首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abundance patterns in ecological communities have important implications for biodiversity maintenance and ecosystem functioning. However, ecological theory has been largely unsuccessful at capturing multiple macroecological abundance patterns simultaneously. Here, we propose a parsimonious model that unifies widespread ecological relationships involving local aggregation, species‐abundance distributions, and species associations, and we test this model against the metacommunity structure of reef‐building corals and coral reef fishes across the western and central Pacific. For both corals and fishes, the unified model simultaneously captures extremely well local species‐abundance distributions, interspecific variation in the strength of spatial aggregation, patterns of community similarity, species accumulation, and regional species richness, performing far better than alternative models also examined here and in previous work on coral reefs. Our approach contributes to the development of synthetic theory for large‐scale patterns of community structure in nature, and to addressing ongoing challenges in biodiversity conservation at macroecological scales.  相似文献   

2.
JANI HEINO 《Freshwater Biology》2011,56(9):1703-1722
1. The aim of this paper is to review literature on species diversity patterns of freshwater organisms and underlying mechanisms at large spatial scales. 2. Some freshwater taxa (e.g. dragonflies, fish and frogs) follow the classical latitudinal decline in regional species richness (RSR), supporting the patterns found for major terrestrial and marine organism groups. However, the mechanisms causing this cline in most freshwater taxa are inadequately understood, although research on fish suggests that energy and history are major factors underlying the patterns in total species and endemic species richness. Recent research also suggests that not all freshwater taxa comply with the decline of species richness with latitude (e.g. stoneflies, caddisflies and salamanders), but many taxa show more complex geographical patterns in across‐regions analyses. These complexities are even more profound when studies of global, continental and regional extents are compared. For example, clear latitudinal gradients may be present in regional studies but absent in global studies (e.g. macrophytes). 3. Latitudinal gradients are often especially weak in the across‐ecosystems analyses, which may be attributed to local factors overriding the effects of large‐scale factors on local communities. Nevertheless, local species richness (LSR) is typically linearly related to RSR (suggesting regional effects on local diversity), although saturating relationships have also been found in some occasions (suggesting strong local effects on diversity). Nestedness has often been found to be significant in freshwater studies, yet this pattern is highly variable and generally weak, suggesting also a strong beta diversity component in freshwater systems. 4. Both geographical location and local environmental factors contribute to variation in alpha diversity, nestedness and beta diversity in the freshwater realm, although the relative importance of these two groups of explanatory variables may be contingent on the spatial extent of the study. The mechanisms associated with spatial and environmental control of community structure have also been inferred in a number of studies, and most support has been found for species sorting (possibly because many freshwater studies have species sorting as their starting point), although also dispersal limitation and mass effects may be contributing to the patterns found. 5. The lack of latitudinal gradients in some freshwater taxa begs for further explanations. Such explanations may not be gained for most freshwater taxa in the near future, however, because we lack species‐level information, floristic and faunistic knowledge, and standardised surveys along extensive latitudinal gradients. A challenge for macroecology is thus to use the best possible species‐level information on well‐understood groups (e.g. fish) or use surrogates for species‐level patterns (e.g. families) and then develop hypotheses for further testing in the freshwater realm. An additional research challenge concerns understanding patterns and mechanisms associated with the relationships between alpha, beta and gamma components of species diversity. 6. Understanding the mechanistic basis of species diversity patterns should preferably be based on a combination of large‐scale macroecological and landscape‐scale metacommunity research. Such a research approach will help in elucidating patterns of species diversity across regional and local scales in the freshwater realm.  相似文献   

3.
Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realized properties of species assemblages, whereas the second approach (stacked species distribution modelling, S‐SDM) starts with constituent species to approximate the properties of assemblages. Here, we propose to unify the two approaches in a single ‘spatially explicit species assemblage modelling’ (SESAM) framework. This framework uses relevant designations of initial species source pools for modelling, macroecological variables, and ecological assembly rules to constrain predictions of the richness and composition of species assemblages obtained by stacking predictions of individual species distributions. We believe that such a framework could prove useful in many theoretical and applied disciplines of ecology and evolution, both for improving our basic understanding of species assembly across spatio‐temporal scales and for anticipating expected consequences of local, regional or global environmental changes. In this paper, we propose such a framework and call for further developments and testing across a broad range of community types in a variety of environments.  相似文献   

4.
Aim The shape of a species' spatial abundance distribution may change with spatial scale. We predict that the shape will typically change from strictly downward‐sloping (falling) to humped (rising then falling) as the spatial scale increases. The prediction, motivated in part by central limit reasoning, is intended for common or abundant species over reasonably homogeneous habitats. We test the prediction using data on 800+ tree species, one ant species, and 14 bird species. Location Tree data are for Malaysia and Central America; ant and bird data are for North America. Methods For each species, histograms and relative mode shape statistics are compared across multiple spatial scales. Results The predicted pattern is broadly confirmed. Main conclusions The emerging hump pattern is a candidate for listing among macroecological regularities. In appropriate contexts, spatial theories might be asked to predict the pattern.  相似文献   

5.
Non-native (alien, exotic) plant invasions are affecting ecological processes and threatening biodiversity worldwide. Patterns of plant invasions, and the ecological processes which generate these patterns, vary across spatial scales. Thus, consideration of spatial scale may help to illuminate the mechanisms driving biological invasions, and offer insight into potential management strategies. We review the processes driving movement of non-native plants to new locations, and the patterns and processes at the new locations, as they are variously affected by spatial scale. Dispersal is greatly influenced by scale, with different mechanisms controlling global, regional and local dispersal. Patterns of invasion are rarely documented across multiple spatial scales, but research using multi-scale approaches has generated interesting new insights into the invasion process. The ecological effects of plant invasions are also scale-dependent, ranging from altered local community diversity and homogenization of the global flora, to modified biogeochemical cycles and disturbance regimes at regional or global scales. Therefore, the study and control of invasions would benefit from documenting invasion processes at multiple scales.  相似文献   

6.
Abundance-occupancy and abundance-variance relationships are two of the most general macroecological patterns capturing essential fundamentals of the structuring of species distributions and are widely documented for free-living animal and plant species populations at different spatial scales. However, empirical data for parasites have been gathered using appropriate sampling designs only recently. We performed analyses across species of the variation in infection parameters and patterns of aggregation of the most widespread parasites in the marine sparid fish Boops boops across seven localities of two marine biogeographical regions, the North East Atlantic and the Mediterranean. We used a large dataset of multiple population samples replicated over time for 20 parasite species and carried out assessments both intraspecifically and interspecifically, across taxonomic and ecological groupings. This taxonomically diverse complex of species representing five major metazoan higher taxa with differing transmission ecologies allowed us to assess the effect of taxonomic and ecological determinants on the abundance-occupancy and abundance-variance relationships in the model marine host-parasite system. The results revealed that: (i) a power function, relating spatial variance to mean abundance, represents a suitable model for the spatial distribution of the species; (ii) prevalence, abundance and the degree of spatial heterogeneity are true species characteristics and differ consistently between higher level taxonomic groupings; (iii) infection parameters and abundance-variance relationship are dependent on host specificity and regional distribution patterns of the parasites; and (iv) the observed infection parameters agree well with predictions from the epidemiological negative binomial abundance-occupancy model built on parameters of Taylor's power law both within and across species.  相似文献   

7.
Comparative methods have commonly been applied in macroecological research. However, few methods exist to map and analyze phylogenetic variation in geographical space. Here we develop a general analytical framework to partition the phylogenetic and ecological structures of macroecological patterns in geographic space. As an example, we apply the framework to evaluate interspecific patterns of body size geographic variation (Bergmann's rule) in European Carnivora. We model the components of variance attributable to ecological and phylogenetic effects, and to the shared influence of both factors. Spatial patterns in the ecological component are stronger than those in the original body size data. More importantly, the magnitude of intraspecific body size patterns (as measured by the correlation coefficient between body size and latitude) is significantly correlated with the ecological component across species, providing a unified interpretation for Bergmann's rule at multiple levels of biological hierarchy. This approach provides a better understanding of patterns in macroecological traits and allows improved understanding of their underlying ecological and evolutionary mechanisms.  相似文献   

8.
Biodiversity provides support for life, vital provisions, regulating services and has positive cultural impacts. It is therefore important to have accurate methods to measure biodiversity, in order to safeguard it when we discover it to be threatened. For practical reasons, biodiversity is usually measured at fine scales whereas diversity issues (e.g. conservation) interest regional or global scales. Moreover, biodiversity may change across spatial scales. It is therefore a key challenge to be able to translate local information on biodiversity into global patterns. Many databases give no information about the abundances of a species within an area, but only its occurrence in each of the surveyed plots. In this paper, we introduce an analytical framework (implemented in a ready‐to‐use R code) to infer species richness and abundances at large spatial scales in biodiversity‐rich ecosystems when species presence/absence information is available on various scattered samples (i.e. upscaling). This framework is based on the scale‐invariance property of the negative binomial. Our approach allows to infer and link within a unique framework important and well‐known biodiversity patterns of ecological theory, such as the species accumulation curve (SAC) and the relative species abundance (RSA) as well as a new emergent pattern, which is the relative species occupancy (RSO). Our estimates are robust and accurate, as confirmed by tests performed on both in silico‐generated and real forests. We demonstrate the accuracy of our predictions using data from two well‐studied forest stands. Moreover, we compared our results with other popular methods proposed in the literature to infer species richness from presence to absence data and we showed that our framework gives better estimates. It has thus important applications to biodiversity research and conservation practice.  相似文献   

9.
The evolutionary viability of an endangered species depends upon gene flow among subpopulations and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and evolutionary timescales may provide novel insight into what maintains genetic diversity within threatened species. We employed this integrative approach to evaluating dispersal in the critically endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert‐spring ecosystem of Cuatro Ciénegas, Mexico. Recent wetland habitat loss has altered the spatial distribution and connectivity of habitat patches; and we therefore predicted that T. coahuila would exhibit limited movement relative to estimates of historic gene flow. To evaluate contemporary dispersal patterns, we employed mark–recapture techniques at both local (wetland complex) and regional (intercomplex) spatial scales. Gene flow estimates were obtained by surveying genetic variation at nine microsatellite loci in seven subpopulations located across the species’ geographical range. The mark–recapture results at the local spatial scale reveal frequent movement among wetlands that was unaffected by interwetland distance. At the regional spatial scale, dispersal events were relatively less frequent between wetland complexes. The complementary analysis of population genetic substructure indicates strong historic gene flow (global FST = 0.01). However, a relationship of genetic isolation by distance across the geographical range suggests that dispersal limitation exists at the regional scale. Our approach of contrasting direct and indirect estimates of dispersal at multiple spatial scales in T. coahuila conveys a sustainable evolutionary trajectory of the species pending preservation of threatened wetland habitats and a range‐wide network of corridors.  相似文献   

10.
The increased availability of both open ecological data, and software to interact with it, allows the fast collection and integration of information at all spatial and taxonomic scales. This offers the opportunity to address macroecological questions in a cost‐effective way. In this contribution, we illustrate this approach by forecasting the structure of a stream food web at the global scale. In so doing, we highlight the most salient issues needing to be addressed before this approach can be used with a high degree of confidence.  相似文献   

11.

Aim

Our aim is to document the dimensions of current squamate reptile biodiversity in the Americas by integrating taxonomic, phylogenetic and functional data, and assessing how this may vary across phylogenetic scales. We also explore the potential underlying mechanisms that may be responsible for the observed geographical diversity patterns.

Location

The Americas.

Time period

Present.

Major taxa

Squamate reptiles.

Methods

We used published data on the distribution, phylogeny, and body size of squamate reptiles to document the current dimensions of their alpha diversity in the Americas. We overlapped species ranges to estimate taxonomic diversity (TD) and calculated phylogenetic diversity (PD) using mean pairwise phylogenetic distance (MPD), speciation rate (DivRate) and Faith's phylogenetic index (PD). We estimated functional diversity (FD) as trait dispersion in the multivariate space using body size and leg development data. We implemented a deconstructive macroecological approach to understand how spatial mismatches between the three facets of diversity vary across phylogenetic scales, and the potential eco-evolutionary mechanisms driving these patterns across space.

Results

We found a strong latitudinal gradient of TD with a large accumulation in tropical regions. PD and FD patterns were largely similar likely due to the high phylogenetic signal in the traits used, and higher values tended to be concentrated in harsh and/or heterogeneous environments. We found differences between major clades within Squamata that display contrasting geographical patterns. Several regions across the continent shared the same spatial mismatches between dimensions across clades, suggesting that similar eco-evolutionary processes are shaping these regional reptile assemblages. However, we also found evidence that non-mutually exclusive processes can operate differently across clades.

Main conclusions

The deconstructive approach implemented here is based on a solid macroecological framework. We can extend this to other taxonomic groups to establish whether there are particularities about how different eco-evolutionary mechanisms shape biodiversity facets in a spatially explicit context.  相似文献   

12.
A key step in identifying global change impacts on species and ecosystems is to quantify effects of multiple stressors. To date, the science of global change has been dominated by regional field studies, experimental manipulation, meta‐analyses, conceptual models, reviews, and studies focusing on a single stressor or species over broad spatial and temporal scales. Here, we provide one of the first studies for coastal systems examining multiple stressor effects across broad scales, focused on the nursery function of 20 estuaries spanning 1,600 km of coastline, 25 years of monitoring, and seven fish and invertebrate species along the northeast Pacific coast. We hypothesized those species most estuarine dependent and negatively impacted by human activities would have lower presence and abundances in estuaries with greater anthropogenic land cover, pollution, and water flow stress. We found significant negative relationships between juveniles of two of seven species (Chinook salmon and English sole) and estuarine stressors. Chinook salmon were less likely to occur and were less abundant in estuaries with greater pollution stress. They were also less abundant in estuaries with greater flow stress, although this relationship was marginally insignificant. English sole were less abundant in estuaries with greater land cover stress. Together, we provide new empirical evidence that effects of stressors on two fish species culminate in detectable trends along the northeast Pacific coast, elevating the need for protection from pollution, land cover, and flow stressors to their habitats. Lack of response among the other five species could be related to differing resistance to specific stressors, type and precision of the stressor metrics, and limitations in catch data across estuaries and habitats. Acquiring improved measurements of impacts to species will guide future management actions, and help predict how estuarine nursery functions can be optimized given anthropogenic stressors and climate change scenarios.  相似文献   

13.
The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.  相似文献   

14.
Phylogenetic legacy and phylogenetic trends affect the ecology of species-except, apparently, for the width of their distribution. As a result, "macroecological" patterns of species distributions emerge constantly in phylogenetically very distinct species assemblages. The width of the global distribution of species, for instance, constantly correlates positively to the width of their regional distribution. However, such patterns primarily reflect the phylogenetically derived species that dominate most assemblages. Basal species, in contrast, might show different macroecological patterns. We tested the hypothesis that the correlation between global and regional distributions of species diminishes among the phylogenetically basal species. We considered central European higher plants and defined global distribution as the occupancy of global floristic zones, regional distribution as the grid occupancy in Eastern Germany, and phylogenetic position as the rank distance to tree base. We also took into account a number of confounding variables. We found that, across all lineages, the global/regional correlation diminished among basal species. We then reanalyzed 19 lineages separately and always found the same pattern. The pattern reflected both increases in global distributions and decreases in regional distributions among basal species. The results indicate that many basal species face a risk of global or at least regional extinction, but have escaped the downward spiral of mutually reinforcing extinction risks at multiple scales. We suggest that many basal species had much time to expand their global ranges but are presently displaced locally by more derived species. Overall, the study shows that macroecological patterns may not be static and universal, but may undergo macroevolutionary trends. Analyses of macroecological patterns across a phylogeny may thus provide insights into macroevolutionary processes.  相似文献   

15.
Two of the major themes resulting from recent macroecological research are the central roles that body size and niche breadth may play as determinants of species geographical distribution. Unanswered questions, however, linger regarding how similarities in body size or niche breadth affect the allocation of α‐ and β‐diversity across spatial scales. Using data on moth diversity in the eastern deciduous forest of North America, we tested the predictions that smaller‐bodied and diet‐restricted species would have lower levels of α‐diversity within forest stands and greater β‐diversity at higher sampling scales compared to larger or more generalist species. Moths were sampled using a nested sampling design consisting of three hierarchical levels: 20 forest stands, 5 sites and 3 ecoregions. Body size for 492 species was estimated as mean forewing length, and diet breadth was assessed from the published literature. Moth species were then classified according to body size (small or large) or diet breadth (generalist or restricted), and partitioning was conducted on each group. Diversity partitions for large‐ and small‐bodied species yielded similar patterns. When observed diversity components differed from those derived from our null model, a consistent pattern was observed: α‐diversity was greater than expected, β‐diversity among forest stands was less than expected, and β‐diversity among sites and ecoregions was higher than expected. In contrast, diet‐restricted moths contributed significantly less to stand‐level α‐diversity than generalist feeders. Furthermore, specialists contributed to a greater proportion of β‐diversity across scales compared to generalist moths. Because absolute measures of β‐diversity among stands were greater for generalists than for restricted feeders, we suggest that regional β‐diversity of forest moths may be influenced by several possible factors: intraspecific aggregation of diet‐restricted species, local fluctuations in population size of eruptive generalists and small geographical distributions of generalist moths than predicted by the geographical extent of putative host plants  相似文献   

16.
Our understanding of the relative influence of different ecological drivers on the number of species in a place remains limited. Assessing the relative influence of local ecological interactions versus regional species pools on local species richness should help bridge this conceptual gap. Plots of local species richness versus regional species pools have been used to address this question, yet after an active quarter-century of research on the relative influence of local interactions versus regional species pools, consensus remains elusive. We propose a conceptual framework that incorporates spatial scale and ecological interaction strength to reconcile current disparities. We then test this framework using a survey of marine rocky intertidal algal and invertebrate communities from the northeast Pacific. We reach two main conclusions. First, these data show that the power of regional species pools to predict local richness disintegrates at small spatial scales coincident with the scale of biological interactions, when studying ecologically interactive groups of species, and in generally more abiotically stressful habitats (e.g., the high intertidal). Second, conclusions of past studies asserting that the regional species pool is the primary driver of local species richness may be artifacts of large spatial scales or ecologically noninteractive groups of species.  相似文献   

17.
Much has been done to address the challenges of biological invasions, but fundamental questions (e.g., which species invade? Which habitats are invaded? How can invasions be effectively managed?) still need to be answered before the spread and impact of alien taxa can be effectively managed. Questions on the role of biogeography (e.g., how does biogeography influence ecosystem susceptibility, resistance and resilience against invasion?) have the greatest potential to address this goal by increasing our capacity to understand and accurately predict invasions at local, continental and global scales. This paper proposes a framework for the development of ‘Global Networks for Invasion Science’ to help generate approaches to address these critical and fundamentally biogeographic questions. We define global networks on the basis of their focus on research questions at the global scale, collection of primary data, use of standardized protocols and metrics, and commitment to long-term global data. Global networks are critical for the future of invasion science because of their potential to extend beyond the capacity of individual partners to identify global priorities for research agendas and coordinate data collection over space and time, assess risks and emerging trends, understand the complex influences of biogeography on mechanisms of invasion, predict the future of invasion dynamics, and use these new insights to improve the efficiency and effectiveness of evidence-based management techniques. While the pace and scale of global change continues to escalate, strategic and collaborative global networks offer a powerful approach to inform responses to the threats posed by biological invasions.  相似文献   

18.
The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species‐specific regional scale climate change research is most commonly published, and “supporting” is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines.  相似文献   

19.
There have been several attempts to build a unified framework for macroecological patterns. However, these have mostly been based either on questionable assumptions or have had to be parameterized to obtain realistic predictions. Here, we propose a new model explicitly considering patterns of aggregated species distributions on multiple spatial scales, the property which lies behind all spatial macroecological patterns, using the idea we term 'generalized fractals'. Species' spatial distributions were modelled by a random hierarchical process in which the original 'habitat' patches were randomly replaced by sets of smaller patches nested within them, and the statistical properties of modelled species assemblages were compared with macroecological patterns in observed bird data. Without parameterization based on observed patterns, this simple model predicts realistic patterns of species abundance, distribution and diversity, including fractal-like spatial distributions, the frequency distribution of species occupancies/abundances and the species–area relationship. Although observed macroecological patterns may differ in some quantitative properties, our concept of random hierarchical aggregation can be considered as an appropriate null model of fundamental macroecological patterns which can potentially be modified to accommodate ecologically important variables.  相似文献   

20.
Evidence for the theory of biotic resistance is equivocal, with experiments often finding a negative relationship between invasion success and native species richness, and large‐scale comparative studies finding a positive relationship. Biotic resistance derives from local species interactions, yet global and regional studies often analyze data at coarse spatial grains. In addition, differences in competitive environments across regions may confound tests of biotic resistance based solely on native species richness of the invaded community. Using global and regional data sets for fishes in river and stream reaches, we ask two questions: (1) does a negative relationship exist between native and non‐native species richness and (2) do non‐native species originate from higher diversity systems. A negative relationship between native and non‐native species richness in local assemblages was found at the global scale, while regional patterns revealed the opposite trend. At both spatial scales, however, nearly all non‐native species originated from river basins with higher native species richness than the basin of the invaded community. Together, these findings imply that coevolved ecological interactions in species‐rich systems inhibit establishment of generalist non‐native species from less diverse communities. Consideration of both the ecological and evolutionary aspects of community assembly is critical to understanding invasion patterns. Distinct evolutionary histories in different regions strongly influence invasion of intact communities that are relatively unimpacted by human actions, and may explain the conflicting relationship between native and non‐native species richness found at different spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号