首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The pattern of incorporation of label into the nucleotides of axillary bud ribonucleic acid was investigated in Pisum sativum L. cv. Meteor following the application of N 6[8-I4C]furfuryladenine or of [8-14C]adenine to the root system of decapitated plants and to cultured excised buds. When N 6[8-14C]furifaryladenine was applied to the root system label was confined to the guanine nucleotide moiety of the axillary bud ribonucleic acid; label from [8-14C]adenine was incorporated preferentially into adenine nucleotide in the molar ratio adenine nucleotide/guanine nucleotide = 3.23. When isolated buds were incubated in media containing [8-14C]adenine or N 6[8-14C]furfuryladenine, label was incorporated into both purine moieties of the ribonucleic acid. However, the relative incorporation into the guanine nucleotide fraction was considerably greater for N 6[8-I4C]furfuryladenine (adenine nucleotide/guanine nucleotide = 2.23) than for [8-14C]adenine (ratio = 4.67).
It was concluded that the pattern of metabolism of adenine to guanine and its incorporation into the guanine nucleotide moiety of pea axillary bud ribonucleic acid, is influenced by the presence of a substitution in the N 6 position of the adenine base.  相似文献   

2.
ABSTRACT. The effect of culture age on the rate of oxidation of short-, medium-, and long-chain fatty acids by Leishmania major promastigotes was investigated. Promastigotes from 5-day stationary phase cultures oxidized several saturated fatty acids about 3-to-4-fold faster than cells from late log phase cultures, but [10−14C]oleate was oxidized 9-fold faster. The increase in rate of oxidation was partially reversed within 5 h and almost completely reversed within 30 h after resuspending cells from a 5-day stationary culture in fresh medium. Addition of acetate, leucine, or alanine caused moderate inhibitions of [1-14C]palmitate oxidation, while glycerol had little effect. Glucose, however, was a powerful inhibitor of the oxidation of [1-14C]palmitate and of [1-14C]octanoate. Mannose and fructose were also strong inhibitors of palmitate oxidation, but neither galactose, 2-deoxyglucose or 6-deoxyglucose caused appreciable inhibition. The extent of inhibition by acetate increased with increasing culture age, whereas inhibition by glucose decreased. In addition to demonstrating a reversible rise in β-oxidation capacity with culture age, these data also demonstrate a hitherto unrecognized strong and culture age-dependent inhibition of fatty acid oxidation by glucose.  相似文献   

3.
SYNOPSIS. A reduction in the growth temperature of Tetrahymena pyriformis strain WH-14 from 35 C to 15 C resulted in distinct alterations in the fatty acid composition of the glycerophospholipids. The proportion of normal saturated acids declined from 26 to 19%; palmitoleic acid increased by 6%, and the composition of the polyunsaturated fatty acids increased in 18:2 Δ6,11(n) and decreased in 18:2 Δ9,12(n) and 18:3 Δ6,9,12(n). The unsaturation index (the average number of double bonds/100 molecules) did not change with a shift in temperature.
Two biosynthetic pathways exist in Tetrahymena for the formation of unsaturated fatty acids. The observed changes in fatty acid composition that accompany a lowering of the environmental temperature can be accounted for by a reduction in the accumulation of products of the fatty acid pathway leading to the formation of γ-linolenic acid [16:0(n) → 18:0(n) → 18:1 Δ9(n) → 18:2 Δ9,12(n) → 18:3 Δ6,9,12(n)] and an increase in the components of the pathway leading to the formation of 18:2 Δ6,11(n) [16:0(n) → 16:1 Δ9(n) → 18:1 Δ11(n) → 18:2 Δ6,11(n)]. The data suggest that the regulatory mechanism in Tetrahymena differs from that found in some bacteria where a simple substitution of unsaturated fatty acids for saturated fatty acids occurs at low culture temperatures.  相似文献   

4.
Boraginaceae seeds are particularly rich in Γ -linolenic acid (6,9,12-octadecatrienoic acid, Γ -18:3). In microsomes, the analysis of phosphatidylcholine (PC) molecular species by HPLC led to identification of 15 different molecular species; among them 4 contained Γ -18:3, mostly at position 2 of sn -glycerol. Time courses of acylation and desaturation in PC molecular species were examined when [14C]oleoyl-CoA or [14C]linoleoyl-CoA was provided as substrates to isolated microsomes. With [14C]oleoyl-CoA or [14C]linoleoyl-CoA and in the absence of NADH, 3 main labelled PC molecular species were found: 18:2/[14C]18:1, 16:0/[14C]18:1 and 18:1/[14C]18:1. When NADH was present in the incubation medium, the fatty acids were progressively desaturated by the Δ12- and Δ6-desaturases successively (with [14C]oleoyl-CoA as precursor) or by the Δ6-desaturase alone (with [14C]linoleoyl-CoA as precursor). In both types of experiments, 7 final desaturation products in microsomes were evidenced; among them, 3 contained radioactive Γ -18:3, i.e . 18:2/[14C] Γ -18:3, 18:1/[14C] Γ -18:3 and 16:0/[14C] Γ -18:3. While the Δ12-desaturase had no specificity for position on the glycerol backbone, labelled Γ -linolenic acid was recovered exclusively in the sn -2 position.  相似文献   

5.
Abstract: [1-3H, 1-14C]Palmitaldehyde(3H:14C= 15) was injected intracerebrally to 18-day-old rats and incorporation of radioactivity into brain lipids was followed over a 24-h period. The substrate was metabolized primarily by oxidation to palmitic acid with loss of tritium and, to a lesser extent, by reduction to hexadecanol. The alkyl moieties of the ethanolamine phospholipids showed considerably lower 3H:14C ratios than the substrate, indicating a substantial participation in ether lipid synthesis by tritium-free alcohols derived from 14C-labeled fatty acids. Virtually no 3H radioactivity was found in alkenyl moieties, indicating stereospecificity of both reduction of aldehyde and dehydrogenation of alkyl to alkenyl glycerolipid. The data are consistent with the general concept that plasmalogen biosynthesis proceeds exclusively through fatty alcohols and alkyl glycerolipids and that fatty aldehydes cannot be utilized directly.  相似文献   

6.
Abstract: The release of preloaded [14C]neuroactive amino acids (glutamic acid, proline, γ-aminobutyric acid) from rat brain synaptosomes can occur via a time-dependent, Ca2+ -independent process. This Ca2+-independent efflux is increased by compounds that activate Na+ channels (veratridine, scorpion venoms), by the ionophore gramicidin D, and by low concentrations of unsaturated fatty acids (oleic acid and arachidonic acid). Saturated fatty acids have no effect on the efflux process. Neither saturated nor unsaturated fatty acids have an effect on the release of [14C]leucine, an amino acid not known to possess neurotransmitter properties. The increase in the efflux of neuroactive amino acids by oleic and arachidonic acids can also be demonstrated using synaptosomal membrane vesicles. Under conditions in which unsaturated free fatty acids enhance amino acid efflux, no effect on 22Na+ permeability is observed. Since Na+ permeability is not altered by fatty acids, the synaptosomes are not depolarized in their presence and, thus, the Na+ gradient can be assumed to be undisturbed. We conclude that unsaturated fatty acids represent a potentially important class of endogenous modulators of neuroactive amino acid transport in nerve endings and further postulate that their action is the result of an uncoupling of amino acid transport from the synaptosomal Na+ gradient.  相似文献   

7.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1, (3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-: 14C]alanine, [1-14C]glutamate, and [1, (3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate, [1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

8.
ABSTRACT. Major fatty acid components of Acanthamoeba castellanii lipids extracted after growth at 30°C include myristate, palmitate, stearate and the polyunsaturates linoleate, eicosadienoate, eicosatrienoate and arachidonate, with oleate as the sole major monounsaturated fatty acid. By comparison, growth at 15°C gave increased linoleate, eicosatrienoate and arachidonate, but decreased oleate and palmitate. When the growth temperature was shifted downwards from 30°C to 15°C, increased lipid unsaturation occurred over a period of 24 h; thus decreases of oleate and eicosadienoate were accompanied by increases in linoleate, eicosatrienoate, arachidonate and eicosapentaenoate. An upwards shift from 15°C to 30°C gave negligible alterations in fatty acid composition over a similar period. At 15°C organisms rapidly use [1-14C] acetate for de novo fatty acid synthesis; stearate is converted via oleate to further desaturation and chain elongation products. Similar short term experiments at 30°C indicate only de novo synthesis and Δ9-desaturation; synthesis of polyunsaturates was a much slower process. Rapid incorporation of [1-14C] oleate at 30°C was not accompanied by metabolic conversion over two hours, whereas at 15°C n-6 desaturation to linoleate was observed. Temperature shift of organisms from 15°C to 30°C in the presence of [1-14C] acetate revealed that over half of the fatty acids in newly-synthesised lipids were saturated, but the proportions of unsaturated fatty acids increased with time until the total polyenoate components reached 17% after 22 h. A shift of temperature in the reverse direction gave a corresponding figure of 60% for polyunsaturated fatty acids. These results emphasize the importance of n-6 desaturation in the low temperature adaptation of Acanthamoeba castellanii .  相似文献   

9.
Abstract— The effect of 15 h continuous exposure to CS2 on the metaboliam of glucose and free amino acids in the brain of rats was studied. CS2 caused a moderate hypoglycaemia. There were also changes in the amounts of some amino acids in the brain. Glutamate and γ-aminobutyrate were lower whereas glutamine was markedly increased. Comparative studies in vivo of the metabolism of [2-14C]glucose and [1-14C]butyrate indicated that CS2 did not affect glycolysis or the incorporation of 14C from glucose into amino acids except into γ-aminobutyrate which was reduced. Contrary to the findings with [14C]glucose, CS2 provoked distinct changes in the labelling of amino acids when [14C]butyrate was the precursor. The most notable change was a markedly increased incorporation of 14C into glutamine. Based on the two-compartment model of brain glutamate the experimental findings indicated that CS2 affected metabolism associated with the 'small' pool of glutamate but had a minimal effect on metabolism associated with the 'large' glutamate pool. The possibility is suggested that the changes observed involved an increased rate of ammonia removal. The low incorporation of 14C into γ-aminobutyrate from either precursor is consistent with other evidence showing that CS2 interferes with pyridoxal phosphate-dependent enzymes.  相似文献   

10.
Abstract— The metabolism of γ-hydroxybutyrate (GHB) was studied by following the fate of [1-14C]GHB in mouse brain after an intravenous injection. Cerebral uptake of GHB was rapid and this substance disappeared from brain tissue with a half-life of approx 5 min. Degradation of [1-14C]GHB took place in the brain since 14C was incorporated in amino acids associated with the tricarboxylic acid cycle: the labelling pattern was consistent with the oxidation of GHB via succinate through the cycle, rather than with β-oxidation of GHB. Conversion of [14C]GHB into [14C]GABA prior to oxidation was negligible, thus it is unlikely that the pharmacological action of GHB would be mediated through GABA formation. [14C]GHB oxidation also elicited the signs of metabolic compartmentation of the tricarboxylic acid cycle in the brain (glutamine/glutamate specific radioactivity ratio was about 4).  相似文献   

11.
Abstract: The incorporation of amino acids into brain proteins following brachial plexus stimulation (BPS) was studied in anaesthetised Sprague-Dawley rats following injection of radioactive precursors of both neuronal and glial compartments. Following intraperitoneal injection of [14C]glucose, which is the major neuronal pool precursor, BPS resulted in a significant increase of 379% ( P ± 0.001) in the incorporation of carbon from [14C]glucose into TCA-insoluble proteins in the contralateral sensorimotor cortex as compared with the ipsilateral area of the same animal. This increase was abolished totally when tetrodotoxin (10 μg ml-1) was applied topically to the surface of the stimulated area. Following intraperitoneal injection of [14C]acetate, which is considered to be mainly a glial cell precursor, the same afferent electrical stimuli caused a significant decrease of 21% in the incorporation of amino acids into proteins in the stimulated versus unstimulated sensorimotor cortex. With [4-3H]phenyl-alanine or [l-14C]leucine as precursors a significant decrease (12%) or no change was recorded, respectively. A similar decrease in protein synthesis in the stimulated sensorimotor cortex was achieved using different routes of injection. No significant changes were observed in the ratio of the specific radioactivities of the total amino acids of the two hemispheres using either precursor. In vitro , synaptosomes showed a large increase in incorporation into proteins after treatment with electrical pulses, both with [14C]glucose and with [U-14C]acetate as precursors.  相似文献   

12.
Abstract: The effect of chronic low-level lead (Pb2+) ingestion on the metabolic pathways leading to the acetyl moiety of acetylcholine (ACh) was examined. Cerebral cortex slices, prepared from untreated or Pb2+-exposed rats (600 ppm lead acetate in the drinking water for 20 days), were incubated in Krebs-Ringer bicarbonate buffer with 10 m M glucose and tracer amounts of [6-3H]glucose and either [6-14C]glucose or [3-14C] β -hydroxybutyrate. Altering the concentration of Pb2+ in the drinking water produced a dose-related increase in blood and brain lead levels. When tissue from Pb2+-exposed rats was incubated with mixed-labeled glucose, incorporation into lacate, citrate, and ACh was considerably decreased, although no changes occurred in the 3H/14C ratios. Similar effects of Pb2+ were found when 14C-labeled β -hydroxy-butyrate was substituted for the [14C]glucose. It appears from these data that Pb2+ exerts a generalized effect on energy metabolism and not on a specific step in glucose metabolism. The impairment of glucose metabolism may explain partially the Pb2+-induced changes observed in cholinergic function.  相似文献   

13.
Abstract: Little is known about the specificity of the mechanisms involved in the synthesis and release of acetylcholine for the acetyl moiety. To test this, blocks of tissue from the electric organ of Torpedo were incubated with either [1-14C]acetate or [1-14C]propionate, and the synthesis, storage, and release of [1-14C]acetylcholine and [14C]propionylcholine were compared. To obtain equivalent amounts of the two labeled choline esters, a 50-fold higher concentration of propionate than of acetate was needed. Following subcellular fractionation, similar proportions of [14C]acetylcholine and [14C]propionylcholine were recovered with synaptosomes and with synaptic vesicles. Furthermore, both labeled choline esters were protected to a similar extent from degradation during homogenization of tissue in physiological medium, indicating that the two choline esters were equally well incorporated into synaptic vesicles. Yet depolarization of tissue blocks by 50 m M KCI released much less [14C]propionylcholinc than [14C]acetylcholine. During field stimulation of the tissue blocks, the difference between the releasibility of the two choline esters was less marked, but acetylcholine was still released in preference to propionylcholine. Evidence for specificity of the release mechanism was also obtained when the release of the two choline esters in response to field stimulation was compared in tissue blocks preincubated with both [3H]choline and [14C]propionate.  相似文献   

14.
Abstract— Ninhydrin decarboxylation experiments were carried out on the labelled amino acids produced following intraventricular injection of either γ-hydroxy-[1-14C]butyric acid (GHB) or [1-14C] succinate. The loss of isotope (as 14CO2) was similar for both substances. The [1-14C]GHB metabolites lost 75% of the label and the [1-14C] succinate metabolites lost 68%. This observation gives support to the hypothesis that the rat brain has the enzymatic capacity to metabolize [1-14C]GHB to succinate and to amino acids that have the isotope in the carboxylic acid group adjacent to the a-amino group. These results also indicate that the label from [1-14C]GHB does not enter the Krebs cycle as acetate. The specific activity ratio of radiolabelled glutamine to glutamic acid was determined in order to evaluate which of the two major metabolic compartments preferentially metabolize GHB. It was found that for [1-14C]GHB this ratio was 4.20 ± 0.18 (S.E. for n = 7) and for [l-14C]succinate this ratio was 7.71 (average of two trials, 7.74 and 7.69). These results suggest that the compartment thought to be associated with glial cells and synaptosomal structures is largely responsible for the metabolism of GHB. Metabolism as it might relate to the neuropharmacological action of GHB is discussed.  相似文献   

15.
Synthesis of Acetylcholine from Acetate in a Sympathetic Ganglion   总被引:10,自引:9,他引:1  
Abstract: The present experiments tested whether acetate plays a role in the provision of acetyl-CoA for acetylcholine synthesis in the cat's superior cervical ganglion. Labeled acetylcholine was identified in extracts of ganglia that had been perfused for 20 min with Krebs solution containing choline (10−5 M ) and [3H], [1-4C], or [2-14C]acetate (103 M ); perfusion for 60 min or with [3H]acetate (10−2 M ) increased the labeling. The acetylcholine synthesized from acetate was available for release by a Ca2+-dependent mechanism during subsequent periods of preganglionic nerve stimulation. When ganglia were stimulated via their preganglionic nerves or by exposure to 46 m M K+, the labeling of acetylcholine from [3H]acetate was reduced when compared with resting ganglia. The reduced synthesis of acetylcholine from acetate during stimulation was not due to acetate recapture, shunting of acetate into lipid synthesis, or the transmitter release process itself. In ganglia perfused with [2-14C]glucose, the amount of labeled acetylcholine formed was clearly enhanced during stimulation. An increase in acetylcholine labeling from [3H]acetate was shown during a 15-min resting period following a 60-min period of preganglionic nerve stimulation (20 Hz). It is concluded that acetate is not the main physiological acetyl precursor for acetylcholine synthesis in this sympathetic ganglion, and that during preganglionic nerve stimulation there is enhanced delivery of acetyl-CoA to choline acetyltransferase from a source other than acetate.  相似文献   

16.
Uridine and cytidine are major nucleosides and are produced as catabolites of pyrimidine nucleotides. To study the metabolic fates and role of these nucleosides in plants, we have performed pulse (2 h) and chase (12 h) experiments with [2-14C]uridine and [2-14C]cytidine and determined the activities of some related enzymes using tubers and fully expanded leaves from 10-week-old potato plants ( Solanum tuberosum L.). In tubers, more than 94% of exogenously supplied [2-14C]uridine and [2-14C]cytidine was converted to pyrimidine nucleotides and RNA during 2-h pulse, and radioactivity in these salvage products still remained at 12 h after the chase. Little degradation of pyrimidine was found. A similar pyrimidine salvage was operative in leaves, although more than 20% of the radioactivity from [2-14C]uridine and [2-14C]cytidine was released as 14CO2 during the chase. Enzyme profile data show that uridine/cytidine kinase (EC 2.7.1.48) activity is higher in tubers than in leaves, but uridine nucleosidase (EC 3.2.2.3) activity was higher in leaves. In leaves, radioactivity from [U-14C]uracil was incorporated into β-ureidopropionic acid, CO2, β-alanine, pantothenic acid and several common amino acids. Our results suggest two functions of uridine and cytidine metabolism in leaves; these nucleosides are not only substrates for the classical pyrimidine salvage pathways but also starting materials for the biosynthesis of β-alanine. Subsequently, some β-alanine units are utilized for the synthesis of pantothenic acid in potato leaves.  相似文献   

17.
Abstract: Oligodendroglia prepared from minced calf cerebral white matter by trypsinization at pH 7.4, screening, and isosmotic Percoll (polyvinylpyr-rolidone-coated silica gel) density gradient centrifugation survived in culture on polylysine-coated glass, extending processes and maintaining phenotypic characteristics of oligodendroglia. In the present study, ethanolamine glycerophospholipid (EGP) metabolism of the freshly isolated cells was examined during short-term suspension culture by dual label time course and substrate concentration dependence experiments with [2-3H]glycerol and either [1,2-14C]ethanolamine or L-[U-14C]serine. Rates of incorporation of 3H from the glycerol and of 14C from the ethanolamine into EGP were constant for 14 h. In medium containing 3 mM-[1,2-14C]ethanolamine and 4.8 mM-[2-3H]glycerol, rates of incorporation of 14C and 3H into diacyl glycerophosphoethanolamine (diacyl GPE) were similar. Under the same conditions, 3H specific activities of alkylacyl GPE and alkenylacyl GPE were much lower than 14C specific activities, likely as a result of the loss of tritium during synthesis of these forms of EGP via dihydroxyacetone phosphate. L-[U-14C]serine was incorporated into serine glycerophospholipid (SGP) by base exchange rather than de novo synthesis. 14C from L-[U-14C]serine also appeared in EGP after an initial lag period of several hours. Methylation of oligodendroglial EGP to choline glycerophospholipid (CGP) was not detected.  相似文献   

18.
Abstract: [14C]Acetyl-CoA was found to react spontaneously with dithiothreitol to give a relatively apolar product which was readily extractable into a butanol-toluene scintillant. This technique was used in a rapid, reproducible assay for rat brain ATP:citrate lyase using [1,5-14C]citrate as substrate. The tissue extract, a 14,000 g supernatant, exhibited a lyase activity of approximately 7 nmol acetyl-CoA produced/min per mg supernatant protein, and was inhibited ≥79% by α-ketoglutaric acid (10 m m ), Cu2+ (1 m m )and Zn2+(1 m m ). [14C]Oxaloacetate, [14C]malate and endogenous citrate synthase were found not to interfere significantly with lyase estimations, but NADH was required in the reaction mixture to inhibit acetyl-CoA hydrolase activity.  相似文献   

19.
Triacylglycerols occur in both the endosperm and embryo of Euphorbia lambii seeds. Upon germination, the amount of these neutral lipids in the endosperm decreased with 1.06 mg fatty acid day-1. The embryo contained 1.4 mg fatty acids in the triacylglycerols and this value declined slowly to 0.4 mg seedling-1 during the 8 day period of endosperm depletion. Radioactive acetate was rapidly taken up by the cotyledons of intact seedlings, translocated throughout the entire seedling, and up to 10.5% of the 14C proceeded to the sterols and latex triterpenols. Maximum uptake values of 1.4 μmol seedling-1 day-1 of acetate were measured. Acetate uptake and subsequent incorporation into sterols and triterpenols decreased substantially in the presence of increasing amounts of sucrose (up to 0.3 M). Traces of acetate did not effect [14C]-sucrose uptake and corresponding synthesis of [14C]-sterols and triterpenols, but increased concentrations of acetate (0.05 M and up) reduced both uptake of sucrose and its conversion into unsaponifiable lipids.
The uptake capacity of the cotyledons for [14C]-glycerol exceeded the daily production in the endosperm, but only a small amount of label proceeded to the sterols and triterpenols. [14C]-Triacylglycerols were never detected in the seedling, regardless of the labeled substrate used. Although acetate is an efficient precursor in triterpenol and sterol synthesis, the uptake capacity of the cotyledons for this metabolite is too small in relation to the daily production of water soluble substrates in the endosperm. If acetate is released by the endosperm, only a marginal contribution towards triterpenol and sterol synthesis in the seedling is to be anticipated from this substrate.  相似文献   

20.
Abstract: The synthesis of hypotaurine and taurine was investigated in astroglia-rich primary cultures obtained from brains of neonatal Wistar rats using 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Cell extracts of astroglial cultures analyzed by 1H NMR spectroscopy show prominent signals of hypotaurine. To identify cysteine as precursor for hypotaurine and taurine synthesis in astroglial cells, primary cultures were incubated with [3-13C]cysteine for 24 or 72 h. Cell extracts and incubation media were then analyzed with 13C NMR spectroscopy. Labeled hypotaurine, taurine, glutathione, and lactate were identified in the cell extracts. Within 72 h, 35.0% of the total intracellular hypotaurine and 22.5% of taurine were newly synthesized from [3-13C]cysteine. The presence of [1-13C]hypotaurine and [1-13C]taurine in the incubation medium proves the release of those products of cysteine metabolism into the medium. Minor amounts of the [3-13C]cysteine were used for the synthesis of glutathione in astroglial cells or metabolized to [3-13C]lactate, which was found in cell extracts and media. These results indicate that the formation of hypotaurine and taurine is a major pathway of cysteine metabolism in astroglial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号