首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Migration among populations is widely thought to undermine adaptive divergence, assuming gene flow arises from random movement of individuals. If individuals instead differ in dispersal behavior, phenotype‐dependent dispersal can reduce the effective rate of gene flow or even facilitate divergence. For example, parapatric populations of lake and stream stickleback tend to actively avoid dispersing into the adjoining habitat. However, the behavioral basis of this nonrandom dispersal was previously unknown. Here, we show that lake and stream stickleback exhibit divergent rheotactic responses (behavioral response to currents). During the breeding season, wild‐caught inlet stream stickleback were better than lake fish at maintaining position in currents, faced upstream more, and spent more time in low‐current areas. As a result, stream fish expended significantly less energy in currents than did lake fish. These divergent rheotactic responses likely contribute to divergent habitat use by lake and stream stickleback. Although rheotactic differences were absent in nonbreeding fish, divergent behavior of breeding‐season fish may suffice for assortative mating by breeding location. The resulting reproductive isolation between lake and stream fish may explain the fine‐scale evolutionary differentiation in parapatric stickleback populations.  相似文献   

2.
Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’ daily dispersal neighborhood where gene flow is expected to be strong.  相似文献   

3.
Genetic divergence between populations is shaped by a combination of drift, migration, and selection, yielding patterns of isolation‐by‐distance (IBD) and isolation‐by‐environment (IBE). Unfortunately, IBD and IBE may be confounded when comparing divergence across habitat boundaries. For instance, parapatric lake and stream threespine stickleback (Gasterosteus aculeatus) may have diverged due to selection against migrants (IBE), or mere spatial separation (IBD). To quantitatively partition the strength of IBE and IBD, we used recently developed population genetic software (BEDASSLE) to analyze partial genomic data from three lake‐stream clines on Vancouver Island. We find support for IBD within each of three outlet streams (unlike prior studies of lake‐stream stickleback). In addition, we find evidence for IBE (controlling for geographic distance): the genetic effect of habitat is equivalent to geographic separation of ~1.9 km of IBD. Remarkably, of our three lake‐stream pairs, IBE is strongest where migration between habitats is easiest. Such microgeographic genetic divergence would require exceptionally strong divergent selection, which multiple experiments have failed to detect. Instead, we propose that nonrandom dispersal (e.g., habitat choice) contributes to IBE. Supporting this conclusion, we show that the few migrants between habitats are a nonrandom subset of the phenotype distribution of the source population.  相似文献   

4.
Selection against migrants is key to maintaining genetic differences between populations linked by dispersal. However, migrants may mitigate fitness costs by proactively choosing among available habitats, or by phenotypic plasticity. We previously reported that a reciprocal transplant of lake and stream stickleback (Gasterosteus aculeatus) found little support for divergent selection. Here, we revisit that experiment to test whether phenotypic plasticity in gene expression may have helped migrants adjust to unfamiliar habitats. We measured gene expression profiles in stickleback via TagSeq and tested whether migrants between lake and stream habitats exhibited a plastic response to their new environment that allowed them to converge on the expression profile of adapted natives. We report extensive gene expression differences between genetically divergent lake and stream stickleback, despite gene flow . But for many genes, expression was highly plastic. Fish transplanted into the adjoining habitat partially converged on the expression profile typical of natives from their new habitat. This suggests that expression plasticity may soften the impact of migration. Nonetheless, lake and stream fish differed in survival rates and parasite infection rates in our study, implying that expression plasticity is not fast or extensive enough to fully homogenize fish performance.  相似文献   

5.
Gene flow between ecologically divergent populations can prevent local adaptation, resulting in lower mean fitness and directional selection within a population. Such maladaptation should tend to be stronger in populations receiving a relatively larger fraction of immigrants. We test this expectation by comparing the strength of selection in a pair of three-spine stickleback populations in adjoining but unequal-sized lake basins in British Columbia. A larger deeper basin is connected to a smaller shallower basin by a short channel that allows extensive migration between populations. The two basins contain distinct habitats and prey communities, and stickleback stomach contents and isotope ratios differ accordingly. Trophic morphology is correlated with diet, so we would expect these ecological differences to be accompanied by morphological divergence. However, high gene flow appears to constrain adaptive divergence: microsatellites indicate that the two basins represent a single panmictic gene pool, and phenotypic divergence is very subtle. As a result, fish in the smaller lake basin are subject to persistent directional selection towards a more benthic phenotype, whereas the larger population exhibits no significant selection. The results illustrate the potentially asymmetrical effect of migration-selection balance, and its effect on fitness within populations.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 273–287.  相似文献   

6.
Parallel phenotypic evolution in similar environments has been well studied in evolutionary biology; however, comparatively little is known about the influence of determinism and historical contingency on the nature, extent and generality of this divergence. Taking advantage of a novel system containing multiple lake–stream stickleback populations, we examined the extent of ecological, morphological and genetic divergence between three‐spined stickleback present in parapatric environments. Consistent with other lake–stream studies, we found a shift towards a deeper body and shorter gill rakers in stream fish. Morphological shifts were concurrent with changes in diet, indicated by both stable isotope and stomach contents analysis. Performing a multivariate test for shared and unique components of evolutionary response to the distance gradient from the lake, we found a strong signature of parallel adaptation. Nonparallel divergence was also present, attributable mainly to differences between river locations. We additionally found evidence of genetic substructuring across five lake–stream transitions, indicating that some level of reproductive isolation occurs between populations in these habitats. Strong correlations between pairwise measures of morphological, ecological and genetic distance between lake and stream populations supports the hypothesis that divergent natural selection between habitats drives adaptive divergence and reproductive isolation. Lake–stream stickleback divergence in Lough Neagh provides evidence for the deterministic role of selection and supports the hypothesis that parallel selection in similar environments may initiate parallel speciation.  相似文献   

7.
The constraining effect of gene flow on adaptive divergence is often inferred but rarely quantified. We illustrate ways of doing so using stream populations of threespine stickleback (Gasterosteus aculeatus) that experience different levels of gene flow from a parapatric lake population. In the Misty Lake watershed (British Columbia, Canada), the inlet stream population is morphologically divergent from the lake population, and presumably experiences little gene flow from the lake. The outlet stream population, however, shows an intermediate phenotype and may experience more gene flow from the lake. We first used microsatellite data to demonstrate that gene flow from the lake is low into the inlet but high into the outlet, and that gene flow from the lake remains relatively constant with distance along the outlet. We next combined gene flow data with morphological and habitat data to quantify the effect of gene flow on morphological divergence. In one approach, we assumed that inlet stickleback manifest well-adapted phenotypic trait values not constrained by gene flow. We then calculated the deviation between the observed and expected phenotypes for a given habitat in the outlet. In a second approach, we parameterized a quantitative genetic model of adaptive divergence. Both approaches suggest a large impact of gene flow, constraining adaptation by 80-86% in the outlet (i.e., only 14-20% of the expected morphological divergence in the absence of gene flow was observed). Such approaches may be useful in other taxa to estimate how important gene flow is in constraining adaptive divergence in nature.  相似文献   

8.
Divergent selection between contrasting habitats can sometimes drive adaptive divergence and the evolution of reproductive isolation in the face of initially high gene flow. "Progress" along this ecological speciation pathway can range from minimal divergence to full speciation. We examine this variation for threespine stickleback fish that evolved independently across eight lake-stream habitat transitions. By quantifying stickleback diets, we show that lake-stream transitions usually coincide with limnetic-benthic ecotones. By measuring genetically based phenotypes, we show that these ecotones often generate adaptive divergence in foraging morphology. By analyzing neutral genetic markers (microsatellites), we show that adaptive divergence is often associated with the presence of two populations maintaining at least partial reproductive isolation in parapatry. Coalescent-based simulations further suggest that these populations have diverged with gene flow within a few thousand generations, although we cannot rule out the possibility of phases of allopatric divergence. Finally, we find striking variation among the eight lake-stream transitions in progress toward ecological speciation. This variation allows us to hypothesize that progress is generally promoted by strong divergent selection and limited dispersal across the habitat transitions. Our study thus makes a case for ecological speciation in a parapatric context, while also highlighting variation in the outcome.  相似文献   

9.
Gene flow is widely thought to homogenize spatially separate populations, eroding effects of divergent selection. The resulting theory of ‘migration–selection balance’ is predicated on a common assumption that all genotypes are equally prone to dispersal. If instead certain genotypes are disproportionately likely to disperse, then migration can actually promote population divergence. For example, previous work has shown that threespine stickleback (Gasterosteus aculeatus) differ in their propensity to move up‐ or downstream (‘rheotactic response’), which may facilitate genetic divergence between adjoining lake and stream populations of stickleback. Here, we demonstrate that intraspecific variation in a sensory system (superficial neuromast lines) contributes to this variation in swimming behaviour in stickleback. First, we show that intact neuromasts are necessary for a typical rheotactic response. Next, we showed that there is heritable variation in the number of neuromasts and that stickleback with more neuromasts are more likely to move downstream. Variation in pectoral fin shape contributes to additional variation in rheotactic response. These results illustrate how within‐population quantitative variation in sensory and locomotor traits can influence dispersal behaviour, thereby biasing dispersal between habitats and favouring population divergence.  相似文献   

10.
Major histocompatibility complex (MHC) genes encode proteins that play a central role in vertebrates' adaptive immunity to parasites. MHC loci are among the most polymorphic in vertebrates' genomes, inspiring many studies to identify evolutionary processes driving MHC polymorphism within populations and divergence between populations. Leading hypotheses include balancing selection favouring rare alleles within populations, and spatially divergent selection. These hypotheses do not always produce diagnosably distinct predictions, causing many studies of MHC to yield inconsistent or ambiguous results. We suggest a novel strategy to distinguish balancing vs. divergent selection on MHC, taking advantage of natural admixture between parapatric populations. With divergent selection, individuals with immigrant alleles will be more infected and less fit because they are susceptible to novel parasites in their new habitat. With balancing selection, individuals with locally rare immigrant alleles will be more fit (less infected). We tested these contrasting predictions using three‐spine stickleback from three replicate pairs of parapatric lake and stream habitats. We found numerous positive and negative associations between particular MHC IIβ alleles and particular parasite taxa. A few allele–parasite comparisons supported balancing selection, and others supported divergent selection between habitats. But, there was no overall tendency for fish with immigrant MHC alleles to be more or less heavily infected. Instead, locally rare MHC alleles (not necessarily immigrants) were associated with heavier infections. Our results illustrate the complex relationship between MHC IIβ allelic variation and spatially varying multispecies parasite communities: different hypotheses may be concurrently true for different allele–parasite combinations.  相似文献   

11.
The relative importance of ecological selection and geographical isolation in promoting and constraining genetic and phenotypic differentiation among populations is not always obvious. Interacting with divergent selection, restricted opportunity for gene flow may in some cases be as much a cause as a consequence of adaptation, with the latter being a hallmark of ecological speciation. Ecological speciation is well studied in parts of the native range of the three‐spined stickleback. Here, we study this process in a recently invaded part of its range. Switzerland was colonized within the past 140 years from at least three different colonization events involving different stickleback lineages. They now occupy diverse habitats, ranging from small streams to the pelagic zone of large lakes. We use replicated systems of parapatric lake and stream populations, some of which trace their origins to different invasive lineages, to ask (i) whether phenotypic divergence occurred among populations inhabiting distinct habitats, (ii) whether trajectories of phenotypic divergence follow predictable parallel patterns and (iii) whether gene flow constrains divergent adaptation or vice versa. We find consistent phenotypic divergence between populations occupying distinct habitats. This involves parallel evolution in several traits with known ecological relevance in independent evolutionary lineages. Adaptive divergence supersedes homogenizing gene flow even at a small spatial scale. We find evidence that adaptive phenotypic divergence places constraints on gene flow over and above that imposed by geographical distance, signalling the early onset of ecological speciation.  相似文献   

12.
To what extent are patterns of biological diversification determined by natural selection? We addressed this question by exploring divergence in foraging morphology of threespine stickleback fish inhabiting lake and stream habitats within eight independent watersheds. We found that lake fish generally displayed more developed gill structures and had more streamlined bodies than did stream fish. Diet analysis revealed that these morphological differences were associated with limnetic vs. benthic foraging modes, and that the extent of morphological divergence within watersheds reflected differences in prey resources utilized by lake and stream fish. We also found that patterns of divergence were unrelated to patterns of phenotypic trait (co)variance within populations (i.e. the ‘line of least resistance’). Instead, phenotypic (co)variances were more likely to have been shaped by adaptation to lake vs. stream habitats. Our study thus implicates natural selection as a strong deterministic force driving morphological diversification in lake–stream stickleback. The strength of this inference was obtained by complementing a standard analysis of parallel divergence in means between discrete habitat categories (lake vs. stream) with quantitative estimates of selective forces and information on trait (co)variances.  相似文献   

13.
Molecular comparisons of populations diverging into ecologically different environments often reveal strong differentiation in localized genomic regions, with the remainder of the genome being weakly differentiated. This pattern of heterogeneous genomic divergence, however, is rarely connected to direct measurements of fitness differences among populations. We here do so by performing a field enclosure experiment in threespine stickleback fish residing in a lake and in three replicate adjoining streams, and displaying weak yet heterogeneous genomic divergence between these habitats. Tracking survival over 29 weeks, we consistently find that lake genotypes transplanted into the streams suffer greatly reduced viability relative to local stream genotypes and that the performance of F1 hybrid genotypes is intermediate. This observed selection against migrants and hybrids combines to a total reduction in gene flow from the lake into streams of around 80%. Overall, our study identifies a strong reproductive barrier between parapatric stickleback populations, and cautions against inferring weak fitness differences between populations exhibiting weak overall genomic differentiation.  相似文献   

14.
Collin H  Fumagalli L 《Molecular ecology》2011,20(21):4490-4502
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.  相似文献   

15.
Eco‐evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.  相似文献   

16.
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated.  相似文献   

17.
Introgressive hybridization may erode phenotypic divergence along environmental gradients, collapsing locally adapted populations into a hybrid swarm. Alternatively, introgression may promote phenotypic divergence by providing variation on which natural selection can act. In freshwater fishes, water flow often selects for divergent morphological traits in lake versus stream habitats. We tested the effects of introgression on lake–stream morphological divergence in the minnow Owens Tui Chub (Siphateles bicolor snyderi), which has been rendered endangered by introgession from the introduced Lahontan Tui Chub (Siphateles bicolor obesa). Using geometric morphometric analysis of 457 individual Tui Chub from thirteen populations, we found that both native and introgressing parent taxa exhibited divergent body and caudal fin shapes in lake versus stream habitats, but their trajectories of divergence were distinct. In contrast, introgressed populations exhibited intermediate body and caudal fin shapes that were not differentiated by habitat type, indicating that introgression has eroded phenotypic divergence along the lentic–lotic gradient throughout the historic range of the Owens Tui Chub. Individuals within hybrid populations were less morphologically variable than those within parent populations, suggesting hybrid adaptation to selective agents other than water flow or loss of variance by drift.  相似文献   

18.
Life history divergence between populations inhabiting ecologically distinct habitats might be a potent source of reproductive isolation, but has received little attention in the context of speciation. We here test for life history divergence between threespine stickleback inhabiting Lake Constance (Central Europe) and multiple tributary streams. Otolith analysis shows that lake fish generally reproduce at two years of age, while their conspecifics in all streams have shifted to a primarily annual life cycle. This divergence is paralleled by a striking and consistent reduction in body size and fecundity in stream fish relative to lake fish. Stomach content analysis suggests that life history divergence might reflect a genetic or plastic response to pelagic versus benthic foraging modes in the lake and the streams. Microsatellite and mitochondrial markers further reveal that life history shifts in the different streams have occurred independently following the colonization by Lake Constance stickleback, and indicate the presence of strong barriers to gene flow across at least some of the lake-stream habitat transitions. Given that body size is known to strongly influence stickleback mating behavior, these barriers might well be related to life history divergence.  相似文献   

19.
Speciation can be initiated by adaptive divergence between populations in ecologically different habitats, but how sexually based reproductive barriers contribute to this process is less well understood. We here test for sexual isolation between ecotypes of threespine stickleback fish residing in adjacent lake and stream habitats in the Lake Constance basin, Central Europe. Mating trials exposing females to pairings of territorial lake and stream males in outdoor mesocosms allowing for natural reproductive behaviour reveal that mating occurs preferentially between partners of the same ecotype. Compared to random mating, this sexual barrier reduces gene flow between the ecotypes by some 36%. This relatively modest strength of sexual isolation is surprising because comparing the males between the two ecotypes shows striking differentiation in traits generally considered relevant to reproductive behaviour (body size, breeding coloration, nest size). Analysing size differences among the individuals in the mating trials further indicates that assortative mating is not related to ecotype differences in body size. Overall, we demonstrate that sexually based reproductive isolation promotes divergence in lake–stream stickleback along with other known reproductive barriers, but we also caution against inferring strong sexual isolation from the observation of strong population divergence in sexually relevant traits.  相似文献   

20.
Rapid phenotypic diversification during biological invasions can either arise by adaptation to alternative environments or by adaptive phenotypic plasticity. Where experimental evidence for adaptive plasticity is common, support for evolutionary diversification is rare. Here, we performed a controlled laboratory experiment using full-sib crosses between ecologically divergent threespine stickleback populations to test for a genetic basis of adaptation. Our populations are from two very different habitats, lake and stream, of a recently invaded range in Switzerland and differ in ecologically relevant morphological traits. We found that in a lake-like food treatment lake fish grow faster than stream fish, resembling the difference among wild type individuals. In contrast, in a stream-like food treatment individuals from both populations grow similarly. Our experimental data suggest that genetically determined diversification has occurred within less than 140 years after the arrival of stickleback in our studied region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号