首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The capacity of forest ecosystems to sequester C in the soil relies on the net balance between litter production above, as well as, below ground, and decomposition processes. Nitrogen mineralization and its availability for plant growth and microbial activity often control the speed of both processes. Litter production, decomposition and N mineralization are strongly interdependent. Thus, their responses to global environmental changes (i.e. elevated CO2, climate, N deposition, etc.) cannot be fully understood if they are studied in isolation. In the present experiment, we investigated litter fall, litter decomposition and N dynamics in decomposing litter of three Populus spp., in the second and third growing season of a short rotation coppice under FACE. Elevated CO2 did not affect annual litter production but slightly retarded litter fall in the third growing season. In all species, elevated CO2 lowered N concentration, resulting in a reduction of N input to the soil via litter fall, but did not affect lignin concentrations. Litter decomposition was studied in bags incubated in situ both in control and FACE plots. Litter lost between 15% and 18% of the original mass during the eight months of field incubation. On average, litter produced under elevated CO2 attained higher residual mass than control litter. On the other end, when litter was incubated in FACE plots it exhibited higher decay rates. These responses were strongly species‐specific. All litter increased their N content during decomposition, indicating immobilization of N from external sources. Independent of the initial quality, litter incubated on FACE soils immobilized less N, possibly as a result of lower N availability in the soil. Indeed, our results refer to a short‐term decomposition experiment. However, according to a longer‐term model extrapolation of our results, we anticipate that in Mediterranean climate, under elevated atmospheric CO2, soil organic C pool of forest ecosystems may initially display faster turnover, but soil N availability will eventually limit the process.  相似文献   

2.
Elevated CO2 may affect litter quality of plants, and subsequently C and N cycling in terrestrial ecosystems, but changes in litter quality associated with elevated CO2 are poorly known. Abscised leaf litter of two oak species (Quercus cerris L. and Q. pubescens Willd.) exposed to long-term elevated CO2 around a natural CO2 spring in Tuscany (Italy) was used to study the impact of increasing concentration of atmospheric CO2 on litter quality and C and N turnover rates in a Mediterranean-type ecosystem. Litter samples were collected in an area with elevated CO2 (>500 ppm) and in an area with ambient CO2 concentration (360 ppm). Leaf samples were analysed for concentrations of total C, N, lignin, cellulose, acid detergent residue (ADR) and polyphenol. The decomposition rate of litter was studied using a litter bag experiment (12 months) and laboratory incubations (3 months). In the laboratory incubations, N mineralization in litter samples was measured as well (125 days). Litter quality was expressed in terms of chemical composition and element ratios. None of the litter quality parameters was affected by elevated CO2 for the two Quercus species. Remaining mass in Q. cerris and Q. pubescens litter from elevated CO2 was similar to that from ambient conditions. C mineralization in Q. pubescens litter from elevated CO2 was lower than that from ambient CO2, but the difference was insignificant. This effect was not observed for Q. cerris. N mineralization was higher from litter grown at elevated CO2, but this difference disappeared at the end of the incubation. Litter of Q. pubescens had a higher quality than Q. cerris, and indeed mineralized more rapidly in the laboratory, but not under field conditions.  相似文献   

3.
M. F. Cotrufo  P. Ineson 《Oecologia》1996,106(4):525-530
The effect of elevated atmospheric CO2 and nutrient supply on elemental composition and decomposition rates of tree leaf litter was studied using litters derived from birch (Betula pendula Roth.) plants grown under two levels of atmospheric CO2 (ambient and ambient +250 ppm) and two nutrient regimes in solar domes. CO2 and nutrient treatments affected the chemical composition of leaves, both independently and interactively. The elevated CO2 and unfertilized soil regime significantly enhanced lignin/N and C/N ratios of birch leaves. Decomposition was studied using field litter-bags, and marked differences were observed in the decomposition rates of litters derived from the two treatments, with the highest weight remaining being associated with litter derived from the enhanced CO2 and unfertilized regime. Highly significant correlations were shown between birch litter decomposition rates and lignin/N and C/N ratios. It can be concluded, from this study, that at levels of atmospheric CO2 predicted for the middle of the next century a deterioration of litter quality will result in decreased decomposition rates, leading to reduction of nutrient mineralization and increased C storage in forest ecosystems. However, such conclusions are difficult to generalize, since tree responses to elevated CO2 depend on soil nutritional status.  相似文献   

4.
The effects of elevated carbon dioxide (CO2) on plant litter are critical determinants of ecosystem feedback to changing atmospheric CO2 concentrations. We measured concentrations of nitrogen (N) and carbon (C) and calculated C : N ratios of green leaves of two desert perennial shrubs, and the same quality parameters plus lignin and cellulose content of leaf litter from four shrub species exposed to elevated CO2 (FACE technology; Hendrey & Kimball, 1994 ) for 3 years in an intact Mojave Desert ecosystem. Shrubs tested were Larrea tridentata, Lycium pallidum, Lycium andersonii and Ambrosia dumosa. We calculated resorption efficiency from green tissue and leaf litter N data and measured lignin and cellulose content in litter in the last year study. Green leaves of L. tridentata grown under elevated CO2 had significantly lower N concentrations and higher C : N ratios than shrubs grown in ambient conditions in 1999 (P < 0.05). Lycium pallidum green leaves grown under elevated CO2 had significantly lower N concentrations and higher C : N ratios than shrubs grown under ambient conditions in 2000 (P < 0.05). There was no CO2 effect on C content of either species. We found no effect of CO2 on N or C content, C : N ratios, or lignin or cellulose concentrations in leaf litter of L. tridentata, L. pallidum, L. andersonii, or A. dumosa. There was no significant effect of CO2 on estimates of shrub resorption efficiency. There was a seasonal effect on green tissue and litter tissue quality for L. tridentata, with lower tissue N content in summer than in spring or winter months. These data suggest that any productivity increases with elevated CO2 in desert ecosystems may not be limited by lower leaf litter quality and that resorption efficiency calculations are best performed on an individual leaf basis.  相似文献   

5.
Empirical and modeling studies have shown that the magnitude and duration of the primary production response to elevated carbon dioxide (CO2) can be constrained by limiting supplies of soil nitrogen (N). We have studied the response of a southern US pine forest to elevated CO2 for 5 years (1997–2001). Net primary production has increased significantly under elevated CO2. We hypothesized that the increase in carbon (C) fluxes to the microbial community under elevated CO2 would increase the rate of N immobilization over mineralization. We tested this hypothesis by quantifying the pool sizes and fluxes of inorganic and organic N in the forest floor and top 30 cm of mineral soil during the first 5 years of CO2 fumigation. We observed no statistically significant change in the gross or net rate of inorganic N mineralization and immobilization in any soil horizon under elevated CO2. Similarly, elevated CO2 had no statistically significant effect on the concentration or flux of organic N, including amino acids. Microbial biomass N was not significantly different between CO2 treatments. Thus, we reject our hypothesis that elevated CO2 increases the rate of N immobilization. The quantity and chemistry of the litter inputs to the forest floor and mineral soil horizons can explain the limited range of microbially mediated soil–N cycling responses observed in this ecosystem. Nevertheless a comparative analysis of ecosystem development at this site and other loblolly pine forests suggests that rapid stand development and C sequestration under elevated CO2 may be possible only in the early stages of stand development, prior to the onset of acute N limitation.  相似文献   

6.
A significant challenge in predicting terrestrial ecosystem response to global changes comes from the relatively poor understanding of the processes that control pools and fluxes of plant nutrients in soil. In addition, individual global changes are often studied in isolation, despite the potential for interactive effects among them on ecosystem processes. We studied the response of gross N mineralization and microbial respiration after 6 years of application of three global change factors in a grassland field experiment in central Minnesota (the BioCON experiment). BioCON is a factorial manipulation of plant species diversity (1, 4, 9 and 16 prairie species), atmospheric [CO2] (ambient and elevated: 560 μmol mol?1), and N inputs (ambient and ambient +4 g N m?2 yr?1). We hypothesized that gross N mineralization would increase with increasing levels of all factors because of stimulated plant productivity and thus greater organic inputs to soils. However, we also hypothesized that N addition would enhance, while elevated [CO2] and greater diversity would temper, gross N mineralization responses because of increased and reduced plant tissue N concentrations, respectively. In partial support of our hypothesis, gross N mineralization increased with greater diversity and N addition, but not with elevated [CO2]. The ratio of gross N mineralization to microbial respiration (i.e. the ‘yield’ of inorganic N mineralized per unit C respired) declined with greater diversity and [CO2] suggesting increasing limitation of microbial processes by N relative to C in these treatments. Based on these results, we conclude that the plant supply of organic matter primarily controls gross N mineralization and microbial respiration, but that the concentration of N in organic matter input secondarily influences these processes. Thus, in systems where N limits plant productivity these global change factors could cause different long‐term ecosystem trajectories because of divergent effects on soil N and C cycling.  相似文献   

7.
Increases in atmospheric CO2 and tropospheric O3 may affect forest N cycling by altering plant litter production and the availability of substrates for microbial metabolism. Three years following the establishment of our free‐air CO2–O3 enrichment experiment, plant growth has been stimulated by elevated CO2 resulting in greater substrate input to soil; elevated O3 has counteracted this effect. We hypothesized that rates of soil N cycling would be enhanced by greater plant productivity under elevated CO2, and that CO2 effects would be dampened by O3. We found that elevated CO2 did not alter gross N transformation rates. Elevated O3 significantly reduced gross N mineralization and microbial biomass N, and effects were consistent among species. We also observed significant interactions between CO2 and O3: (i) gross N mineralization was greater under elevated CO2 (1.0 mg N kg?1 day?1) than in the presence of both CO2 and O3 (0.5 mg N kg?1 day?1) and (ii) gross NH4+ immobilization was also greater under elevated CO2 (0.8 mg N kg?1 day?1) than under CO2 plus O3 (0.4 mg N kg?1 day?1). We used a laboratory 15N tracer method to quantify transfer of inorganic N to organic pools. Elevated CO2 led to greater recovery of NH4+15N in microbial biomass and corresponding lower recovery in the extractable NO3? pool. Elevated CO2 resulted in a substantial increase in NO3?15N recovery in soil organic matter. We observed no O3 main effect and no CO2 by O3 interaction effect on 15N recovery in any soil pool. All of the above responses were most pronounced beneath Betula papyrifera and Populus tremuloides, which have grown more rapidly than Acer saccharum. Although elevated CO2 has increased plant productivity, the resulting increase in plant litter production has yet to overcome the influence of the pre‐existing pool of soil organic matter on soil microbial activity and rates of N cycling. Ozone reduces plant litter inputs and also appears to affect the composition of plant litter in a way that reduces microbial biomass and activity.  相似文献   

8.
Responses of soil biota to elevated atmospheric carbon dioxide   总被引:16,自引:2,他引:14  
Increasing concentrations of atmospheric CO2 could have dramatic effects upon terrestrial ecosystems including changes in ecosystem structure, nutrient cycling rates, net primary production, C source-sink relationships and successional patterns. All of these potential changes will be constrained to some degree by below ground processes and mediated by responses of soil biota to indirect effects of CO2 enrichment. A review of our current state of knowledge regarding responses of soil biota is presented, covering responses of mycorrhizae, N-fixing bacteria and actinomycetes, soil microbiota, plant pathogens, and soil fauna. Emphasis will be placed on consequences to biota of increasing C input through the rhizosphere and resulting feedbacks to above ground systems. Rising CO2 may also result in altered nutrient concentrations of plant litter, potentially changing decomposition rates through indirect effects upon decomposer communities. Thus, this review will also cover current information on decomposition of litter produced at elevated CO2. Summary Predictably, the responses of soil biota to CO2 enrichment and the degree of experimental emphasis on them increase with proximity to, and intimacy with, roots. Symbiotic associations are all stimulated to some degree. Total plant mycorrhization increases with elevated CO2. VAM fungi increase proportionately with fine root length/mass increase. ECM fungi, however, exhibit greater colonization per unit root length/mass at elevated CO2 than at current atmospheric levels. Total N-fixation per plant increases in all species examined, although the mechanisms of increase, as well as the eventual benefit to the host relative to N uptake may vary. Microbial responses are unclear. The assumption that changes in root exudation will drive increased mineralization and facilitate nutrient uptake should be examined experimentally, in light of recent models. Microbial results to date suggest that metabolic activity (measured as changes in process rates) is stimulated by root C input, rather than population size (measured by cell or colony counts). Insufficient evidence exists to predict responses of either soil-borne plant pathogens or soil fauna (i.e., food web responses). These are areas requiring attention, the first for its potential to limit ecosystem production through disease and the second because of its importance to nutrient cycling processes. Preliminary data on foliar litter decomposition suggests that neither nutrient ratios nor decomposition rates will be affected by rising CO2. This is another important area that may be better understood as the number of longer term studies with more realistic CO2 exposures increase. Evidence continues to mount that C fixation increases with CO2 enrichment and that the bulk of this C enters the belowground component of ecosystems. The global fate and effects of this additional C may affect all hierarchical levels, from organisms to ecosystems, and will be largely determined by responses of soil biota.  相似文献   

9.
Elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations have both been shown to affect plant tissue quality, which in turn could affect litter decomposition and carbon (C) and nutrient cycling. In order to evaluate effects of climate change on litter chemistry, needle litter was collected from Scots pine (Pinus sylvestris L.) saplings exposed to elevated CO2 or O3 concentration and their combination over three growing seasons in open‐top chambers. The decomposition of needle litter was followed for 19 months in a pine forest. During decomposition, needle samples for secondary compound analysis were collected and the mass loss of needles was followed. Main nutrients and total phenolics were analysed from litter in the beginning and at the end of the experiment. After 19‐month decomposition, the accumulated mass loss was about 34%; however, no significant differences were found in decomposition rates of needle litter between various treatments. Concentrations of total monoterpenes were about 4%, total resin acids 21% and total phenolics 14% of the initial concentrations in litter after 19‐month decomposition. In the beginning of litter decomposition, concentrations of individual monoterpenes –α‐pinene and β‐pinene – were significantly higher in needle litter grown under elevated CO2. However, concentrations of total monoterpenes during the whole decomposition period were not significantly affected by CO2 or O3 treatments. Concentrations of some individual and total resin acids were higher in needle litter grown under elevated CO2 or O3 than under ambient air. There were no significant differences in concentrations of total phenolics as well as nitrogen (N) and the main nutrient concentrations between treatments during decomposition. High concentrations of monoterpenes and resin acids in needles might slightly delay C recycling in forest soils. It is concluded that elevated CO2 and O3 concentrations do not have remarkable impacts on litter decomposition processes in Scots pine forests.  相似文献   

10.
Vegetation growth characteristics influence ecosystem biogeochemistry and must be incorporated in models used to project biogeochemical responses to climate variations. We used a multiple-element limitation model (MEL) to examine how variations in nutrient use efficiency (NUE) and net primary production to biomass ratio (nPBR) affect changes in ecosystem C stocks after an increase in temperature and atmospheric CO2. nPBR influences the initial rates of response, but the magnitude and direction of long-term responses are determined by NUE. MEL was used to simulate responses to climate change in communities composed of two species differing in nPBR and/or NUE. When only nPBR differed between the species, the high-nPBR species outgrew the low-nPBR species early in the simulations, but the shift in dominance was transitory because of secondary N limitations. High-NUE species were less affected by secondary N limitations and were therefore favored under elevated CO2. Increased temperature stimulated N release from soil organic matter (SOM) and therefore favored low-NUE species. The combined release from C and N limitation under the combination of increased temperature and elevated CO2 favored high-NUE species. High C:N litter from high-NUE species limited the N-supply rate from SOM, which favors the dominance of the high-NUE species in the short term. However, in the long term increased litter production resulted in SOM accumulation, which reestablished a N supply rate favorable to the reestablishment and dominance of the low-NUE species. Conditions then reverted to a state favorable to the high-NUE species. Received 8 October 1998; accepted 9 April 1999.  相似文献   

11.
Rising atmospheric CO2 has been predicted to reduce litter decomposition as a result of CO2‐induced reductions in litter quality. However, available data have not supported this hypothesis in mesic ecosystems, and no data are available for desert or semi‐arid ecosystems, which account for more than 35% of the Earth's land area. The objective of our study was to explore controls on litter decomposition in the Mojave Desert using elevated CO2 and interannual climate variability as driving environmental factors. In particular, we sought to evaluate the extent to which decomposition is modulated by litter chemistry (C:N) and litter species and tissue composition. Naturally senesced litter was collected from each of nine 25 m diameter experimental plots, with six plots exposed to ambient [CO2] or 367 μL CO2 L?1 and three plots continuously fumigated with elevated [CO2] (550 μL CO2 L?1) using FACE technology beginning in April 1997. All litter collected in 1998 (a wet, or El Niño year; 306 mm precipitation) was pooled as was litter collected in 1999 (a dry year; 94 mm). Samples were allowed to decompose for 4 and 12 months starting in May 2001 in mesh litterbags in the locations from which litter was collected. Decomposition of litter produced under elevated CO2 and ambient CO2 did not differ. Litter produced in the wetter year showed more rapid initial decomposition (over the first 4 months) than that produced in the drier year (27±2% yr?1 or 7.8±0.7 g m?2 yr?1 for 1998 litter; 18±3% yr?1 or 2.2±0.4 g m?2 yr?1 for 1999 litter). C:N ratios of litter produced under elevated CO2 (wet year: 37±0.5; dry year: 42±2.5) were higher than those of litter produced under ambient CO2 (wet year: 34±1.1; dry year: 35±1.4). Litter production in the wet year (amb. CO2: 25.1±1.1 g m?2 yr?1; elev. CO2: 35.0±1.1 g m?2 yr?1) was more than twice as high as that in the dry year (amb. CO2: 11.6±1.7 g m?2, elev. CO2: 13.3±3.4 g m?2), and contained a greater proportion of Lycium pallidum and a lower proportion of Larrea tridentata than litter produced in the dry year. Decomposition, viewed across all treatments, decreased with increasing C:N ratios, decreased with increasing proportions of Larrea tridentata and increased with increasing proportions of Lycium pallidum and Lycium andersonii. Because litter C:N did not vary by litter production year, and CO2 did not alter decomposition or litter species/tissue composition, it is likely that the impact of year‐to‐year variation in precipitation on the proportion of key plant species in the litter may be the most important way in which litter decomposition will be modulated in the Mojave Desert under future rising atmospheric CO2.  相似文献   

12.
Soil organic matter (SOM) dynamics ultimately govern the ability of soil to provide long‐term C sequestration and the nutrients required for ecosystem productivity. Predicting belowground responses to elevated CO2 requires an integrated understanding of SOM transformations and the microbial activity that governs them. It remains unclear how the microorganisms upon which these transformations depend will function in an elevated CO2 world. This study examines SOM transformations and microbial metabolism in soils from the Duke Free Air Carbon Enrichment site in North Carolina, USA. We assessed microbial respiration and net nitrogen (N) mineralization in soils with and without elevated CO2 exposure during a 100‐day incubation. We also traced the depleted C isotopic signature of the supplemental CO2 into SOM and the soils' phospholipid fatty acids (PLFA), which serve as biomarkers for living cells. Cumulative net N mineralization in elevated CO2 soils was 50% that in control soils after a 100‐day incubation. Respiration was not altered with elevated CO2. C : N ratios of bulk SOM did not change with elevated CO2, but incubation data suggest that the C : N ratios of mineralized organic matter increased with elevated CO2. Values of SOM δ13C were depleted with elevated CO2 (?26.7±0.2 vs. ?30.2±0.3‰), reflecting the depleted signature of the supplemental CO2. We compared δ13C of individual PLFA with the δ13C of SOM to discern incorporation of the depleted C isotopic signature into soil microbial groups in elevated CO2 plots. PLFA i15:0, a15:0, and 10Met18:0 reflected significant incorporation of recently produced photosynthate, suggesting that the bacterial groups defined by these biomarkers are active metabolizers in elevated CO2 soils. At least one of these groups (actinomycetes, 10Met18:0) specializes in metabolizing less labile substrates. Because control plots did not receive an equivalent 13C tracer, we cannot determine from these data whether this group of organisms was stimulated by elevated CO2 compared with these organisms in control soils. Stimulation of this group, if it occurred in the elevated CO2 plot, would be consistent with a decline in the availability of mineralizable organic matter with elevated CO2, which incubation data suggest may be the case in these soils.  相似文献   

13.
Increasing rates of atmospheric nitrogen (N) deposition may reduce growth and accelerate decomposition of Sphagnum mosses in bogs. Sphagnum growth and rates of Sphagnum litter decomposition may also vary because of climate change as both processes are controlled by climatic factors. The initial purpose of this study was to assess if growth and litter decomposition of hummock and lawn Sphagnum species varied with increasing N input in a factorial mid‐term (2002–2005) experiment of N and phosphorus (P) addition, in a bog on the southern Alps of Italy. However, as the experimental period was characterized by an exceptional heat wave in summer 2003, we also explored the interacting effects of fertilization and strongly varying climate on growth and decomposition rates of Sphagnum. The heat wave implied strong dehydration of the upper Sphagnum layer even if precipitation in summer 2003 did not differ appreciably from the overall mean. Sphagnum production was somewhat depressed by high levels (3 g m−2 yr−1) of N addition without concomitant addition of P presumably because of nutrient imbalance in the tissues, but production rates were much lower than the overall means in 2003, when no effect of nutrient addition could be observed. Adding N at high level also increased the potential decay of Sphagnum litter. Higher CO2 emission from N‐fertilized litter was due to amelioration of litter chemistry showing lower C/N quotients in the N‐fertilized treatments. Rates of CO2 emission from incubated litter also were more strongly affected by water content than by nutrient status, with practically no CO2 emission detected when litter was dry. We conclude that higher rates of atmospheric N availability input may depress Sphagnum growth because of P, and presumably potassium, (co‐)limitation. Higher N availability is also expected to promote potential decay of Sphagnum litter by ameliorating litter chemistry. However, both effects are less pronounced if the growing Sphagnum apex and the underlying senescing tissues dry out.  相似文献   

14.
Nitrogen availability in terrestrial ecosystems strongly influences plant productivity and nutrient cycling in response to increasing atmospheric carbon dioxide (CO2). Elevated CO2 has consistently stimulated forest productivity at the Duke Forest free‐air CO2 enrichment experiment throughout the decade‐long experiment. It remains unclear how the N cycle has changed with elevated CO2 to support this increased productivity. Using natural‐abundance measures of N isotopes together with an ecosystem‐scale 15N tracer experiment, we quantified the cycling of 15N in plant and soil pools under ambient and elevated CO2 over three growing seasons to determine how elevated CO2 changed N cycling between plants, soil, and microorganisms. After measuring natural‐abundance 15N differences in ambient and CO2‐fumigated plots, we applied inorganic 15N tracers and quantified the redistribution of 15N for three subsequent growing seasons. The natural abundance of leaf litter was enriched under elevated compared to ambient CO2, consistent with deeper rooting and enhanced N mineralization. After tracer application, 15N was initially retained in the organic and mineral soil horizons. Recovery of 15N in plant biomass was 3.5 ± 0.5% in the canopy, 1.7 ± 0.2% in roots and 1.7 ± 0.2% in branches. After two growing seasons, 15N recoveries in biomass and soil pools were not significantly different between CO2 treatments, despite greater total N uptake under elevated CO2. After the third growing season, 15N recovery in trees was significantly higher in elevated compared to ambient CO2. Natural‐abundance 15N and tracer results, taken together, suggest that trees growing under elevated CO2 acquired additional soil N resources to support increased plant growth. Our study provides an integrated understanding of elevated CO2 effects on N cycling in the Duke Forest and provides a basis for inferring how C and N cycling in this forest may respond to elevated CO2 beyond the decadal time scale.  相似文献   

15.
Temperate forest soil organic carbon (C) represents a significant pool of terrestrial C that may be released to the atmosphere as CO2 with predicted changes in climate. To address potential feedbacks between climate change and terrestrial C turnover, we quantified forest soil C response to litter type and temperature change as a function of soil parent material. We collected soils from three conifer forests dominated by ponderosa pine (PP; Pinus ponderosa Laws.); white fir [WF; Abies concolor (Gord. and Glend.) Lindl.]; and red fir (RF; Abies magnifica A. Murr.) from each of three parent materials, granite (GR), basalt (BS), and andesite (AN) in the Sierra Nevada of California. Field soils were incubated at their mean annual soil temperature (MAST), with addition of native 13C‐labeled litter to characterize soil C mineralization under native climate conditions. Further, we incubated WF soils at PP MAST with 13C‐labeled PP litter, and RF soils at WF MAST with 13C‐labeled WF litter to simulate a migration of MAST and litter type, and associated change in litter quality, up‐elevation in response to predicted climate warming. Results indicated that total CO2 and percent of CO2 derived from soil C varied significantly by parent material, following the pattern of GR>BS>AN. Regression analyses indicated interactive control of C mineralization by litter type and soil minerals. Soils with high short‐range‐order (SRO) mineral content exhibited little response to varying litter type, whereas PP litter enriched in acid‐soluble components promoted a substantial increase of extant soil C mineralization in soils of low SRO mineral content. Climate change conditions increased soil C mineralization greater than 200% in WF forest soils. In contrast, little to no change in soil C mineralization was noted for the RF forest soils, suggesting an ecosystem‐specific climate change response. The climate change response varied by parent material, where AN soils exhibited minimal change and GR and BS soils mineralized substantially greater soil C. This study corroborates the varied response in soil C mineralization by parent material and highlights how the soil mineral assemblage and litter type may interact to control conifer forest soil C response to climate change.  相似文献   

16.
Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single‐factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old‐field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze–thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming‐induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant‐available N may overestimate the increase in terrestrial productivity and the magnitude of an important negative feedback to climate change.  相似文献   

17.
Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2O emissions.  相似文献   

18.
Responses of forest ecosystems to increased atmospheric CO2 concentration have been studied in few free‐air CO2 enrichment (FACE) experiments during last two decades. Most studies focused principally on the overstory trees with little attention given to understory vegetation. Despite its small contribution to total productivity of an ecosystem, understory vegetation plays an important role in predicting successional dynamics and future plant community composition. Thus, the response of understory vegetation in Pinus taeda plantation at the Duke Forest FACE site after 15–17 years of exposure to elevated CO2, 6–13 of which with nitrogen (N) amendment, was examined. Aboveground biomass and density of the understory decreased across all treatments with increasing overstory leaf area index (LAI). However, the CO2 and N treatments had no effect on aboveground biomass, tree density, community composition, and the fraction of shade‐tolerant species. The increases of overstory LAI (~28%) under elevated CO2 resulted in a reduction of light available to the understory (~18%) sufficient to nullify the expected growth‐enhancing effect of elevated CO2 on understory vegetation.  相似文献   

19.
In recent years, there has been an increase in research to understand how global changes’ impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta‐analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity.  相似文献   

20.
Elevated atmospheric carbon dioxide concentrations [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. This study contributes to our broad goal of understanding the causes and consequences of increased fine‐root production and mortality under elevated [CO2] by examining potential gross nitrogen (N) cycling rates throughout the soil profile. Our study was conducted in a CO2‐enriched sweetgum (Liquidambar styraciflua L.) plantation in Oak Ridge, TN, USA. We used 15N isotope pool dilution methodology to measure potential gross N cycling rates in laboratory incubations of soil from four depth increments to 60 cm. Our objectives were twofold: (1) to determine whether N is available for root acquisition in deeper soil and (2) to determine whether elevated [CO2], which has increased inputs of labile C resulting from greater fine‐root mortality at depth, has altered N cycling rates. Although gross N fluxes declined with soil depth, we found that N is potentially available for roots to access, especially below 15 cm depth where rates of microbial consumption of mineral N were reduced relative to production. Overall, up to 60% of potential gross N mineralization and 100% of potential net N mineralization occurred below 15 cm depth at this site. This finding was supported by in situ measurements from ion‐exchange resins, where total inorganic N availability at 55 cm depth was equal to or greater than N availability at 15 cm depth. While it is likely that trees grown under elevated [CO2] are accessing a larger pool of inorganic N by mining deeper soil, we found no effect of elevated [CO2] on potential gross or net N cycling rates. Thus, increased root exploration of the soil volume under elevated [CO2] may be more important than changes in potential gross N cycling rates in sustaining forest responses to rising atmospheric CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号