首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Drift as a low-energy cost means of migration may enable stream invertebrates to leave risky habitats or to escape after encountering a predator. While the control of the diurnal patterns of invertebrate drift activity by fish predators has received considerable interest, it remains unclear whether benthivorous fish reduce or increase drift activity. We performed a large-scale field experiment in a second-order stream to test if invertebrate drift was controlled by two benthivorous fish species (gudgeon Gobio gobio and stone loach Barbatula barbatula). An almost fishless reference reach was compared with a reach stocked with gudgeon and loach, and density and structure of the invertebrate communities in the benthos and in the drift were quantified in both reaches. The presence of gudgeon and stone loach reduced the nocturnal drift of larvae of the mayfly Baetis rhodani significantly, in contrast to the findings of most previous studies that fish predators induced higher night-time drift. Both drift density and relative drift activity of B. rhodani were lower at the fish reach during the study period that spanned 3 years. Total invertebrate drift was not reduced, by contrast, possibly due to differences in vulnerability to predation or mobility between the common invertebrate taxa. For instance, Chironomidae only showed a slight reduction in drift activity at the fish reach, and Oligochaeta showed no reduction at all. Although benthic community composition was similar at both reaches, drift composition differed significantly between reaches, implying that these differences were caused by behavioural changes of the invertebrates rather than by preferential fish consumption. The direction and intensity of changes in the drift activity of stream invertebrates in response to the presence of benthivorous fish may depend on the extent to which invertebrate taxa can control their drifting behaviour (i.e. active versus passive drift). We conclude that invertebrate drift is not always a mechanism of active escape from fish predators in natural streams, especially when benthos-feeding fish are present.  相似文献   

2.
1. The spatial heterogeneity of ecosystems as well as temporal activity patterns of organisms can have far‐reaching effects on predator–prey relationships. We hypothesised that spatiotemporal constraints in mesohabitat use by benthic fish predators would reduce habitat overlap with benthic invertebrates and lead to mesohabitat‐specific predation risks. 2. We analysed the spatiotemporal activity patterns of two small‐bodied benthivorous fishes, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), and of benthic invertebrates in a small temperate stream during three 24‐h field experiments. By applying a novel method of field video observation, we monitored the spatiotemporal foraging behaviour of the fish in their natural environment. A parallel analysis of invertebrate mesohabitat use by means of small area Hess sampling allowed a direct estimation of habitat overlap at a pool–riffle scale. 3. Gudgeon showed a dominant spatial activity pattern preferring pools at all times of day, whereas stone loach used both mesohabitats but with a distinct temporal (nocturnal) activity pattern. The patterns of residence were not identical with those of active foraging. Invertebrate community composition differed significantly between mesohabitats but not between times of day. More than half of the total dissimilarity between pools and riffles was accounted for by six invertebrate taxa. Five of these were subject to higher fish predation in pools than in riffles. The total prey consumption of the two fish species together in pools was about three times as high as in riffles. Trophic niche breadth of stone loach and thus its predation range was broader than that of gudgeon. 4. These results indicate that the potential predation risk for stream invertebrates depends on the combination of spatial and temporal patterns of both predator and prey. Given the distinct differences in predation risk found between pools and riffles, we conclude that spatial heterogeneity at the mesohabitat scale can influence mechanisms and consequences of selective predation. We also suggest that the analysis of spatiotemporal predator–prey relationships should not be based on the premise that the main residence habitat and active foraging habitat of a predator are identical.  相似文献   

3.
Predation risk can affect habitat selection by water column stream fish and crayfish, but little is known regarding effects of predation risk on habitat selection by benthic fish or assemblages of fish and crayfish. I used comparative studies and manipulative field experiments to determine whether, (1) habitat selection by stream fish and crayfish is affected by predation risk, and (2) benthic fish, water column fish, and crayfish differ in their habitat selection and response to predation risk. Snorkeling was used to observe fish and crayfish in, (1) unmanipulated stream pools with and without large smallmouth bass predators (Micropterus dolomieui >200 mm total length, TL) and (2) manipulated stream pools before and after addition of a single large smallmouth bass, to determine if prey size and presence of large fish predators affected habitat selection. Observations of microhabitat use were compared with microhabitat availability to determine microhabitat selection. Small fish (60–100 mm TL, except darters that were 30–100 mm TL) and crayfish (40–100 mm rostrum to telson length; TL) had significantly reduced densities in pools with large bass, whereas densities of large fish and crayfish (> 100 mm TL) did not differ significantly between pools with and without large bass. Small orangethroat darters (Etheostoma spectabile), northern crayfish (Orconectes virilis), and creek chubs (Semotilus atromaculatus) showed significantly greater densities in pools without large bass. The presence of large smallmouth bass did not significantly affect depths selected by fish and crayfish, except minnows, which were found significantly more often at medium depths when bass were present. Small minnows and large and small crayfish showed the greatest response to additions of bass to stream pools by moving away from bass locations and into shallow water. Small darters and sunfish showed an intermediate response, whereas large minnows showed no significant response to bass additions. Response to predation risk was dependent on prey size and species, with preferred prey, crayfish and small minnows, showing the greatest response. Small benthic fish, such as darters, are intermediate between small water column fish and crayfish and large water column fish in their risk of predation from large smallmouth bass.  相似文献   

4.
SUMMARY. 1. Field experiments in a fishless stream were carried out on an abundant caddisfly with a predatory, net-spinning larva, Plectrocnemia conspersa (Curtis), to assess whether net site availability affects their microdistribution.
2. Net sites were supplemented by adding nought, one or four artificial structures to replicated patches on the stream bed. In each of three experiments at different seasons (summer, autumn and late winter), caddis densities increased significantly in patches with extra net sites.
3. The response of caddis to supplemented net sites could be affected by the subsidiary effects of food and offish. These potential interactions were assessed in each experiment by varying net site density in two additional treatment stretches in which (1) prey abundance was increased by releasing Daphnia , and (2) brown trout ( Salmo trutta L.) were enclosed. The responses of caddis in these two treatments were compared to that in the reference stretch, where only net site density varied.
4. Increased food abundance enhanced the response of caddis to net site supplementation in winter, when natural prey was least abundant, but not in summer or autumn. We suggest that extra food affects the mechanism determining net building only when prey availability is below some threshold.
5. The presence of fish precluded any effect of extra net sites in summer, but had no effect in autumn (the winter fish treatment was lost). We suggest fish predation reduced the densities of caddis in summer, so that net sites no longer limited local densities. In autumn, fallen leaves provided refugia from fish, which consequently were less effective predators of P. conspersa.  相似文献   

5.
Cascading effects of predators can affect ecosystem properties by changing plant biomass, distribution and assemblage composition. Using data from field surveys and whole‐stream experiments we tested the hypothesis that predatory trout change assemblage composition of benthic algae in high‐elevation streams mediated by grazer behavior. Field surveys revealed that the taxonomic composition of algal assemblages differed significantly between streams that contained trout and those that were fishless; but comparisons of palatable versus unpalatable algal taxa between fish and fishless streams were equivocal because of high natural variability. Therefore, we tested for a behavioral (non‐consumptive) trophic cascade experimentally by adding brook trout chemical cues to six naturally fishless streams for 25 days and compared responses of grazers and algae to six reference streams without fish cues added. Algal response variables included rates of change in the abundance of three physiognomic categories, from most palatable (attached erect and prostrate diatoms) to least palatable (non‐diatoms), as determined from food selectivity analyses of the most common grazers (mayflies and caddisflies). Fish cues did not affect the mean densities or changes in densities of total grazers or any individual grazer species. However, in streams where fish cues were added, rates of accrual of attached erect diatoms, which was the preferred algal type for the grazer most vulnerable to trout predation (Baetis), were higher and their densities increased significantly faster with increasing densities of this grazer species than in reference streams. Results of his experiment support the hypothesis that predator induced suppression of grazer foraging behavior, rather than cascading effects of top predators on grazer density, may contribute to variation in the composition of algal assemblages among streams by allowing proliferation of most palatable algal species.  相似文献   

6.
1. A knowledge of how individual behaviour affects populations in nature is needed to understand many ecologically important processes, such as the dispersal of larval insects in streams. The influence of chemical cues from drift‐feeding fish on the drift dispersal of mayflies has been documented in small experimental channels (i.e. < 3 m), but their influence on dispersal in natural systems (e.g. 30 m stream reaches) is unclear. 2. Using surveys in 10 Rocky Mountain streams in Western Colorado we examined whether the effects of predatory brook trout (Salvelinus fontinalis) on mayfly drift, that were apparent in stream‐side channels, could also be detected in natural streams. 3. In channel experiments, the drift of Baetis bicaudatus (Baetidae) was more responsive to variation in the concentration of chemical cues from brook trout than that of another mayfly, Epeorus deceptivus (Heptageniidae). The rate of brook trout predation on drifting mayflies of both species in a 2‐m long observation tank was higher during the day (60–75%) but still measurable at night (5–10%). Epeorus individuals released into the water column were more vulnerable to trout predation by both day and night than were Baetis larvae treated similarly. 4. Drift of all mayfly taxa in five fishless streams was aperiodic, whereas their drift was nocturnal in five trout streams. The propensity of mayflies to drift was decreased during the day and increased during the night in trout streams compared with fishless streams. In contrast to the channel experiments, fish biomass and density did not alter the nocturnal nature nor magnitude of mayfly drift in natural streams. 5. In combination, these results indicate that mayflies respond to subtle differences in concentration of fish cues in experimental channels. However, temporal and spatial variation in fish cues available to mayflies in natural streams may have obscured our ability to detect responses at larger scales.  相似文献   

7.
Many large, fishery‐targeted predatory species have attained very high relative densities as a direct result of protection by no‐take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator–urchin–macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge‐providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine‐scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve‐by‐habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species (Ruanoho whero and Forsterygion flavonigrum) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator–prey consumption and archetypal trophic cascades.  相似文献   

8.
Aarnio  Katri  Mattila  Johanna 《Hydrobiologia》2000,440(1-3):347-355
Due to increasing eutrophication of the coastal Baltic waters, drifting algae are a common phenomenon. Drifting algal mats accumulate on shallow sandy bottoms in late summer and autumn, and affect the ambient fauna. Juvenile flounder, Platichthys flesus, utilize these habitats during their first few years. They feed on benthic meio- and macrofauna; part of their diet consists of shelled species, such as Ostracods, and juvenile Hydrobia spp. and Macoma balthica. Earlier studies have shown that up to 75% of ostracods and 92% of hydrobiids survive the gut passage of juvenile flounder, while all M. balthica are digested by the fish. We conducted laboratory experiments to study how the shelled prey responded to a drift algal mat, and the predation efficiency of juvenile P. flesus on these prey species on bare sand and with drifting algae (50% coverage). Hydrobia spp. utilized the drift algae as a habitat and, after 1 h, 50% had moved into the algae; ostracods and M. balthica were more stationary and, after 96 h, only 23 and 12%, respectively, were found in the algae. For the predation efficiency of P. flesus, a two-way ANOVA with habitat (algae, bare sand) and predation (fish, no fish) as factors revealed that both algae and predation affected negatively the survival of all three prey species. The algae, thus, affected the predation efficiency of juvenile P. flesus and the consumption of prey was much reduced in the algal treatments compared to the bare sand. This was due probably to increased habitat complexity and the ability of prey, especially hydrobiids, to use the algal mat as a refuge. Altered habitat structure due to drift algae, together with the resultant changes in habitat (refuge) value for different prey species, may profoundly change the structure of benthic communities.  相似文献   

9.
We tested the role of the slimy sculpin (Cottus cognatus), a benthic fish, in structuring the rocky littoral invertebrate community in Toolik Lake, Alaska. Comparisons of sculpin gut contents and prey community structure indicated that these fish forage selectively, eating proportionally more large and motile prey, and proportionally fewer small and sessile forms. Field experiments compared the effects of natural, reduced and elevated sculpin densities on benthic community structure. At natural levels of sculpin density, biomass of trichopteran larvae were reduced by more than 50%, and predatory chironomid larvae by 27%, in comparison to areas where sculpin were excluded. Tube-dwelling and small free living chironomid larvae were unaffected at normal sculpin densities. Under artificially high sculpin densities, there was some reduction of tube-dwelling chironomids, but the small free living ones remained unaffected. There appears to be a threshold length of about 3.5 mm, below which chironomid larvae are free form sculpin predation. Tube-dwelling chironomids may be longer than this threshold, but still avoid predation by having most of their body hidden in their tubes.  相似文献   

10.
Predation is a dominant structuring force in ecosystems, but its effects are almost always measured in the ecosystem of the predator. However, the effects of predators can potentially extend across ecosystem boundaries during ontogenetic niche shifts in prey. We compared the effects of fish predation on benthic versus emerging aquatic insects, and hypothesized that the relative effects of fish on these two stages of prey are mediated by fish foraging strategy (benthic versus water‐column feeders). Benthic‐feeding smallmouth buffalo reduced benthic insect biomass in the freshwater ecosystem by 89%, and reduced insect emergence to the terrestrial ecosystem by 65%. In contrast, water‐column feeding sunfish had no effect on benthic biomass in the freshwater ecosystem, but reduced emergence to the terrestrial ecosystem by 44% relative to the fishless control. When smallmouth and sunfish were combined in a substitutive design that kept total fish density the same as the single species treatments, their effects on benthic insects (50% reduction) were weaker than expected based on predictions from the single species treatments. In contrast, their combined effects on emergence (46% reduction) were additive. Tetragnathid spider densities increased during peak emergence, but did not respond to changes in emergence among treatments. These results demonstrate that the effects of fish on prey flux to the terrestrial ecosystem are not the same as their effects on benthic prey biomass in the aquatic ecosystem, and that this difference is likely mediated by foraging strategy.  相似文献   

11.
There should be intense selection for predation avoidance mechanisms when prey live in close proximity to their predators. Prey individuals that can learn to associate habitat features with high levels of predation risk should experience increased survival if they subsequently avoid those habitats. We tested whether or not habitat learning occurred in a benthic stream community consisting of adult Oklahoma salamander (Eurycea tynerensis) prey and a syntopic predatory fish, the banded sculpin (Cottus carolinae). We exposed individual salamanders to chemical stimuli from sculpin, non‐predatory tadpoles, or a blank control in training tanks containing either rocks or grass. Two days later, the salamanders were tested in tanks that offered a choice of rocks or grass. Salamanders showed significant avoidance of the habitat where they had previously encountered chemical cues from sculpin in comparison to the non‐predatory controls. Learning to avoid dangerous habitats may be particularly important for prey whose predators are visually cryptic ambush foragers, such as sculpin.  相似文献   

12.
Nocturnal drift of mayfly nymphs as a post-contact antipredator mechanism   总被引:3,自引:0,他引:3  
1. The predominantly nocturnal constrained drift of stream invertebrates is commonly regarded as a behaviour that avoids encounters with visually foraging fish in the water column. The alternative explanation, that drift peaks are caused by bottom-feeding, nocturnal predators, has rarely been tested.
2. We examined these hypotheses by collecting invertebrate drift in five streams in northern Finland: one with brown trout ( Salmo trutta , a drift-feeding fish), one with alpine bullhead ( Cottus poecilopus , a benthic fish), one with both species, and two fishless streams.
3. Drift by Baetis mayflies was aperiodic or slightly diurnal in both fishless streams on all sampling occasions. In contrast, drift was nocturnal in streams with trout and, to a lesser extent, in the stream with bullhead. Non-dipteran prey drifted mainly nocturnally in all streams with fish, whereas Diptera larvae were less responsive to the presence of fish.
4. In laboratory experiments, bullheads were night-active, causing a much higher frequency of drift by touching Baetis at night than during the day. Thus, increased nocturnal drift may serve to avoid both visual predators (a pre-contact response) and benthic fish (a post-contact response). In streams with bottom-feeding fish, nocturnal drift should be caused by increased drift by night rather than by reduced drift by day.  相似文献   

13.
We analyzed the effects of planktivorous Holeshestes heterodon Eigenmann (Characidae) predation on the plankton community of a small subtropical reservoir, using four enclosures (volume about 17.5 m3), open to the sediment, established in the littoral zone. Two enclosures were stocked with fish (mean TL 5.7 cm), at a density of about 4–5 fish m–3 (approx. 8 g m–3), whereas two remained fishless. The experiment lasted a little longer than one month. In the fish enclosures, most Crustacea and Chaoborus larvae remained scarce, probably as a result of visually selective fish predation. In both fishless enclosures, Chaoborus larvae became abundant. However, in only one of these did large individuals become relatively numerous; this discrepancy in the demographic structure of the Chaoborus populations between the two fishless enclosures is unexplained. Only in the fishless enclosure without appreciable numbers of large Chaoborus did densities of Crustacea increase greatly. It is suggested that in the enclosure containing large Chaoborus individuals, crustacean populations were prevented from developing due to predation pressure, while the small Chaoborus larvae of the other enclosure could not readily consume these prey. Rotifers were low in abundance in the absence of fish, probably as a consequence of Chaoborus predation. Phytoplankton density increased in all four enclosures, due probably to the lack of water flow. Only in the fishless enclosure with high densities of crustaceans did phytoplankton abundance decrease markedly at the end of the experiment, perhaps because of grazing losses.  相似文献   

14.
Habitat use and foraging behavior of two benthic insectivorous gobies, Rhinogobius sp. CO (cobalt type) and Rhinogobius sp. DA (dark type), were examined in relation to their predation effects on local prey density in a small coastal stream in southwestern Shikoku, Japan. Correlations among the foraging range, frequency of foraging attempts and current velocity indicated that individuals using fast-current habitats had small foraging ranges and infrequently made foraging attempts while those in slow currents frequently foraged over large areas. The former and the latter were recognized as ambush and wandering foragers, respectively. Interspecific comparisons of habitat use, foraging behavior and prey preference suggested that Rhinogobius sp. CO selectively forage mobile prey by ambushing in fast currents, whereas Rhinogobius sp. DA randomly forage available prey by wandering in slow-current habitats. A cage experiment was conducted to assess prey immigration rate and the degree of predation effects on local prey density in relation to current velocity. The results of the experiment support, at least in part, our initial predictions: (1) prey immigration rates increase with current velocity and (2) the effects of fish predation on local prey density are reduced as current velocity increases. Overall results illustrated a link between the foraging modes of the stream gobies and their predation effects on local prey density: fish adopt ambush foraging in fast currents, where the decrease in prey density tends to be less, whereas fish actively forage over large areas in slow currents, where the decrease in prey is relatively large.  相似文献   

15.
1. We examined small, fishless headwater streams to determine whether transport of macroinvertebrates into the littoral zone of an oligotrophic lake augmented food availability for Cottus asper, an abundant predatory fish in our study system. We sampled fish and macroinvertebrates during the recruitment and growth season of 2 years, either monthly (2004) or bi‐monthly (2005), to observe whether stream inputs increased prey availability and whether variation in total macroinvertebrate biomass was tracked by fish. 2. Observations from eight headwater streams indicated that streams did not increase the total macroinvertebrate biomass in the shallow littoral zone at stream inflows, relative to adjacent plots without stream inputs (controls). The taxonomic composition of stream macroinvertebrates drifting toward the lake differed from that in the littoral lake benthos itself, although there was no evidence of any species change in the composition of the littoral benthos brought about by stream inputs. 3. Although streams made no measurable contribution to the biomass or taxonomic composition of the littoral macroinvertebrate benthos, there was substantial temporal variation in biomass among the eight sites for each of the (n = 7) sample periods during which observations were made. Variation in total biomass was primarily a function of bottom slope and benthic substrata in the lake habitats. Dominant taxonomic groups were Baetidae, Ephemerellidae (two genera), Leptophlebiidae, Chironomidae (three subfamilies) and Perlodidae, although we did not determine the specific substratum affinities of each taxon. 4. Mixed effects linear models identified a significant interaction between macroinvertebrate biomass and plot type (stream inflow vs. control) associated with fish abundance. Across the observed range of macroinvertebrate biomass, fish showed a significant preference for stream inflows, but more closely tracked food availability in the controls. For young‐of‐the‐year (YOY), a negative effect of temperature was also included in the model, and we observed lower temperatures at stream inflows. However, abundance of predatory adults affected habitat selection for YOY. Lake‐bottom slope also accounted for variation in abundance in both fish models. 5. Our results suggest that the effect of fishless headwater streams on downstream fish may not always be through direct delivery of food. In this study system, fish preferred stream inflow plots, but this preference interacted with macroinvertebrate biomass in a manner that was difficult to explain. For YOY, predation risk was related to the preference for stream inflows, although the specific factor that mitigates predation risk remains poorly understood.  相似文献   

16.
Predation refugia can facilitate the coexistence of predators and prey within an ecosystem by weakening trophic links between the two. The marginal macrophytes of shallow lakes are used facultatively by zooplankton to escape fish predation, leading to the stabilisation of lentic food webs. Little is known about such a role for the marginal macrophytes of lotic systems. In this paper, we examine whether the marginal macrophytes of chalk streams help buffer the interaction between the freshwater shrimp, Gammarus pulex and a benthic fish predator, Cottus gobio, both characteristically abundant in such systems. Quantitative surveys were taken of Gammarus and bullheads in winter and summer in a southern English chalk stream. These indicated that Gammarus seasonally switched their habitat preference, from marginal macrophytes in summer, to midchannel habitats in winter. Bullheads exhibited an opposite trend, preferring midchannel habitats in summer and all habitats, particularly marginal macrophytes, in winter. Large Gammarus and precopula pairs were found almost exclusively in the margins in summer. This spatial separation between Gammarus and bullheads in summer, though not in winter, was reflected in bullhead diets, as determined by gut analysis. In field manipulation experiments, bullhead presence was the strongest factor explaining the between‐habitat distribution of Gammarus in both summer and winter, indicating that the habitat shift of Gammarus was driven by the distribution of fish. Other abundant invertebrate taxa, including Asellus, mayflies and chironomids, exhibited little avoidance of habitat patches of high bullhead density. We conclude that marginal macrophytes in chalk streams can potentially facilitate the coexistence of high densities of both Gammarus and bullheads by spatially separating predator and prey in summer. They may further allow large populations of Gammarus to persist in the presence of high bullhead density at stretch‐wide spatial scales, by reducing the predation by bullheads of large breeding and newly born individuals of Gammarus in summer.  相似文献   

17.
Top–down control of phytoplankton biomass through piscivorous fish manipulation has been explored in numerous ecological and biomanipulation experiments. Piscivores are gape-limited predators and it is hypothesized that the distribution of gape sizes relative to distribution of body depths of prey fish may restrict piscivore effects cascading to plankton. We examined the top–down effects of piscivorous largemouth bass on nutrients, turbidity, phytoplankton, zooplankton and fish in ponds containing fish assemblages with species representing a range of body sizes and feeding habits (western mosquitofish, bluegill, channel catfish, gizzard shad and common carp). The experimental design consisted of three replicated treatments: fishless ponds (NF), fish community without largemouth bass (FC), and fish community with largemouth bass (FCB). Turbidity, chlorophyll a, cyclopoid copepodid and copepod nauplii densities were significantly greater in FC and FCB ponds than in NF ponds. However, these response variables were not significantly different in FC and FCB ponds. The biomass and density of shallow-bodied western mosquitofish were reduced and bluegill body depths shifted toward larger size classes in the presence of largemouth bass, but the biomass and density of all other fish species and of the total fish community were unaffected by the presence of largemouth bass. Our results show that top–down impacts of largemouth bass in ecosystems containing small- and deep-bodied fish species may be most intense at the top of the food web and alter the size distribution and species composition of the fish community. However, these top–down effects may not cascade to the level of the plankton when large-bodied benthivorous fish species are abundant.  相似文献   

18.
Predation and drift of lotic macroinvertebrates during colonization   总被引:1,自引:0,他引:1  
J. Lancaster 《Oecologia》1990,85(1):48-56
Summary A field experiment was carried out to determine the effect of an invertebrate predator on the colonization and drift of benthic macroinvertebrates in experimental stream channels. Lotic invertebrates colonized four replicate channels: two controls with no predators, and two channels with low densities (2.8 m–2) of predatory stonefly nymphs, Doroneuria baumanni (Perlidae). Immigration rates were measured at the inflow of two other channels. Drift rates of invertebrates immigrating to and emigrating from channels were measured daily, and benthic samples were collected every five days. Over a 25-day colonization period, benthic densities of Baetis nymphs and larval Chironomidae were reduced by D. baumanni. Colonization curves were fit with a power function and significantly different colonization rates were indicated for both Baetis and chironomids in predation and control channels. A predator-induced drift response was exhibited by Baetis only and this response was size-dependent. In the presence of D. baumanni, large Baetis drifted more frequently than small nymphs and, correspondingly, small nymphs were more frequent in the benthos. Net predator impacts on invertebrate densities in channel substrates were partitioned into predator-induced drift and prey consumption. These estimates suggest that predator avoidance by Baetis is a prominent mechanism causing density reductions in the presence of predators. Reductions in the density of Chironomidae, however, were attributed to prey consumption only. A rainstorm during the experiment demonstrated that stream flow disruptions can override the influence of predators on benthic invertebrates, at least temporarily, and re-set benthic densities.  相似文献   

19.
20.
1. We experimentally tested if a multiplicative risk model accurately predicted the consumption of a common mayfly at risk of predation from three predator species in New Zealand streams. Deviations between model predictions and experimental observations were interpreted as indicators of ecologically important interactions between predators. 2. The predators included a drift‐feeding fish [brown trout (T), Salmo trutta], a benthivorous fish [galaxiid (G), koaro, Galaxias brevipennis] and a benthic predatory stonefly (S; Stenoperla sp.) with Deleatidium sp. mayflies as prey. Eight treatments with all predator species combinations and a predator‐free control were used. Experiments were performed in aquaria with cobbles as predator refuges for mayflies and we measured the proportion of prey consumed after 6 h for both day and night trials. 3. Trout consumed a higher proportion of prey than other predators. For the two predator treatments we found less than expected prey consumption in the galaxiid + trout treatment (G + T) for both day and night trials, whereas a higher than expected proportion of prey was consumed during night time in the stonefly + trout (S + T) treatment. 4. The results indicate interference (G + T) and facilitation (S + T) between predators depending on predator identity and time of day. Thus, to make accurate predictions of interspecific interactions, it is necessary to consider the ecology of individual species and how differences influence the direction and magnitude of interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号