首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We have examined the role of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) synaptobrevin-2/vesicle-associated membrane protein (VAMP)-2 in neutrophil exocytosis. VAMP-2, localized in the membranes of specific and gelatinase-containing tertiary granules in resting human neutrophils, resulted translocated to the cell surface following neutrophil activation under experimental conditions that induced exocytosis of specific and tertiary granules. VAMP-2 was also found on the external membrane region of granules docking to the plasma membrane in activated neutrophils. Specific Abs against VAMP-2 inhibited Ca(2+) and GTP-gamma-S-induced exocytosis of CD66b-enriched specific and tertiary granules, but did not affect exocytosis of CD63-enriched azurophilic granules, in electropermeabilized neutrophils. Tetanus toxin disrupted VAMP-2 and inhibited exocytosis of tertiary and specific granules. Activation of neutrophils led to the interaction of VAMP-2 with the plasma membrane Q-SNARE syntaxin 4, and anti-syntaxin 4 Abs inhibited exocytosis of specific and tertiary granules in electropermeabilized neutrophils. Immunoelectron microscopy showed syntaxin 4 on the plasma membrane contacting with docked granules in activated neutrophils. These data indicate that VAMP-2 mediates exocytosis of specific and tertiary granules, and that Q-SNARE/R-SNARE complexes containing VAMP-2 and syntaxin 4 are involved in neutrophil exocytosis.  相似文献   

2.
Chemoattractants, used at concentrations to invoke optimal neutrophil chemotaxis, induce rapid changes in neutrophils such as a transient increase in intracellular Ca2+ ([Ca2+]i). We have previously observed that neutrophils adhering to cytokine-activated endothelial cells (EC) also respond with a rapid rise in [Ca2+]i caused by an endothelial membrane-bound form of platelet-activating factor. After preloading with the intracellular Ca(2+)-chelator bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA/AM), neutrophils were no longer able to respond with a rapid rise in [Ca2+]i toward the chemoattractant FMLP or to rIL-1 beta-pretreated EC. These neutrophils were still able to adhere and migrate under the conditions tested. The only difference was that the BAPTA/AM-treated neutrophils migrated a little slower than untreated control neutrophils. This discrepancy was not observed at later time points. The BAPTA/AM-preloaded neutrophils did not differ from unloaded neutrophils in actin polymerization responses. Whereas untreated neutrophils demonstrated an up-regulation of the specific granule markers CD11b, CD45, and CD67 during migration (without any release from the azurophil granules), the BAPTA/AM pretreatment completely prevented this process. The BAPTA/AM-preloaded neutrophils did not release vitamin B12-binding protein from the specific granules upon treatment with FMLP. The down-modulation of the selectin member LAM-1, as seen upon neutrophil activation, was not affected by BAPTA/AM pretreatment of the neutrophils. Thus, neither the rapid rise in [Ca2+]i nor specific granule fusion with the plasma membrane constitute a prerequisite for neutrophil migration across resting or cytokine-activated EC.  相似文献   

3.
We have used a continuous spectrofluorimetric method to analyse the role of cytosolic free Ca2+ ([Ca2+]i) in the lysosomal enzyme release from the azurophilic granules in human neutrophils stimulated with f-Met-Leu-Phe (fMLP) in the presence of cytochalasin B. Measurements were performed with the β-glucuronidase substrate 4-methylumbelliferyl-β- -glucuronide. We found that the transient rise in [Ca2+]i induced by fMLP is a necessary signal to obtain to obtain maximal degranulation. When this Ca2+ transient is prevented by the Ca2+ chelator BAPTA, degranulation can still be induced by a stimulated Ca2+ influx, albeit to a lower extent. We also studied the degranulation process in the neutrophils of a patient with a generalized chemotactic defect. Release of β-glucuronidase from the patient's neutrophils could not be induced despite the occurrence of a normal Ca2+ response and normal degranulation of specific granules. We conclude that, besides an increase in [Ca2+]i], an additional signal is required for the fusion of azurophilic granules with the plasma membrane in human neutrophils.  相似文献   

4.
In order to examine the role of osmotic forces in degranulation, the effects of solutes and osmolality on granule secretion were explored using both FMLP-stimulated, intact neutrophils and Ca2+-stimulated, permeabilized cells. We employed a HEPES-based buffer system which was supplemented with: a) permeant (KCl or NaCl) or impermeant (Na-isethionate or choline-Cl) ions, or b) permeant (urea) or impermeant (sucrose) uncharged solutes. Intact and permeabilized cells had significantly different solute requirements for degranulation. FMLP-stimulated release from intact cells was supported by NaCl or Na-isethionate greater than KCl greater than choline-Cl or sucrose greater than urea. In contrast, the rank order of Ca2+-stimulated release from permeabilized cells was choline-Cl greater than Na-isethionate, KCl, or NaCl greater than sucrose greater than urea. Hypo-osmotic conditions caused increased levels of background granule release from both intact and permeabilized neutrophils. However, hypo-osmolality inhibited both FMLP-stimulated degranulation from intact cells and Ca2+-induced release from permeabilized neutrophils. While hyperosmotic conditions inhibited stimulated release from intact cells, this inhibition was much less pronounced in permeabilized cells when the granules were directly exposed to these solutions. In fact, hyperosmotic sucrose greatly enhanced Ca2+-induced secretion. Although isolated specific and azurophil granules showed some lytic tendencies in hypo-osmotic buffers, the overall stability of the isolated granules did not indicate that swelling alone could effect degranulation. These results suggest that degranulation in permeabilized cells is neither due to nor driven by simple osmotic forces (under resting or stimulated conditions) and emphasize differences obtained by bathing both the granules and plasma membrane (as opposed to membranes alone) in various solutes.  相似文献   

5.
Leishmania parasites use polymorphonuclear neutrophils as intermediate hosts before their ultimate delivery to macrophages following engulfment of parasite-infected neutrophils. This leads to a silent and unrecognized entry of Leishmania into the macrophage host cell. Neutrophil function depends on its cytoplasmic granules, but their mobilization and role in how Leishmania parasites evade intracellular killing in neutrophils remain undetermined. Here, we have found by ultrastructural approaches that neutrophils ingested Leishmania major promastigotes, and azurophilic granules fused in a preferential way with parasite-containing phagosomes, without promoting parasite killing. Azurophilic granules, identified by the granule marker myeloperoxidase, also fused with Leishmania donovani-engulfed vacuoles in human neutrophils. In addition, the azurophilic membrane marker CD63 was also detected in the vacuole surrounding the parasite, and in the fusion of azurophilic granules with the parasite-engulfed phagosome. Tertiary and specific granules, involved in vacuole acidification and superoxide anion generation, hardly fused with Leishmania-containing phagosomes. L. major interaction with neutrophils did not elicit production of reactive oxygen species or mobilization of tertiary and specific granules. By using immunogold electron microscopy approaches in the engulfment of L. major and L. donovani by human neutrophils, we did not find a significant contribution of endoplasmic reticulum to the formation of Leishmania-containing vacuoles. Live Leishmania parasites were required to be optimally internalized by neutrophils. Our data suggest that Leishmania promastigotes modulate their uptake by neutrophils, and regulate granule fusion processes in a rather selective way to favor parasite survival in human neutrophils.  相似文献   

6.
《The Journal of cell biology》1989,109(6):3169-3182
We have localized several major extracellular matrix protein receptors in the specific granules of human polymorphonuclear (PMN) and monocytic leukocytes using double label immunoelectron microscopy (IEM) with ultrathin frozen sections and colloidal-gold conjugates. Rabbit antibodies to 67-kD human laminin receptor (LNR) were located on the inner surface of the specific granule membrane and within its internal matrix. LNR antigens co-distributed with lactoferrin, a marker of specific granules, but did not co-localize with elastase in azurophilic granules of PMNs. Further, CD11b/CD18 (leukocyte receptor for C3bi, fibrinogen, endothelial cells, and endotoxin), mammalian fibronectin receptor (FNR), and vitronectin receptor (VNR) antigens were also co- localized with LNR in PMN specific granules. A similar type of granule was found in monocytes which stained for LNR, FNR, VNR, CD18, and lysozyme. Activation of PMNs with either PMA, f-met-leu-phe (fMLP), tumor necrosis factor (TNF), or monocytic leukocytes with lipopolysaccharide (LPS), induced fusion of specific granules with the cell membrane and expression of both LNR and CD18 antigens on the outer cell surface. Further, stimulation led to augmented PMN adhesion on LN substrata, and six- to eightfold increases in specific binding of soluble LN that was inhibited by LNR antibody. These results indicate that four types of extracellular matrix receptors are located in leukocyte specific granules, and suggest that up-regulation of these receptors during inflammation may mediate leukocyte adhesion and extravasation. We have thus termed leukocyte specific granules adhesomes.  相似文献   

7.
The correct mobilization of cytoplasmic granules is essential for the proper functioning of human neutrophils in host defense and inflammation. In this study, we have found that human peripheral blood neutrophils expressed high levels of Rab27a, whereas Rab27b expression was much lower. This indicates that Rab27a is the predominant Rab27 isoform present in human neutrophils. Rab27a was up-regulated during neutrophil differentiation of HL-60 cells. Subcellular fractionation and immunoelectron microscopy studies of resting human neutrophils showed that Rab27a was mainly located in the membranes of specific and gelatinase-enriched tertiary granules, with a minor localization in azurophil granules. Rab27a was largely absent from CD35-enriched secretory vesicles. Tertiary and specific granule-located Rab27a population was translocated to the cell surface upon neutrophil activation with PMA that induced exocytosis of both tertiary and specific granules. Specific Abs against Rab27a inhibited Ca(2+) and GTP-gamma-S activation and PMA-induced exocytosis of CD66b-enriched tertiary and specific granules in electropermeabilized neutrophils, whereas secretion of CD63-enriched azurophil granules was scarcely affected. Human neutrophils lacked or expressed low levels of most Slp/Slac2 proteins, putative Rab27 effectors, suggesting that additional proteins should act as Rab27a effectors in human neutrophils. Our data indicate that Rab27a is a major component of the exocytic machinery of human neutrophils, modulating the secretion of tertiary and specific granules that are readily mobilized upon neutrophil activation.  相似文献   

8.
We have used a panel of monoclonal antibodies and lectins to examine the profile of surface molecule expression on human neutrophils that have undergone spontaneous apoptosis during in vitro culture. Neutrophil apoptosis was found to be accompanied by down-regulation of the immunoglobulin superfamily members PECAM-1 (CD31), ICAM-3 (CD50), CD66acde, and CD66b and the integrin-associated proteins CD63 and urokinase plasminogen activator receptor (CD87) that may alter the potential for adhesive interactions. Cellular interactions may be further influenced by the reduction of the expression of surface carbohydrate moieties, including sialic acid. Reduced expression of FcgammaRII (CD32), complement receptor type 1 (CD35) and receptors for pro-inflammatory mediators C5a (CD88) and TNFalpha (CD120b) associated with apoptosis might limit neutrophil responsiveness to stimuli that trigger degranulation responses. Although many of the receptors we have examined are expressed at reduced levels on apoptotic neutrophils, we found that there was differential loss of certain receptors (e.g. CD16, CD15 and CD120b) and increased expression of aminopeptidase-N (CD13). Together with our previous data showing that expression of certain molecules e.g. LFA-3 (CD58) is not altered during neutrophil apoptosis, these data are suggestive of specific changes in receptor mobilisation and shedding associated with apoptosis. Although reduced expression of CD63 (azurophilic granules) and CR1 (specific granules) indicates that granule mobilisation does not accompany apoptosis, a monoclonal antibody (BOB78), that recognises a 90 kDa antigen localised in intracellular granules, defines a subpopulation of apoptotic neutrophils that exhibit nuclear degradation yet retain intact plasma membranes. BOB78 positive neutrophils were found to bind biotinylated thrombospondin, suggesting that this mAb defines surface molecular changes associated with exposure of thrombospondin binding moieties.  相似文献   

9.
Intracellular location of T200 and Mo1 glycoproteins in human neutrophils   总被引:12,自引:0,他引:12  
Mo1 (CD11b), a glycoprotein heterodimer that is involved in cellular adhesion processes and functions as the C3bi receptor of human myeloid cells, and T200 (CD45), a panleukocyte glycoprotein family whose function is still not well understood, increased their expression in the plasma membrane of human neutrophils after exposure to various stimuli which induce degranulation, such as formylmethionylleucylphenylalanine or calcium ionophore A23187. This increment in the expression of both molecules shows a good correlation with the release to the extracellular environment of gelatinase, a marker for an intracellular organelle named "tertiary granule" (Mollinedo, F., and Schneider, D. L. (1984) J. Biol. Chem. 259, 7143-7150). Flow cytometry studies indicate that at least 50% of the total Mo1 and T200 molecules are located in intracellular organelles. Furthermore, the subcellular distribution of Mo1 and T200 glycoproteins in resting human neutrophils was investigated by immunoprecipitation of the radiolabeled membrane proteins obtained from the distinct subcellular fractions. Both Mo1 and T200 were mainly localized in tertiary or specific intracellular granules, which were resolved from the azurophilic granules as well as from the cell membrane fraction. These findings suggest that the mobilization of intracellular Mo1 and T200 to the plasma membrane may regulate early events occurring upon neutrophil activation.  相似文献   

10.
Digitonin-permeabilized neutrophils were exposed to micromolar levels of a variety of heavy metal cations and sulfhydryl oxidants to gain insight into the potential biochemical mechanisms underlying neutrophil degranulation. The results from this study suggest that the oxidation of intracellular sulfhydryl groups may play a role in neutrophil signal transduction. Evidence to support this conclusion is based on the observation that cupric phenanthroline and Cu2+/cysteine, agents reported to induce disulfide bond formation, evoke significant granule enzyme release when presented to permeabilized neutrophils. The stimulatory actions of these compounds occur in the absence of Ca2+ and are blocked by the sulfhydryl reducing agent, dithiothreitol. In addition, we observed marked potentiation of Ca2+-induced secretion by potentially physiological levels of Ni2+. Although we are unaware of any Ni2+-requiring enzymes in eukaryotic cells that are likely to be pertinent to degranulation, the ability of this divalent metal cation to lower the Ca2+ requirements for granule secretion suggests that it may play an important regulatory role in Ca2+-dependent processes. Finally, we observed significant granule release when permeabilized neutrophils were exposed to the heavy metal cations, Hg2+ and Ag+. The apparent stimulatory actions of these metals were the result of lysis rather than degranulation. Thus, the ability of these metals to lyse intracellular organelles such as lysosomal granules may contribute to their toxicological properties.  相似文献   

11.
CD63 is located on the basophilic granule membranes in resting basophils, mast cells, and platelets, and is also located on the plasma membranes of the cells. We constructed a CD63-GFP (green fluorescent protein) plasmid and introduced it into rat basophilic leukemia (RBL-2H3) cells to observe the movements of CD63 on degranulation. The movements of CD63-GFP were studied in living RBL cells by confocal laser scanning microscopy (CLSM). CD63-GFP, in which GFP was conjugated to the C-terminus of CD63, was located on both the granule membranes and the plasma membranes of RBL cells. The diameter of the fluorescent granules in the cytoplasm varied from 0.5 to 1.5 microm. Before antigen stimulation most granules with CD63-GFP hardly moved in RBL cells. However, after antigen stimulation the plasma membranes ruffled violently and the granules moved dramatically. They reached the plasma membranes in a few minutes and fused with them instantaneously. Analysis of the movement of each granule provided a new insight into the elementary process of degranulation. The velocity of the granule movement toward the plasma membranes on antigen stimulation was calculated to be 0.1+/-0.02 microm/s. This shows that the granules are able to reach the plasma membranes in 2 or 3 min if the diameter of the cells is 20 microm.  相似文献   

12.
In this study, we have investigated the Ca2+ requirements for the activation of phospholipase D by the tripeptide fMet-Leu-Phe (fMLP) in human neutrophils. EGTA inhibited the activation of phospholipase D (PLD) by 55% (n = 4). When the initial transient rise in [Ca2+]i was prevented by loading the cells with limited amounts of the Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), PLD activation was inhibited by 92% (n = 4). In the presence of both chelators, PLD activation was only 4% of control. In electropermeabilized neutrophils, too, the activation of PLD after the addition of fMLP strongly depends on the Ca2+ concentration, being almost absent with 100 nM free Ca2+ present and reaching maximum activation with a free [Ca2+] of 500 nM. We subsequently investigated the relationship between PLD activation and the activation of the respiratory burst. In neutrophils loaded with BAPTA/AM (10 microM), in which PLD activation was almost absent, a respiratory burst could be induced by fMLP, albeit with a much longer lag time. A respiratory burst could also be elicited by fMLP in electropermeabilized neutrophils incubated with 100 nM free Ca2+. This response, however, was strongly enhanced in the presence of 1 microM Ca2+. Our results indicate that changes in [Ca2+]i are essential for the activation of PLD by fMLP, but probably do not constitute the sole activation signal. In addition, our data provide evidence that PLD activation is important, but not necessary, for activation of the neutrophil respiratory burst.  相似文献   

13.
The glycoprotein Mo1 has previously been demonstrated to be on the cell surface and in the specific granule fraction of neutrophils and to be translocated to the cell surface during degranulation. It is not known, however, whether Mo1 is an integral membrane protein or a soluble, intragranular constituent loosely associated with the specific granule membrane. Purified neutrophils were disrupted by nitrogen cavitation and separated on Percoll density gradients into four fractions enriched for azurophilic granules, specific granules, plasma membrane, and cytosol, respectively. The glycoproteins in these fractions were labeled with 3H-borohydride reduction, extracted with Triton X-114, and immunoprecipitated with 60.3, an anti-Mo1 monoclonal antibody Mo1 was detected only in the specific granule and plasma membrane fractions and partitioned exclusively into the detergent-rich fraction consistent with Mo1 being an integral membrane protein. In addition, treatment of specific granule membranes with a high salt, high urea buffer to remove absorbed or peripheral proteins failed to dissociate Mo1. These data support the hypothesis that Mo1 is an integral membrane protein of plasma and specific granule membranes in human neutrophils.  相似文献   

14.

Background

New experimental approaches to the study of the neutrophil phagosome and bacterial killing prompted a reassessment of the usefulness of all-trans retinoic acid (ATRA)-differentiated HL-60 cells as a neutrophil model. HL-60 cells are special in that they possess azurophilic granules while lacking the specific granules with their associated oxidase components. The resulting inability to mount an effective intracellular respiratory burst makes these cells more dependent on other mechanisms when killing internalized bacteria.

Methodology/Principal Findings

In this work phagocytosis and phagosome-related responses of ATRA-differentiated HL-60 cells were compared to those earlier described in human neutrophils. We show that intracellular survival of wild-type S. pyogenes bacteria in HL-60 cells is accompanied by inhibition of azurophilic granule–phagosome fusion. A mutant S. pyogenes bacterium, deficient in M-protein expression, is, on the other hand, rapidly killed in phagosomes that avidly fuse with azurophilic granules.

Conclusions/Significance

The current data extend our previous findings by showing that a system lacking in oxidase involvement also indicates a link between inhibition of azurophilic granule fusion and the intraphagosomal fate of S. pyogenes bacteria. We propose that differentiated HL-60 cells can be a useful tool to study certain aspects of neutrophil phagosome maturation, such as azurophilic granule fusion.  相似文献   

15.
Sphingoid long-chain bases (sphinganine and sphingosine) have recently been shown to inhibit protein kinase C both in vitro [Y. Hannun et al. (1986) J. Biol. Chem. 261, 12604-12609] and in intact human neutrophils, in which they block activation of the superoxide-generating respiratory burst [E. Wilson et al. (1986) J. Biol. Chem. 261, 12616-12623]. In the present study we have used sphingosine to investigate the pathways for agonist-induced secretion of neutrophil granule contents. Induction of secretion of the specific granule component lactoferrin by a variety of agonists [phorbol 12-myristate-13-acetate (PMA), formyl-methionyl-leucyl-phenylalanine (fMLP), and calcium ionophore A23187] was completely inhibited by sphingosine with an ED50 of 6 to 10 microM. PMA-induced secretion of lysozyme (present in both the azurophilic and specific granules) was completely blocked with an ED50 of 10 microM, whereas fMLP-induced secretion was only about 50% inhibited. Secretion of the azurophilic granule proteins beta-glucuronidase and myeloperoxidase was activated by fMLP and A23187, but not by PMA, and was not affected by sphingosine. The use of A23187 in the presence of sphingosine allowed differentiation between calcium activation of protein kinase C-dependent versus-independent pathways. The effect of sphingosine was not mediated by neutralizing intracellular acidic compartments, since treatment of neutrophils with inhibitory concentrations of sphingosine did not significantly alter the uptake of labeled methylamine. We conclude that at least two mechanisms participate in the regulation of specific and azurophilic granule secretion, respectively: a protein kinase C-dependent pathway and a calcium-dependent pathway which does not involve protein kinase C.  相似文献   

16.
Exocytosis of myeloperoxidase (MPO) from activated neutrophils has been investigated in the presence of the anionic polysaccharide heparin. The optimal concentration of heparin (0.1 U/mL), which did not cause additional activation of cells (lack of augmentation of lysozyme exocytosis from specific and azurophilic granules), was determined. After preincubation of cells with heparin (0.1 U/mL) MPO exocytosis from neutrophils was stimulated by various activators (fMLP, PMA, plant lectins CABA and PHA-L) and was higher as compared to the effects of the activators alone. Experiments performed using MPO isolated from leukocytes have shown that heparin in the range of concentrations 0.1–50 U/mL had no effect on MPO peroxidase activity. Thus, the use of heparin at a concentration of 0.1 U/mL avoids the artifact caused by the “loss” of MPO due to its binding to neutrophils and increases the accuracy of the method of registration of degranulation of neutrophil azurophilic granules based on determination of the MPO concentration or its peroxidase activity in cell supernatants.  相似文献   

17.
Dysregulated release of neutrophil azurophilic granules causes increased tissue damage and amplified inflammation during autoimmune disease. Antineutrophil cytoplasmic antibodies (ANCAs) are implicated in the pathogenesis of small vessel vasculitis and promote adhesion and exocytosis in neutrophils. ANCAs activate specific signal transduction pathways in neutrophils that have the potential to be modulated therapeutically to prevent neutrophil activation by ANCAs. We have investigated a role for diacylglycerol kinase (DGK) and its downstream product phosphatidic acid (PA) in ANCA-induced neutrophil exocytosis. Neutrophils incubated with the DGK inhibitor R59022, before treatment with ANCAs, exhibited a reduced capacity to release their azurophilic granules, demonstrated by a component release assay and flow cytometry. PA restored azurophilic granule release in DGK-inhibited neutrophils. Confocal microscopy revealed that R59022 did not inhibit translocation of granules, indicating a role for DGK during the process of granule fusion at the plasma membrane. In investigating possible mechanisms by which PA promotes neutrophil exocytosis, we demonstrated that exocytosis can only be restored in R59022-treated cells through simultaneous modulation of membrane fusion and increasing cytosolic calcium. PA and its associated pathways may represent viable drug targets to reduce tissue injury associated with ANCA-associated vasculitic diseases and other neutrophilic inflammatory disorders.  相似文献   

18.
With (resonance) Raman microscospectroscopy, it is possible to investigate the chemical constitution of a very small volume (0.5 fl) in a living cell. We have measured resonance Raman spectra in the cytoplasm of living normal, myeloperoxidase (MPO)-deficient, and cytochrome b558-deficient neutrophils and in isolated specific and azurophilic granule fractions, using an excitation wavelength of 413.1 nm. Similar experiments were performed after reduction of the redox centers by the addition of sodium dithionite. The specific and azurophilic granules in both redox states appeared to have clearly distinguishable Raman spectra when exciting at a wavelength of 413.1 nm. The azurophilic granules and the cytochrome b558-deficient neutrophils showed Raman spectra similar to that of the isolated MPO. The spectra of the specific granules and the MPO-deficient neutrophils corresponded very well to published cytochrome b558 spectra. The resonance Raman spectrum of the cytoplasmic region of normal neutrophilic granulocytes could be fitted with a combination of the spectra of the specific and azurophilic granules, which shows that the Raman signal of neutrophilic granulocytes mainly originates from MPO and cytochrome b558, at an excitation wavelength of 413.1 nm.  相似文献   

19.
Chromaffin granules, the catecholaminergic storage granules from adrenal chromaffin cells, lysed in 10(-9)-10(-7) M Fe2+. Lysis was accompanied by the production of malondialdehyde which results from lipid peroxidation. Both chromaffin granule lysis and malondialdehyde production were inhibited by the free radical trapping agent butylated hydroxytoluene but not by catalase and/or superoxide dismutase. The results suggest that lysis resulted from a direct transfer of electrons from Fe2+ to a component of the chromaffin granule membrane without the participation of either superoxide or hydrogen peroxide and may have resulted from lipid peroxidation. In some experiments, ascorbate alone induced chromaffin granule lysis which was inhibited by EDTA, EGTA, or deferoxamine. The lysis was probably caused by trace amounts of reducible polyvalent cation. Lysis sometimes occurred when Ca2+ was added with EGTA (10 microM free Ca2+ concentration) and was consistently observed together with malondialdehyde production in the presence of Ca2+, EGTA, and 10 microM Fe2+ (total concentration). The apparent Ca2+ dependency for chromaffin granule lysis and malondialdehyde production was probably caused by a trace reducible polyvalent ion displaced by Ca2+ from EGTA and not by a Ca2+-dependent reaction involving the chromaffin granule.  相似文献   

20.
The degranulation reactions of human neutrophils induced by 1-oleoyl-2-acetylglycerol (OAG), phorbol 12-myristate 13-acetate (PMA), and calcium ionophore A23187 or their combinations, were studied. OAG in the absence of the Ca2+-ionophore A23187 stimulated the releases of both lysozyme and lactoferrin, constituents of the specific granules, but did not stimulate the release of beta-glucuronidase, an enzyme of the azurophil granules. Electron microscopy revealed a selective decrease in the numbers of the specific granules in this case. The combined effects of A23187 at a concentration higher than 0.1 microM and OAG were essentially additive. W-7, known to be an inhibitor of both Ca2+-activated phospholipid-dependent protein kinase (C-kinase) and calmodulin, inhibited the degranulation induced by OAG or PMA, while it inhibited the reaction induced by A23187 less markedly. The release of lysozyme reached a plateau at about 0.1 microM A23187 and increased again at higher concentrations of A23187. The observations suggest that degranulation can be induced by the activation of the C-kinase, and the degranulation by A23187 at low concentrations may be due to the activation of the C-kinase; the effects of A23187 at high concentrations, however, could not be explained only in terms of the activation of the C-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号