrichment (FACE) experiment was conducted to evaluate changes in crop productivity and the crop ecosystem under enriched CO2 conditions during three rice growth seasons from 1998 to 2000 in a rice paddy at Shizukuishi, Iwate, Japan. To understand the influence of elevated atmospheric CO2 concentrations on CH4 emission, we measured methane flux from FACE rice fields and rice fields with ambient levels of CO2 during the 1999 and 2000 growing seasons. Methane production and oxidation potentials of soil samples collected when the rice was at the tillering and flowering stages in 2000 were measured in the laboratory by the anaerobic incubation and alternative propylene substrates methods, respectively. The average tiller number and root dry biomass were clearly larger in the plots with elevated CO2 during all rice growth stages. No difference in methane oxidation potential between FACE and ambient treatments was found, but the methane production potential of soils during the flowering stage was significantly greater under FACE than under ambient conditions. When free‐air CO2 was enriched to 550 ppmv, the CH4 emissions from the rice paddy field increased significantly, by 38% in 1999 and 51% in 2000. The increased CH4 emissions were attributed to accelerated CH4 production potential as a result of more root exudates and root autolysis products and to increased plant‐mediated CH4 emissions because of the larger rice tiller numbers under FACE conditions.  相似文献   

2.
A pot experiment was conducted to investigate CH4 emissions from a sandy paddy soil as influenced by rice cultivars and atmospheric CO2 elevation. The experiment with two CO2 levels, 370 μL L−1 (ambient) and 570 μL L−1 (elevated), was performed in a climatron, located at the National Institute for Agro‐Environmental Sciences, Tsukuba, Japan. Four rice cultivars were tested in this experiment, including IR65598, IR72, Dular and Koshihikari. Tiller number, root length and grain yield were clearly larger under elevated CO2 than under ambient CO2. IR72 and Dular showed significantly higher tiller number, root length and grain yield than Koshihikari and IR65598. Average daily CH4 fluxes under elevated CO2 were significantly larger by 10.9–23.8% than those under ambient CO2, and varied with the cultivars in the sequence Dular ≧ IR72>IR65598 ≧ Koshihikari. Dissolved organic C (DOC) content in the soil was obviously higher under elevated CO2 than under ambient CO2 and differed among the cultivars, in the sequence IR72>Dular>Koshihikari>IR65598. The differences in average daily CH4 fluxes between CO2 levels and among the cultivars were related to different root exudation as DOC content, root length and tiller number. This study indicated that Koshihikari should be a potential cultivar for mitigating CH4 emission and simultaneously keeping stable grain yield, because this cultivar emitted lowest CH4 emission and produced medium grain yield.  相似文献   

3.
Continued current emissions of carbon dioxide (CO2) and methane (CH4) by human activities will increase global atmospheric CO2 and CH4 concentrations and surface temperature significantly. Fields of paddy rice, the most important form of anthropogenic wetlands, account for about 9% of anthropogenic sources of CH4. Elevated atmospheric CO2 may enhance CH4 production in rice paddies, potentially reinforcing the increase in atmospheric CH4. However, what is not known is whether and how elevated CO2 influences CH4 consumption under anoxic soil conditions in rice paddies, as the net emission of CH4 is a balance of methanogenesis and methanotrophy. In this study, we used a long-term free-air CO2 enrichment experiment to examine the impact of elevated CO2 on the transformation of CH4 in a paddy rice agroecosystem. We demonstrate that elevated CO2 substantially increased anaerobic oxidation of methane (AOM) coupled to manganese and/or iron oxides reduction in the calcareous paddy soil. We further show that elevated CO2 may stimulate the growth and metabolism of Candidatus Methanoperedens nitroreducens, which is actively involved in catalyzing AOM when coupled to metal reduction, mainly through enhancing the availability of soil CH4. These findings suggest that a thorough evaluation of climate-carbon cycle feedbacks may need to consider the coupling of methane and metal cycles in natural and agricultural wetlands under future climate change scenarios.  相似文献   

4.
Elevation of atmospheric CO2 concentration is predicted to increase net primary production, which could lead to additional C sequestration in terrestrial ecosystems. Soil C input was determined under ambient and Free Atmospheric Carbon dioxide Enrichment (FACE) conditions for Lolium perenne L. and Trifolium repens L. grown for four years in a sandy‐loam soil. The 13C content of the soil organic matter C had been increased by 5‰ compared to the native soil by prior cropping to corn (Zea mays) for > 20 years. Both species received low or high amounts of N fertilizer in separate plots. The total accumulated above‐ground biomass produced by L. perenne during the 4‐year period was strongly dependent on the amount of N fertilizer applied but did not respond to increased CO2. In contrast, the total accumulated above‐ground biomass of T. repens doubled under elevated CO2 but remained independent of N fertilizer rate. The C:N ratio of above‐ground biomass for both species increased under elevated CO2 whereas only the C:N ratio of L. perenne roots increased under elevated CO2. Root biomass of L. perenne doubled under elevated CO2 and again under high N fertilization. Total soil C was unaffected by CO2 treatment but dependent on species. After 4 years and for both crops, the fraction of new C (F‐value) under ambient conditions was higher (P= 0.076) than under FACE conditions: 0.43 vs. 0.38. Soil under L. perenne showed an increase in total soil organic matter whereas N fertilization or elevated CO2 had no effect on total soil organic matter content for both systems. The net amount of C sequestered in 4 years was unaffected by the CO2 concentration (overall average of 8.5 g C kg?1 soil). There was a significant species effect and more new C was sequestered under highly fertilized L. perenne. The amount of new C sequestered in the soil was primarily dependent on plant species and the response of root biomass to CO2 and N fertilization. Therefore, in this FACE study net soil C sequestration was largely depended on how the species responded to N rather than to elevated CO2.  相似文献   

5.
In order to elucidate the effects of rice plants on CH4 production, we conducted experiments with soil slurries and planted rice microcosms. Methane production in anoxic paddy soil slurries was stimulated by the addition of rice straw, of unsterile or autoclaved rice roots, and of the culture fluid in which rice plants had axenically been cultivated. The addition of these compounds also increased the concentrations of acetate and H2, precursors of CH4 production, in the soil. Planted compared to unplanted paddy soil microcosms exhibited lower porewater CH4 concentrations but higher CH4 emission rates. They also exhibited higher sulfate concentrations but similar nitrate concentrations. Concentrations of acetate, lactate and H2 were not much different between planted and unplanted microcosms. Pulse labeling of rice plants with14CO2 resulted during the next 5 days in transient accumulation of radioactive lactate, propionate and acetate, and after the second day of incubation in the emission of14CH4. Most of the radioactivity (40–70%) was incorporated into the above-ground biomass of rice plants. However, during a total incubation of 16 days about 3–6% of the applied radioactivity was emitted as14CH4, demonstrating that plant-derived carbon was metabolized and significantly contributed to CH4 production. The sequence of the appearance of radioactive products and their specific radioactivities indicate that CH4 was produced from root exudates by a microbial community consisting of fermenting and methanogenic bacteria.  相似文献   

6.
Flooded rice fields are an important source of the greenhouse gas CH4. Possible carbon sources for CH4 and CO2 production in rice fields are soil organic matter (SOM), root organic carbon (ROC) and rice straw (RS), but partitioning of the flux between the different carbon sources is difficult. We conducted greenhouse experiments using soil microcosms planted with rice. The soil was amended with and without 13C-labeled RS, using two 13C-labeled RS treatments with equal RS (5 g kg−1 soil) but different δ13C of RS. This procedure allowed to determine the carbon flux from each of the three sources (SOM, ROC, RS) by determining the δ13C of CH4 and CO2 in the different incubations and from the δ13C of RS. Partitioning of carbon flux indicated that the contribution of ROC to CH4 production was 41% at tillering stage, increased with rice growth and was about 60% from the booting stage onwards. The contribution of ROC to CO2 was 43% at tillering stage, increased to around 70% at booting stage and stayed relatively constant afterwards. The contribution of RS was determined to be in a range of 12–24% for CH4 production and 11–31% for CO2 production; while the contribution of SOM was calculated to be 23–35% for CH4 production and 13–26% for CO2 production. The results indicate that ROC was the major source of CH4 though RS application greatly enhanced production and emission of CH4 in rice field soil. Our results also suggest that data of CH4 dissolved in rice field could be used as a proxy for the produced CH4 after tillering stage.  相似文献   

7.
Warming can accelerate the decomposition of soil organic matter and stimulate the release of soil greenhouse gases (GHGs), but to what extent soil release of methane (CH4) and nitrous oxide (N2O) may contribute to soil C loss for driving climate change under warming remains unresolved. By synthesizing 1,845 measurements from 164 peer‐reviewed publications, we show that around 1.5°C (1.16–2.01°C) of experimental warming significantly stimulates soil respiration by 12.9%, N2O emissions by 35.2%, CH4 emissions by 23.4% from rice paddies, and by 37.5% from natural wetlands. Rising temperature increases CH4 uptake of upland soils by 13.8%. Warming‐enhanced emission of soil CH4 and N2O corresponds to an overall source strength of 1.19, 1.84, and 3.12 Pg CO2‐equivalent/year under 1°C, 1.5°C, and 2°C warming scenarios, respectively, interacting with soil C loss of 1.60 Pg CO2/year in terms of contribution to climate change. The warming‐induced rise in soil CH4 and N2O emissions (1.84 Pg CO2‐equivalent/year) could reduce mitigation potential of terrestrial net ecosystem production by 8.3% (NEP, 22.25 Pg CO2/year) under warming. Soil respiration and CH4 release are intensified following the mean warming threshold of 1.5°C scenario, as compared to soil CH4 uptake and N2O release with a reduced and less positive response, respectively. Soil C loss increases to a larger extent under soil warming than under canopy air warming. Warming‐raised emission of soil GHG increases with the intensity of temperature rise but decreases with the extension of experimental duration. This synthesis takes the lead to quantify the ecosystem C and N cycling in response to warming and advances our capacity to predict terrestrial feedback to climate change under projected warming scenarios.  相似文献   

8.
The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO2) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO2. We show that elevated CO2 significantly stimulates plant C pool (NPP) by 20%, soil CO2 fluxes by 24%, and methane (CH4) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH4 uptake of upland soils by 3.8%. Elevated CO2 causes insignificant increases in soil nitrous oxide (N2O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO2‐induced increase in GHG emissions may decline with CO2 enrichment levels. An elevated CO2‐induced rise in soil CH4 and N2O emissions (2.76 Pg CO2‐equivalent year?1) could negate soil C enrichment (2.42 Pg CO2 year?1) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO2 year?1) under elevated CO2. Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO2 might have been largely offset by its induced increases in soil GHGs source strength.  相似文献   

9.
The impact of elevated CO2 and N‐fertilization on soil C‐cycling in Lolium perenne and Trifolium repens pastures were investigated under Free Air Carbon dioxide Enrichment (FACE) conditions. For six years, swards were exposed to ambient or elevated CO2 (35 and 60 Pa pCO2) and received a low and high rate of N fertilizer. The CO2 added in the FACE plots was depleted in 13C compared to ambient (Δ? 40‰) thus the C inputs could be quantified. On average, 57% of the C associated with the sand fraction of the soil was ‘new’ C. Smaller proportions of the C associated with the silt (18%) and clay fractions (14%) were derived from FACE. Only a small fraction of the total C pool below 10 cm depth was sequestered during the FACE experiment. The annual net input of C in the FACE soil (0–10 cm) was estimated at 4.6 ± 2.2 and 6.3 ± 3.6 (95% confidence interval) Mg ha? 1 for T. repens and L. perenne, respectively. The maximum amount of labile C in the T. repens sward was estimated at 8.3 ± 1.6 Mg ha? 1 and 7.1 ± 1.0 Mg ha? 1 in the L. perenne sward. Mean residence time (MRT) for newly sequestered soil C was estimated at 1.8 years in the T. repens plots and 1.1 years for L. perenne. An average of 18% of total soil C in the 0–10 cm depth in the T. repens sward and 24% in the L. perenne sward was derived from FACE after 6 years exposure. The majority of the change in soil δ13C occurred in the first three years of the experiment. No treatment effects on total soil C were detected. The fraction of FACE‐derived C in the L. perenne sward was larger than in the T. repens sward. This suggests a priming effect in the L. perenne sward which led to increased losses of the old C. Although the rate of C cycling was affected by species and elevated CO2, the soil in this intensively managed grassland ecosystem did not become a sink for additional new C.  相似文献   

10.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

11.
Using the free‐air CO2 enrichment (FACE) techniques, we carried out a 3‐year mono‐factorial experiment in temperate paddy rice fields of Japan (1998–2000) and a 3‐year multifactorial experiment in subtropical paddy rice fields in the Yangtze River delta in China (2001–2003), to investigate the methane (CH4) emissions in response to an elevated atmospheric CO2 concentration (200±40 mmol mol?1 higher than that in the ambient atmosphere). No significant effect of the elevated CO2 upon seasonal accumulative CH4 emissions was observed in the first rice season, but significant stimulatory effects (CH4 increase ranging from 38% to 188%, with a mean of 88%) were observed in the second and third rice seasons in the fields with or without organic matter addition. The stimulatory effects of the elevated CO2 upon seasonal accumulative CH4 emissions were negatively correlated with the addition rates of decomposable organic carbon (P<0.05), but positively with the rates of nitrogen fertilizers applied in either the current rice season (P<0.05) or the whole year (P<0.01). Six mechanisms were proposed to explain collectively the observations. Soil nitrogen availability was identified as an important regulator. The effect of soil nitrogen availability on the observed relation between elevated CO2 and CH4 emission can be explained by (a) modifying the C/N ratio of the plant residues formed in the previous growing season(s); (b) changing the inhibitory effect of high C/N ratio on plant residue decomposition in the current growing season; and (c) altering the stimulatory effects of CO2 enrichment upon plant growth, as well as nitrogen uptake in the current growing season. This study implies that the concurrent enrichment of reactive nitrogen in the global ecosystems may accelerate the increase of atmospheric methane by initiating a stimulatory effect of the ongoing dramatic atmospheric CO2 enrichment upon methane emissions from nitrogen‐poor paddy rice ecosystems and further amplifying the existing stimulatory effect in nitrogen‐rich paddy rice ecosystems.  相似文献   

12.
In a mature temperate forest in Hofstetten, Switzerland, deciduous tree canopies were subjected to a free‐air CO2 enrichment (FACE) for a period of 8 years. The effect of this treatment on the availability of nitrogen (N) in the soil was assessed along three transects across the experimental area, one under Fagus sylvatica, one under Quercus robur and Q. petraea and one under Carpinus betulus. Nitrate, ammonium and dissolved organic N (DON) were analysed in soil solution obtained with suction cups. Nitrate and ammonium were also captured in buried ion‐exchange resin bags. These parameters were related to the local intensity of the FACE treatment as measured from the 13C depletion of dissolved inorganic carbon in the soil solution. Over the 8 years of experiment, the CO2 enrichment reduced DON concentrations, did not affect ammonium, but induced higher nitrate concentrations, both in soil solution and resin bags. In the nitrate captured in the resin bags, the natural abundance of the isotope 15N increased strongly. This indicates that the CO2 enrichment accelerated net nitrification, probably as an effect of the higher soil moisture resulting from the reduced transpiration of the CO2‐enriched trees. It is also possible that N mineralization was enhanced by root exudates (priming effect) or that the uptake of inorganic N by these trees decreased slightly as the result of a reduced N demand for fine‐root growth. In this mature deciduous forest, we did not observe any progressive N limitation due to elevated atmospheric CO2 concentrations; on the contrary, we observed an enhanced N availability over the 8 years of our measurements. This may, together with the global warming projected, exacerbate problems related to N saturation and nitrate leaching, although it is uncertain how long the observed trends will last in the future.  相似文献   

13.
The stability of soil organic matter (SOM) pools exposed to elevated CO2 and warming has not been evaluated adequately in long‐term experiments and represents a substantial source of uncertainty in predicting ecosystem feedbacks to climate change. We conducted a 6‐year experiment combining free‐air CO2 enrichment (FACE, 550 ppm) and warming (+2 °C) to evaluate changes in SOM accumulation in native Australian grassland. In this system, competitive interactions appear to favor C4 over C3 species under FACE and warming. We therefore investigated the role of plant functional type (FT) on biomass and SOM responses to the long‐term treatments by carefully sampling soil under patches of C3‐ and C4‐dominated vegetation. We used physical fractionation to quantify particulate organic matter (POM) and long‐term incubation to assess potential decomposition rates. Aboveground production of C4 grasses increased in response to FACE, but total root biomass declined. Across treatments, C : N ratios were higher in leaves, roots and POM of C4 vegetation. CO2 and temperature treatments interacted with FT to influence SOM, and especially POM, such that soil carbon was increased by warming under C4 vegetation, but not in combination with elevated CO2. Potential decomposition rates increased in response to FACE and decreased with warming, possibly owing to treatment effects on soil moisture and microbial community composition. Decomposition was also inversely correlated with root N concentration, suggesting increased microbial demand for older, N‐rich SOM in treatments with low root N inputs. This research suggests that C3–C4 vegetation responses to future climate conditions will strongly influence SOM storage in temperate grasslands.  相似文献   

14.
The global net terrestrial carbon sink was estimated to range between 0.5 and 0.7 Pg C y−1 for the early 1990s. FACE (free atmospheric CO2 enrichment) studies conducted at the whole-tree and community scale indicate that there is a marked increase of primary production, mainly allocated into below-ground biomass. The enhanced carbon transfer to the root system may result in enhanced rhizodeposition and subsequent transfer to soil C pools. During the first rotation of the POP/EuroFACE experiment in a short-rotation Poplar plantation, total soil C content increased more under ambient CO2 treatment than under FACE, while under FACE more new C was incorporated than under ambient CO2. These unexpected and opposite effects may have been caused by a priming effect, where priming effect is defined as the stimulation of SOM decomposition caused by the addition of labile substrates. In order to gain insight into these processes affecting SOM decomposition, we obtained the labile, refractory and stable pools of soil C and N by chemical fractionation (acid hydrolysis) and measured rates of N-mineralization. Results of the first 2 years of the second rotation show a larger increase of total soil C% under FACE than under ambient CO2. In contrast to the first rotation, total C% is now increasing faster under FACE than under ambient CO2. Based on these observations we infer that the priming effect ceased during the second rotation. FACE treatment increased the labile C fraction at 0–10 cm depth, which is in agreement with the larger input of plant litter and root exudates under FACE. N-mineralization rates were not affected by FACE. We infer that the system switched from a state where extra labile C and sufficient N-availability (due to the former agricultural use of the soil) caused a priming effect (first rotation), to a state where extra C input is accumulating due to limited N-availability (second rotation). Our results on N-mineralization (second rotation) are in agreement with observations made at three forest FACE sites (Duke Forest, Oak Ridge, and Rhinelander), but our finding of increasing mineral soil C content contrasted with results at the Duke Forest where no significant increase in C content of the mineral soil occurred. However, the FACE induced increase in total C content occurred within the fraction with the shortest turnover time, i.e. the labile fraction. The refractory and stable fractions were not affected. The question remains whether the currently observed larger increase of total soil C and the increase of labile C under FACE will eventually result in long-term C storage in refractory and stable organic matter fractions.  相似文献   

15.
稻田秸秆还田:土壤固碳与甲烷增排   总被引:38,自引:0,他引:38  
基于我国农田土壤有机质长期定位试验和稻田甲烷排放试验成果,将全国稻田划分为单季区和双季区.根据土壤有机质试验数据,分析了秸秆还田在我国两个稻田区的单季稻田、水旱轮作稻田和双季稻田的固碳潜力.同时根据我国稻田甲烷排放试验数据,采用取平均排放系数的方法,估算了我国稻田在无秸秆还田情况下的甲烷排放总量;结合IPCC推荐的方法和参数,估算了我国稻田秸秆还田后甲烷排放总量及增排甲烷的全球增温潜势.结果表明:在中国稻田推广秸秆还田的固碳潜力为10.48TgC.a-1,对减缓全球变暖的贡献为38.43TgCO2-eqv.a-1;但秸秆还田后稻田甲烷排放将从无秸秆还田的5.796Tg.a-1增加到9.114Tg.a-1;秸秆还田引起甲烷增排3.318Tg.a-1,其全球增温潜势达82.95TgCO2-eqv.a-1,为土壤固碳减排潜力的2.158倍.可见,推广秸秆还田后,中国稻田增排甲烷的温室效应会大幅抵消土壤固碳的减排效益,是一项重要的温室气体泄漏.  相似文献   

16.
Despite its fundamental role for carbon (C) and nutrient cycling, rhizodeposition remains ‘the hidden half of the hidden half’: it is highly dynamic and rhizodeposits are rapidly incorporated into microorganisms, soil organic matter, and decomposed to CO2. Therefore, rhizodeposition is rarely quantified and remains the most uncertain part of the soil C cycle and of C fluxes in terrestrial ecosystems. This review synthesizes and generalizes the literature on C inputs by rhizodeposition under crops and grasslands (281 data sets). The allocation dynamics of assimilated C (after 13C‐CO2 or 14C‐CO2 labeling of plants) were quantified within shoots, shoot respiration, roots, net rhizodeposition (i.e., C remaining in soil for longer periods), root‐derived CO2, and microorganisms. Partitioning of C pools and fluxes were used to extrapolate belowground C inputs via rhizodeposition to ecosystem level. Allocation from shoots to roots reaches a maximum within the first day after C assimilation. Annual crops retained more C (45% of assimilated 13C or 14C) in shoots than grasses (34%), mainly perennials, and allocated 1.5 times less C belowground. For crops, belowground C allocation was maximal during the first 1–2 months of growth and decreased very fast thereafter. For grasses, it peaked after 2–4 months and remained very high within the second year causing much longer allocation periods. Despite higher belowground C allocation by grasses (33%) than crops (21%), its distribution between various belowground pools remains very similar. Hence, the total C allocated belowground depends on the plant species, but its further fate is species independent. This review demonstrates that C partitioning can be used in various approaches, e.g., root sampling, CO2 flux measurements, to assess rhizodeposits’ pools and fluxes at pot, plot, field and ecosystem scale and so, to close the most uncertain gap of the terrestrial C cycle.  相似文献   

17.
Higher yields and lower methane emissions with new rice cultivars   总被引:7,自引:0,他引:7       下载免费PDF全文
Breeding high‐yielding rice cultivars through increasing biomass is a key strategy to meet rising global food demands. Yet, increasing rice growth can stimulate methane (CH4) emissions, exacerbating global climate change, as rice cultivation is a major source of this powerful greenhouse gas. Here, we show in a series of experiments that high‐yielding rice cultivars actually reduce CH4 emissions from typical paddy soils. Averaged across 33 rice cultivars, a biomass increase of 10% resulted in a 10.3% decrease in CH4 emissions in a soil with a high carbon (C) content. Compared to a low‐yielding cultivar, a high‐yielding cultivar significantly increased root porosity and the abundance of methane‐consuming microorganisms, suggesting that the larger and more porous root systems of high‐yielding cultivars facilitated CH4 oxidation by promoting O2 transport to soils. Our results were further supported by a meta‐analysis, showing that high‐yielding rice cultivars strongly decrease CH4 emissions from paddy soils with high organic C contents. Based on our results, increasing rice biomass by 10% could reduce annual CH4 emissions from Chinese rice agriculture by 7.1%. Our findings suggest that modern rice breeding strategies for high‐yielding cultivars can substantially mitigate paddy CH4 emission in China and other rice growing regions.  相似文献   

18.
Since the late 1950s, governmental rangeland policies have changed the grazing management on the Tibetan Plateau (TP). Increasing grazing pressure and, since the 1980s, the privatization and fencing of pastures near villages has led to land degradation, whereas remote pastures have recovered from stronger overgrazing. To clarify the effect of moderate grazing on the carbon (C) cycle of the TP, we investigated differences in below‐ground C stocks and C allocation using in situ 13CO2 pulse labeling of (i) a montane Kobresia winter pasture of yaks, with moderate grazing regime and (ii) a 7‐year‐old grazing exclosure plot, both in 3440 m asl. Twenty‐seven days after the labeling, 13C incorporated into shoots did not differ between the grazed (43% of recovered 13C) and ungrazed (38%) plots. In the grazed plots, however, less C was lost by shoot respiration (17% vs. 42%), and more was translocated below‐ground (40% vs. 20%). Within the below‐ground pools, <2% of 13C was incorporated into living root tissue of both land use types. In the grazed plots about twice the amount of 13C remained in soil (18%) and was mineralized to CO2 (20%) as compared to the ungrazed plots (soil 10%; CO2 9%). Despite the higher contribution of root‐derived C to CO2 efflux, total CO2 efflux did not differ between the two land use types. C stocks in the soil layers 0–5 and 5–15 cm under grazed grassland were significantly larger than in the ungrazed grassland. However, C stocks below 15 cm were not affected after 7 years without grazing. We conclude that the larger below‐ground C allocation of plants, the larger amount of recently assimilated C remaining in the soil, and less soil organic matter‐derived CO2 efflux create a positive effect of moderate grazing on soil C input and C sequestration.  相似文献   

19.
Although numerous studies indicate that increasing atmospheric CO2 or temperature stimulate soil CO2 efflux, few data are available on the responses of three major components of soil respiration [i.e. rhizosphere respiration (root and root exudates), litter decomposition, and oxidation of soil organic matter] to different CO2 and temperature conditions. In this study, we applied a dual stable isotope approach to investigate the impact of elevated CO2 and elevated temperature on these components of soil CO2 efflux in Douglas-fir terracosms. We measured both soil CO2 efflux rates and the 13C and 18O isotopic compositions of soil CO2 efflux in 12 sun-lit and environmentally controlled terracosms with 4-year-old Douglas fir seedlings and reconstructed forest soils under two CO2 concentrations (ambient and 200 ppmv above ambient) and two air temperature regimes (ambient and 4 °C above ambient). The stable isotope data were used to estimate the relative contributions of different components to the overall soil CO2 efflux. In most cases, litter decomposition was the dominant component of soil CO2 efflux in this system, followed by rhizosphere respiration and soil organic matter oxidation. Both elevated atmospheric CO2 concentration and elevated temperature stimulated rhizosphere respiration and litter decomposition. The oxidation of soil organic matter was stimulated only by increasing temperature. Release of newly fixed carbon as root respiration was the most responsive to elevated CO2, while soil organic matter decomposition was most responsive to increasing temperature. Although some assumptions associated with this new method need to be further validated, application of this dual-isotope approach can provide new insights into the responses of soil carbon dynamics in forest ecosystems to future climate changes.  相似文献   

20.
Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH4), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature‐sensitive processes that decompose stored organic carbon and release carbon dioxide (CO2) and CH4. Variation in the temperature sensitivity of CO2 and CH4 production and increased peat aerobicity due to enhanced growing‐season evapotranspiration may alter the nature of peatland trace gas emission. As CH4 is a powerful greenhouse gas with 34 times the warming potential of CO2, it is critical to understand how factors associated with global change will influence surface CO2 and CH4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0–9°C gradient in deep belowground warming (“Deep Peat Heat”, DPH) on peat surface CO2 and CH4 fluxes. We find that DPH treatments increased both CO2 and CH4 emission. Methane production was more sensitive to warming than CO2 production, decreasing the C‐CO2:C‐CH4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ13C of CH4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH4 is <2%, CH4 represents >50% of seasonal C emissions in the highest‐warming treatments when adjusted for CO2 equivalents on a 100‐year timescale. These results suggest that warming in boreal regions may increase CH4 emissions from peatlands and result in a positive feedback to ongoing warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号