首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The net flux of CO2 exchanged with the atmosphere following grassland‐related land‐use change (LUC) depends on the subsequent temporal dynamics of soil organic carbon (SOC). Yet, the magnitude and timing of these dynamics are still unclear. We compiled a global data set of 836 paired‐sites to quantify temporal SOC changes after grassland‐related LUC. In order to discriminate between SOC losses from the initial ecosystem and gains from the secondary one, the post‐LUC time series of SOC data was combined with satellite‐based net primary production observations as a proxy of carbon input to the soil. Globally, land conversion from either cropland or forest into grassland leads to SOC accumulation; the reverse shows net SOC loss. The SOC response curves vary between different regions. Conversion of cropland to managed grassland results in more SOC accumulation than natural grassland recovery from abandoned cropland. We did not consider the biophysical variables (e.g., climate conditions and soil properties) when fitting the SOC turnover rate into the observation data but analyzed the relationships between the fitted turnover rate and these variables. The SOC turnover rate is significantly correlated with temperature and precipitation (p < 0.05), but not with the clay fraction of soils (p > 0.05). Comparing our results with predictions from bookkeeping models, we found that bookkeeping models overestimate by 56% of the long‐term (100 years horizon) cumulative SOC emissions for grassland‐related LUC types in tropical and temperate regions since 2000. We also tested the spatial representativeness of our data set and calculated SOC response curves using the representative subset of sites in each region. Our study provides new insight into the impact grassland‐related LUC on the global carbon budget and sheds light on the potential of grassland conservation for climate mitigation.  相似文献   

2.
Land‐use change (LUC) is a major driving factor for the balance of soil organic carbon (SOC) stocks and the global carbon cycle. The temporal dynamic of SOC after LUC is especially important in temperate systems with a long reaction time. On the basis of 95 compiled studies covering 322 sites in the temperate zone, carbon response functions (CRFs) were derived to model the temporal dynamic of SOC after five different LUC types (mean soil depth of 30±6 cm). Grassland establishment caused a long lasting carbon sink with a relative stock change of 128±23% and afforestation on former cropland a sink of 116±54%, 100 years after LUC (mean±95% confidence interval). No new equilibrium was reached within 120 years. In contrast, there was no SOC sink following afforestation of grasslands and 75% of all observations showed SOC losses, even after 100 years. Only in the forest floor, there was carbon accumulation of 0.38±0.04 Mg ha?1 yr?1 in afforestations adding up to 38±4 Mg ha?1 labile carbon after 100 years. Carbon loss after deforestation (?32±20%) and grassland conversion to cropland (?36±5%), was rapid with a new SOC equilibrium being reached after 23 and 17 years, respectively. The change rate of SOC increased with temperature and precipitation but decreased with soil depth and clay content. Subsoil SOC changes followed the trend of the topsoil SOC changes but were smaller (25±5% of the total SOC changes) and with a high uncertainty due to a limited number of datasets. As a simple and robust model approach, the developed CRFs provide an easily applicable tool to estimate SOC stock changes after LUC to improve greenhouse gas reporting in the framework of UNFCCC.  相似文献   

3.
土地利用变化对土壤有机碳的影响研究进展   总被引:20,自引:0,他引:20  
陈朝  吕昌河  范兰  武红 《生态学报》2011,31(18):5358-5371
土壤有机碳是陆地碳库的重要组成部分,也是当前全球碳循环和全球变化研究的热点。土地利用/覆被变化及土地管理变化通过影响土壤有机碳的储量和分布,进而影响温室气体排放和陆地生态系统的碳通量。研究土地利用变化影响下的土壤有机碳储量及其动态变化规律,有助于加深理解全球气候变化与土地利用变化之间的关系。在阅读国内外有关文献的基础上,分别从土地利用及其管理方式变化的角度,概括了土地利用变化对土壤有机碳的影响过程与机理;针对当前研究的两大类方法,即实验方法和模型方法,分类详细介绍了它们各自的特点以及存在的一些问题。在此基础上,提出今后土地利用变化对土壤有机碳影响研究的发展趋势。  相似文献   

4.
The impact of animal manure application on soil organic carbon (SOC) stock changes is of interest for both agronomic and environmental purposes. There is a specific need to quantify SOC change for use in national greenhouse gas (GHG) emission inventories. We quantified the response of SOC stocks to manure application from a large worldwide pool of individual studies and determined the impact of explanatory factors such as climate, soil properties, land use and manure characteristics. Our study is based on a meta‐analysis of 42 research articles totaling 49 sites and 130 observations in the world. A dominant effect of cumulative manure‐C input on SOC response was observed as this factor explained at least 53% of the variability in SOC stock differences compared to mineral fertilized or unfertilized reference treatments. However, the effects of other determining factors were not evident from our data set. From the linear regression relating cumulative C inputs and SOC stock difference, a global manure‐C retention coefficient of 12% ± 4 (95% Confidence Interval, CI) could be estimated for an average study duration of 18 years. Following an approach comparable to the Intergovernmental Panel on Climate Change, we estimated a relative SOC change factor of 1.26 ± 0.14 (95% CI) which was also related to cumulative manure‐C input. Our results offer some scope for the refinement of manure retention coefficients used in crop management guidelines and for the improvement of SOC change factors for national GHG inventories by taking into account manure‐C input. Finally, this study emphasizes the need to further document the long‐term impact of manure characteristics such as animal species, especially pig and poultry, and manure management systems, in particular liquid vs. solid storage.  相似文献   

5.
Knowledge of soil organic matter (SOM) dynamics following deforestation or reforestation is essential for evaluating carbon (C) budgets and cycle at regional or global scales. Worldwide land‐use changes involving conversion of vegetation with different photosynthetic pathways (e.g. C3 and C4) offer a unique opportunity to quantify SOM decomposition rate and its response to climatic conditions using stable isotope techniques. We synthesized the results from 131 sites (including 87 deforestation observations and 44 reforestation observations) which were compiled from 36 published papers in the literatures as well as our observations in China's Qinling Mountains. Based on the 13C natural abundance analysis, we evaluated the dynamics of new and old C in top soil (0–20 cm) following land‐use change and analyzed the relationships between soil organic C (SOC) decomposition rates and climatic factors. We found that SOC decomposition rates increased significantly with mean annual temperature and precipitation in the reforestation sites, and they were not related to any climatic factor in deforestation sites. The mean annual temperature explained 56% of variation in SOC decomposition rates by exponential model (y = 0.0014e0.1395x) in the reforestation sites. The proportion of new soil C increased following deforestation and reforestation, whereas the old soil C showed an opposite trend. The proportion of new soil C exceeded the proportion of old soil C after 45.4 years' reforestation and 43.4 years' deforestation, respectively. The rates of new soil C accumulation increased significantly with mean annual precipitation and temperature in the reforestation sites, yet only significantly increased with mean annual precipitation in the deforestation sites. Overall, our study provides evidence that SOC decomposition rates vary with temperature and precipitation, and thereby implies that global warming may accelerate SOM decomposition.  相似文献   

6.
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land‐use and soil management. We review literature that reports changes in soil organic carbon after changes in land‐use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m?2 y?1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m?2 y?1 and 33.2 g C m?2 y?1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.  相似文献   

7.
The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the ‘Grain‐for‐Green’ Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0–100 cm soil layer showed an initial decrease in soil C during the early stage (<5 years), and then an increase to net C gains (>5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0–20 cm) than in deeper soil (20–100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer < broadleaf, evergreen < deciduous forests). Restoration age was the main factor, not temperature and precipitation, affecting soil C stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long‐term, and therefore, the large scale of land‐use change under the ‘Grain‐for‐Green’ Program will significantly increase China's C stocks.  相似文献   

8.
The world's agricultural system has come under increasing scrutiny recently as an important driver of global climate change, creating a demand for indicators that estimate the climatic impacts of agricultural commodities. Such carbon footprints, however, have in most cases excluded emissions from land‐use change and the proposed methodologies for including this significant emissions source suffer from different shortcomings. Here, we propose a new methodology for calculating land‐use change carbon footprints for agricultural commodities and illustrate this methodology by applying it to three of the most prominent agricultural commodities driving tropical deforestation: Brazilian beef and soybeans, and Indonesian palm oil. We estimate land‐use change carbon footprints in 2010 to be 66 tCO2/t meat (carcass weight) for Brazilian beef, 0.89 tCO2/t for Brazilian soybeans, and 7.5 tCO2/t for Indonesian palm oil, using a 10 year amortization period. The main advantage of the proposed methodology is its flexibility: it can be applied in a tiered approach, using detailed data where it is available while still allowing for estimation of footprints for a broad set of countries and agricultural commodities; it can be applied at different scales, estimating both national and subnational footprints; it can be adopted to account both for direct (proximate) and indirect drivers of land‐use change. It is argued that with an increasing commercialization and globalization of the drivers of land‐use change, the proposed carbon footprint methodology could help leverage the power needed to alter environmentally destructive land‐use practices within the global agricultural system by providing a tool for assessing the environmental impacts of production, thereby informing consumers about the impacts of consumption and incentivizing producers to become more environmentally responsible.  相似文献   

9.
Northern Europe supports large soil organic carbon (SOC) pools and has been subjected to high frequency of land‐use changes during the past decades. However, this region has not been well represented in previous large‐scale syntheses of land‐use change effects on SOC, especially regarding effects of afforestation. Therefore, we conducted a meta‐analysis of SOC stock change following afforestation in Northern Europe. Response ratios were calculated for forest floors and mineral soils (0–10 cm and 0–20/30 cm layers) based on paired control (former land use) and afforested plots. We analyzed the influence of forest age, former land‐use, forest type, and soil textural class. Three major improvements were incorporated in the meta‐analysis: analysis of major interaction groups, evaluation of the influence of nonindependence between samples according to study design, and mass correction. Former land use was a major factor contributing to changes in SOC after afforestation. In former croplands, SOC change differed between soil layers and was significantly positive (20%) in the 0–10 cm layer. Afforestation of former grasslands had a small negative (nonsignificant) effect indicating limited SOC change following this land‐use change within the region. Forest floors enhanced the positive effects of afforestation on SOC, especially with conifers. Meta‐estimates calculated for the periods <30 years and >30 years since afforestation revealed a shift from initial loss to later gain of SOC. The interaction group analysis indicated that meta‐estimates in former land‐use, forest type, and soil textural class alone were either offset or enhanced when confounding effects among variable classes were considered. Furthermore, effect sizes were slightly overestimated if sample dependence was not accounted for and if no mass correction was performed. We conclude that significant SOC sequestration in Northern Europe occurs after afforestation of croplands and not grasslands, and changes are small within a 30‐year perspective.  相似文献   

10.
Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land‐based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land‐based mitigation scenarios from two land‐use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ‐GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land‐use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land‐use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land‐use change. Differences between land‐use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land‐based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy.  相似文献   

11.
Small‐scale Jatropha cultivation and biodiesel production have the potential of contributing to local development, energy security, and greenhouse gas (GHG) mitigation. In recent years however, the GHG mitigation potential of biofuel crops is heavily disputed due to the occurrence of a carbon debt, caused by CO2 emissions from biomass and soil after land‐use change (LUC). Most published carbon footprint studies of Jatropha report modeled results based on a very limited database. In particular, little empirical data exist on the effects of Jatropha on biomass and soil C stocks. In this study, we used field data to quantify these C pools in three land uses in Mali, that is, Jatropha plantations, annual cropland, and fallow land, to estimate both the Jatropha C debt and its C sequestration potential. Four‐year‐old Jatropha plantations hold on average 2.3 Mg C ha?1 in their above‐ and belowground woody biomass, which is considerably lower compared to results from other regions. This can be explained by the adverse growing conditions and poor local management. No significant soil organic carbon (SOC) sequestration could be demonstrated after 4 years of cultivation. While the conversion of cropland to Jatropha does not entail significant C losses, the replacement of fallow land results in an average C debt of 34.7 Mg C ha?1, mainly caused by biomass removal (73%). Retaining native savannah woodland trees on the field during LUC and improved crop management focusing on SOC conservation can play an important role in reducing Jatropha's C debt. Although planting Jatropha on degraded, carbon‐poor cropland results in a limited C debt, the low biomass production, and seed yield attained on these lands reduce Jatropha's potential to sequester C and replace fossil fuels. Therefore, future research should mainly focus on increasing Jatropha's crop productivity in these degraded lands.  相似文献   

12.
Agriculturally driven changes in soil phosphorus (P) are known to have persistent effects on local ecosystem structure and function, but regional patterns of soil P recovery following cessation of agriculture are less well understood. We synthesized data from 94 published studies to assess evidence of these land‐use legacies throughout the world by comparing soil labile and total P content in abandoned agricultural areas to that of reference ecosystems or sites remaining in agriculture. Our meta‐analysis shows that soil P content was typically elevated after abandonment compared to reference levels, but reduced compared to soils that remained under agriculture. There were more pronounced differences in the legacies of past agriculture on soil P across regions than between the types of land use practiced prior to abandonment (cropland, pasture, or forage grassland). However, consistent patterns of soil P enrichment or depletion according to soil order and types of post‐agricultural vegetation suggest that these factors may mediate agricultural legacies on soil P. We also used mixed effects models to examine the role of multiple variables on soil P recovery following agriculture. Time since cessation of agriculture was highly influential on soil P legacies, with clear reductions in the degree of labile and total P enrichment relative to reference ecosystems over time. Soil characteristics (clay content and pH) were strongly related to changes in labile P compared to reference sites, but these were relatively unimportant for total P. The duration of past agricultural use and climate were weakly related to changes in total P only. Our finding of reductions in the degree of soil P alteration over time relative to reference conditions reveals the potential to mitigate these land‐use legacies in some soils. Better ability to predict dynamics of soil nutrient recovery after termination of agricultural use is essential to ecosystem management following land‐use change.  相似文献   

13.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

14.
Biochar as a carbon‐rich coproduct of pyrolyzing biomass, its amendment has been advocated as a potential strategy to soil carbon (C) sequestration. Updated data derived from 50 papers with 395 paired observations were reviewed using meta‐analysis procedures to examine responses of soil carbon dioxide (CO2) fluxes, soil organic C (SOC), and soil microbial biomass C (MBC) contents to biochar amendment. When averaged across all studies, biochar amendment had no significant effect on soil CO2 fluxes, but it significantly enhanced SOC content by 40% and MBC content by 18%. A positive response of soil CO2 fluxes to biochar amendment was found in rice paddies, laboratory incubation studies, soils without vegetation, and unfertilized soils. Biochar amendment significantly increased soil MBC content in field studies, N‐fertilized soils, and soils with vegetation. Enhancement of SOC content following biochar amendment was the greatest in rice paddies among different land‐use types. Responses of soil CO2 fluxes and MBC to biochar amendment varied with soil texture and pH. The use of biochar in combination with synthetic N fertilizer and waste compost fertilizer led to the greatest increases in soil CO2 fluxes and MBC content, respectively. Both soil CO2 fluxes and MBC responses to biochar amendment decreased with biochar application rate, pyrolysis temperature, or C/N ratio of biochar, while each increased SOC content enhancement. Among different biochar feedstock sources, positive responses of soil CO2 fluxes and MBC were the highest for manure and crop residue feedstock sources, respectively. Soil CO2 flux responses to biochar amendment decreased with pH of biochar, while biochars with pH of 8.1–9.0 had the greatest enhancement of SOC and MBC contents. Therefore, soil properties, land‐use type, agricultural practice, and biochar characteristics should be taken into account to assess the practical potential of biochar for mitigating climate change.  相似文献   

15.
Soil carbon stocks and land use change: a meta analysis   总被引:71,自引:0,他引:71  
The effects of land use change on soil carbon stocks are of concern in the context of international policy agendas on greenhouse gas emissions mitigation. This paper reviews the literature for the influence of land use changes on soil C stocks and reports the results of a meta analysis of these data from 74 publications. The meta analysis indicates that soil C stocks decline after land use changes from pasture to plantation (?10%), native forest to plantation (?13%), native forest to crop (?42%), and pasture to crop (?59%). Soil C stocks increase after land use changes from native forest to pasture (+ 8%), crop to pasture (+ 19%), crop to plantation (+ 18%), and crop to secondary forest (+ 53%). Wherever one of the land use changes decreased soil C, the reverse process usually increased soil carbon and vice versa. As the quantity of available data is not large and the methodologies used are diverse, the conclusions drawn must be regarded as working hypotheses from which to design future targeted investigations that broaden the database. Within some land use changes there were, however, sufficient examples to explore the role of other factors contributing to the above conclusions. One outcome of the meta analysis, especially worthy of further investigation in the context of carbon sink strategies for greenhouse gas mitigation, is that broadleaf tree plantations placed onto prior native forest or pastures did not affect soil C stocks whereas pine plantations reduced soil C stocks by 12–15%.  相似文献   

16.
Land‐use change can have significant impacts on soil and aboveground carbon (C) stocks and there is a clear need to identify sustainable land uses which maximize C mitigation potential. Land‐use transitions from agricultural to bioenergy crops are increasingly common in Europe with one option being Short Rotation Forestry (SRF). Research on the impact on C stocks of the establishment of SRF is limited, but given the potential for this bioenergy crop in temperate climates, there is an evident knowledge gap. Here, we examine changes in soil C stock following the establishment of SRF using combined short (30 cm depth) and deep (1 m depth) soil cores at 11 sites representing 29 transitions from agriculture to SRF. We compare the effects of tree species including 9 coniferous, 16 broadleaved and 4 Eucalyptus transitions. SRF aboveground and root biomass were also estimated in 15 of the transitions using tree mensuration data allowing assessments of changes in total ecosystem C stock. Planting coniferous SRF, compared to broadleaved and Eucalyptus SRF, resulted in greater accumulation of litter and overall increased soil C stock relative to agricultural controls. Though broadleaved SRF had no overall effect on soil C stock, it showed the most variable response suggesting species‐specific effects and interactions with soil types. While Eucalyptus transitions induced a reduction in soil C stocks, this was not significant unless considered on a soil mass basis. Given the relatively young age and limited number of Eucalyptus plantations, it is not possible to say whether this reduction will persist in older stands. Combining estimates of C stocks from different ecosystem components (e.g., soil, aboveground biomass) reinforced the accumulation of C under coniferous SRF, and indicates generally positive effects of SRF on whole‐ecosystem C. These results fill an important knowledge gap and provide data for modelling of future scenarios of LUC.  相似文献   

17.
Model‐based global projections of future land‐use and land‐cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global‐scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity.  相似文献   

18.
Soil organic carbon (SOC) is an important carbon pool susceptible to land‐use change (LUC). There are concerns that converting grasslands into the C4 bioenergy crop Miscanthus (to meet demands for renewable energy) could negatively impact SOC, resulting in reductions of greenhouse gas mitigation benefits gained from using Miscanthus as a fuel. This work addresses these concerns by sampling soils (0–30 cm) from a site 12 years (T12) after conversion from marginal agricultural grassland into Miscanthus x giganteus and four other novel Miscanthus hybrids. Soil samples were analysed for changes in below‐ground biomass, SOC and Miscanthus contribution to SOC (using a 13C natural abundance approach). Findings are compared to ECOSSE soil carbon model results (run for a LUC from grassland to Miscanthus scenario and continued grassland counterfactual), and wider implications are considered in the context of life cycle assessments based on the heating value of the dry matter (DM) feedstock. The mean T12 SOC stock at the site was 8 (±1 standard error) Mg C/ha lower than baseline time zero stocks (T0), with assessment of the five individual hybrids showing that while all had lower SOC stock than at T0 the difference was only significant for a single hybrid. Over the longer term, new Miscanthus C4 carbon replaces pre‐existing C3 carbon, though not at a high enough rate to completely offset losses by the end of year 12. At the end of simulated crop lifetime (15 years), the difference in SOC stocks between the two scenarios was 4 Mg C/ha (5 g CO2‐eq/MJ). Including modelled LUC‐induced SOC loss, along with carbon costs relating to soil nitrous oxide emissions, doubled the greenhouse gas intensity of Miscanthus to give a total global warming potential of 10 g CO2‐eq/MJ (180 kg CO2‐eq/Mg DM).  相似文献   

19.
Land use change and the global carbon cycle: the role of tropical soils   总被引:31,自引:4,他引:31  
Millions of hectares of tropical forest are cleared annually for agriculture, pasture, shifting cultivation and timber. One result of these changes in land use is the release of CO2 from the cleared vegetation and soils. Although there is uncertainty as to the size of this release, it appears to be a major source of atmospheric CO2, second only to the release from the combustion of fossil fuels. This study estimates the release of CO2 from tropical soils using a computer model that simulates land use change in the tropics and data on (1) the carbon content of forest soils before clearing; (2) the changes in the carbon content under the various types of land use; and (3) the area of forest converted to each use. It appears that the clearing and use of tropical soils affects their carbon content to a depth of about 40 cm. Soils of tropical closed forests contain approximately 6.7 kg C · m-2; soils of tropical open forests contain approximately 5.2 kg C · m-2 to this depth. The cultivation of tropical soils reduces their carbon content by 40% 5 yr after clearing; the use of these soils for pasture reduces it by about 20%. Logging in tropical forests appears to have little effect on soil carbon. The carbon content of soils used by shifting cultivators returns to the level found under primary forest about 35 yr after abandonment. The estimated net release of carbon from tropical soils due to land use change was 0.11–0.26 × 1015 g in 1980.  相似文献   

20.
姬强  孙汉印  Taraqqi AK  王旭东   《生态学杂志》2014,25(4):1029-1035
在连续8年田间定位试验的基础上,分析了关中平原冬小麦 夏玉米复种连作系统2008—2009年连续两个生长季期间不同耕作措施(结合秸秆还田和不还田)对土壤有机碳和水分利用率的影响.结果表明: 相对于传统耕作,保护性耕作有利于土壤有机碳、水分利用效率和作物产量的提高,其中在“深松+秸秆还田”耕作模式下的增幅最高,土壤有机碳含量在0~30 cm土层增幅达到19.5%,水分利用效率和作物产量提高了16.9%和20.5%,而免耕模式则有效提高了0~10 cm土层有机碳含量.在该地区土壤和气候条件下,深松结合秸秆粉碎还田是最理想的耕作模式,最有利于土壤有机碳累积,并提高水分利用效率和作物产量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号