首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Aims: To evaluate the anti‐biofilm activity of the commercially available essential oils from two Boswellia species. Methods and Results: The susceptibility of staphylococcal and Candida albicans biofilms was determined by methyltiazotetrazolium (MTT) staining. At concentrations ranging from 217·3 μg ml?1 (25% v/v) to 6·8 μg ml?1 (0·75% v/v), the essential oil of Boswellia papyrifera showed considerable activity against both Staphylococcus epidermidis DSM 3269 and Staphylococcus aureus ATCC 29213 biofilms. The anti‐microbial efficacy of this oil against S. epidermidis RP62A biofilms was also tested using live/dead staining in combination with fluorescence microscopy, and we observed that the essential oil of B. papyrifera showed an evident anti‐biofilm effect and a prevention of adhesion at sub‐MIC concentrations. Boswellia rivae essential oil was very active against preformed C. albicans ATCC 10231 biofilms and inhibited the formation of C. albicans biofilms at a sub‐MIC concentration. Conclusions: Essential oils of Boswellia spp. could effectively inhibit the growth of biofilms of medical relevance. Significance and Impact of the Study: Boswellia spp. essential oils represent an interesting source of anti‐microbial agents in the development of new strategies to prevent and treat biofilms.  相似文献   

2.
Xiuli Dong 《Biofouling》2014,30(10):1165-1174
This study reports the inhibitory effect of single walled carbon nanotubes (SWCNTs) on biofilm formation from Bacillus anthracis spores. Although the presence of 50 to 100 μg ml?1 of SWCNTs in the suspension increased spore attachment in the wells of 96-well plates, the presence of 200 μg ml?1 of SWCNTs in the germination solution decreased the germination percentage of the attached spores by 93.14%, completely inhibiting subsequent biofilm formation. The inhibition kinetics of 50 μg ml?1 SWCNTs on biofilm formation showed that this concentration inhibited biofilm formation by 81.2% after incubation for 48 h. SWCNT treatment in the earlier stages of biofilm formation was more effective compared to treatment at later stages. Mature biofilms were highly resistant to SWCNT treatment.  相似文献   

3.
Antifouling (AF) paints are used to prevent the attachment of living organisms to the submerged surfaces of ships, boats and aquatic structures, usually by the release of biocides. Apart from copper, organic booster biocides are the main active components in AF paints, but their use can have a negative impact on the marine environment. The direct effects of biocides on marine bacteria are poorly known. This work investigates the impact of two biocides, viz. diuron and tolylfluanid, on the growth and the viability of marine microorganisms and on their ability to form biofilms. The biocides in solution were found to inhibit growth of two strains of marine bacteria, viz. Pseudoalteromonas and Vibrio vulnificus, at a high concentration (1000 μg ml?1), but only a small effect on viability was observed. Confocal laser scanning microscopy (CLSM) showed that the booster biocides decreased biofilm formation by both bacteria. At a concentration of 10 μg ml?1, the biocides inhibited cell attachment and reduced biofilm thickness on glass surfaces. The percentage of live cells in the biofilms was also reduced. The effect of the biocides on two diatoms, Fragilaria pinnata and Cylindrotheca closterium, was also evaluated in terms of growth rate, biomass, chlorophyll a content and attachment to glass. The results demonstrate that diuron and tolylfluanid are more active against diatoms than bacteria.  相似文献   

4.
Abstract

This study describes an ex vivo model that creates an environment for dermatophyte biofilm growth, with features that resemble those of in vivo conditions, designing a new panorama for the study of antifungal susceptibility. Regarding planktonic susceptibility, MIC ranges were 0.125-1?µg ml?1 for griseofulvin and 0.000097-0.25?µg ml?1 for itraconazole and terbinafine. sMIC50 ranges were 2->512?µg ml?1 for griseofulvin and 0.25->64?µg ml?1 for itraconazole and terbinafine. CLSM images demonstrated a reduction in the amount of cells within the biofilm, but hyphae and conidia were still observed and biofilm biomass was maintained. SEM analysis demonstrated a retraction in the biofilm matrix, but fungal structures and water channels were preserved. These results show that ex vivo biofilms are more tolerant to antifungal drugs than in vitro biofilms, suggesting that environmental and nutritional conditions created by this ex vivo model favor biofilm growth and robustness, and hence drug tolerance.  相似文献   

5.
This study evaluated the effect of the protease inhibitor ritonavir (RIT) on Trichosporon asahii and Trichosporon inkin. Susceptibility to RIT was assessed by the broth microdilution assay and the effect of RIT on protease activity was evaluated using azoalbumin as substrate. RIT was tested for its anti-biofilm properties and RIT-treated biofilms were assessed regarding protease activity, ultrastructure and matrix composition. In addition, antifungal susceptibility, surface hydrophobicity and biofilm formation were evaluated after pre-incubation of planktonic cells with RIT for 15 days. RIT (200 μg ml?1) inhibited Trichosporon growth. RIT (100 μg ml?1) also reduced protease activity of planktonic and biofilm cells, decreased cell adhesion and biofilm formation, and altered the structure of the biofilm and the protein composition of the biofilm matrix. Pre-incubation with RIT (100 μg ml?1) increased the susceptibility to amphotericin B, and reduced surface hydrophobicity and cell adhesion. These results highlight the importance of proteases as promising therapeutic targets and reinforce the antifungal potential of protease inhibitors.  相似文献   

6.
The present study was designed to investigate the anti-biofilm potential of alpha-mangostin (α-MG) against Acinetobacter baumannii (AB). The biofilm inhibitory concentration (BIC) of α-MG against AB was found to be 2 μg ml?1. α-MG (0.5, 1 and 2 μg ml?1) exhibited non-bactericidal concentration-dependent anti-biofilm activities against AB. However, α-MG failed to disintegrate the mature biofilms of AB even at a 10-fold increased concentration from its BIC. Results from qRT-PCR and in vitro bioassays further demonstrated that α-MG downregulated the expression of bfmR, pgaA, pgaC, csuA/B, ompA, bap, katE, and sodB genes, which correspondingly affects biofilm formation and its associated virulence traits. The present study suggests that α-MG exerts its anti-biofilm property by interrupting initial biofilm formation and the cell-to-cell signaling mechanism of AB. Additional studies are required to understand the mode of action responsible for the anti-biofilm property.  相似文献   

7.
The aims of this study were to describe the synthesis of a novel synthetic peptide based on the primary structure of the KR-12 peptide and to evaluate its antimicrobial and anti-biofilm activities against Streptococcus mutans. The antimicrobial effect of KR-12 and [W7]KR12-KAEK was assessed by determining the minimum inhibitory (MIC) and minimum bactericidal (MBC) concentrations. The evaluation of anti-biofilm activity was assessed through total biomass quantification, colony forming unit counting and scanning electron microscopy. [W7]KR12-KAEK showed MIC and MBC values ranging from 31.25 to 7.8 and 62.5 to 15.6 μg ml?1, respectively. Furthermore, [W7]KR12-KAEK significantly reduced biofilm biomass (50–100%). Regarding cell viability, [W7]KR12-KAEK showed reductions in the number of CFUs at concentrations ranging from 62.5 to 7.8 μg ml?1 and 500 to 62.5 μg ml?1 with respect to biofilm formation and preformed biofilms, respectively. SEM micrographs of S. mutans treated with [W7]KR12-KAEK suggested damage to the bacterial surface. [W7]KR12-KAEK is demonstrated to be an antimicrobial agent to control microbial biofilms.  相似文献   

8.
This study aimed to determine the minimum inhibitory concentration (MIC) of kaempferol and quercetin against planktonic and biofilm forms of the Candida parapsilosis complex. Initially, nine C. parapsilosis sensu stricto, nine C. orthopsilosis and nine C. metapsilosis strains were used. Planktonic susceptibility to kaempferol and quercetin was assessed. Growing and mature biofilms were then exposed to the flavonoids at MIC or 10xMIC, respectively, and theywere also analyzed by confocal laser scanning microscopy. The MIC ranges were 32-128 µg ml?1 for kaempferol and 0.5-16 µg ml?1 for quercetin. Kaempferol and quercetin decreased (P?<?0.05) the metabolic activity and biomass of growing biofilms of the C. parapsilosis complex. As for mature biofilms, the metabolic effects of the flavonoids varied, according to the cryptic species, but kaempferol caused an overall reduction in biofilm biomass. Microscopic analyses showed restructuring of biofilms after flavonoid exposure. These results highlight the potential use of these compounds as sustainable resources for the control of fungal biofilms.  相似文献   

9.
This study investigated the antimicrobial effects of the ethanolic extract of Brazilian red propolis (BRP) on multispecies biofilms. A seven-day-old subgingival biofilm with 32 species was grown in a Calgary device. Biofilms were treated with BRP (1,600, 800, 400 and 200?μg ml?1) twice a day for 1?min, starting from day 3. Chlorhexidine (0.12%) and dilution-vehicle were used as positive and negative controls, respectively. On day 7, metabolic activity and the microbial composition of the biofilms by DNA-DNA hybridization were determined. The viability data were analyzed by one-way ANOVA followed by Tukey’s post hoc, whereas the microbial composition data were transformed via BOX-COX and analyzed using Dunnett’s post hoc. BRP (1,600?μg ml?1) decreased biofilm metabolic activity by 45%, with no significant difference from chlorhexidine-treated samples. BRP (1,600?μg ml?1) and chlorhexidine significantly reduced levels of 14 bacterial species compared to the vehicle control. Taken together, BRP showed promising antimicrobial properties which may be useful in periodontal disease control.  相似文献   

10.
In the present study, the efficacy of generally recognised as safe (GRAS) antimicrobial plant metabolites in regulating the growth of Staphylococcus aureus and S. epidermidis was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against these microorganisms, at a subinhibitory concentration (SIC) of ≤ 50 μg ml?1. Genistein, hydroquinone and resveratrol showed antimicrobial effects but with a wide concentration range (SIC = 50–1,000 μg ml?1), while catechin, gallic acid, protocatechuic acid, p-hydroxybenzoic acid and cranberry extract were the most biologically compatible molecules (SIC ≥ 1000 μg ml?1). Genistein, protocatechuic acid, cranberry extract, p-hydroxybenzoic acid and resveratrol also showed anti-biofilm activity against S. aureus, but not against S. epidermidis in which, surprisingly, these metabolites stimulated biofilm formation (between 35% and 1,200%). Binary combinations of cranberry extract and resveratrol with genistein, protocatechuic or p-hydroxibenzoic acid enhanced the stimulatory effect on S. epidermidis biofilm formation and maintained or even increased S. aureus anti-biofilm activity.  相似文献   

11.
Acinetobacter baumannii is a pathogen that has the ability to adhere to surfaces in the hospital environment and to form biofilms which are increasingly resistant to antimicrobial agents. The aim of this work was to study the antimicrobial activity of the major oil compounds of Coriandrum sativum against A. baumannii. The effect of linalool on planktonic cells and biofilms of A. baumannii on different surfaces, as well as its effect on adhesion and quorum sensing was evaluated. From all the compounds evaluated, linalool was the compound with the best antibacterial activity, with minimum inhibitory concentration values between 2 and 8 μl ml?1. Linalool also inhibited biofilm formation and dispersed established biofilms of A. baumannii, changed the adhesion of A. baumannii to surfaces and interfered with the quorum- sensing system. Thus, linalool could be a promising antimicrobial agent for controlling planktonic cells and biofilms of A. baumannii.  相似文献   

12.
Abstract

The egg masses of the marine muricid gastropod molluscs Chicoreus virgineus, Chicoreus ramosus and Rapana rapiformis were studied for antifouling activities. The minimum inhibitory concentrations of crude extracts for the inhibition of byssal production and attachment of the brown mussel Perna indica were 650 μg ml?1, 1150 μg ml?1 and 925 μg ml?1 from the three muricid gastropods, respectively. Higher LC50 values than EC50 values and 100% recovery of the mussels in the toxicity assay indicated the non-toxic nature of the extracts. The gradient partitioning of the egg mass extracts and subsequent antimicrofouling screening against 40 biofilm bacteria showed wide-spectrum antibacterial activity of the medium polar fraction from C. virgineus; the non-polar fraction from R. rapiformis and both non-polar and medium polar fractions from C. ramosus. The antimicrofouling activity from extracts of the three egg masses was found to be more prominent than antimacrofouling activity. This may be attributed to the targeting of a defence strategy against microbes in order to protect the developing mollusc embryos.  相似文献   

13.
Efflux pumps are important defense mechanisms against antimicrobial drugs and maintenance of Burkholderia pseudomallei biofilms. This study evaluated the effect of the efflux pump inhibitor promethazine on the structure and antimicrobial susceptibility of B. pseudomallei biofilms. Susceptibility of planktonic cells and biofilms to promethazine alone and combined with antimicrobials was assessed by the broth microdilution test and biofilm metabolic activity was determined with resazurin. The effect of promethazine on 48 h-grown biofilms was also evaluated through confocal and electronic microscopy. The minimum inhibitory concentration (MIC) of promethazine was 780 mg l?1, while the minimum biofilm elimination concentration (MBEC) was 780–3,120 mg l?1. Promethazine reduced the MIC values for erythromycin, trimethoprim/sulfamethoxazole, gentamicin and ciprofloxacin and reduced the MBEC values for all tested drugs (p<0.05). Microscopic analyses demonstrated that promethazine altered the biofilm structure of B. pseudomallei, even at subinhibitory concentrations, possibly facilitating antibiotic penetration. Promethazine improves antibiotics efficacy against B. pseudomallei biofilms, by disrupting biofilm structure.  相似文献   

14.
The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4–3.3 μg ml?1). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ~90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.  相似文献   

15.
Aim: The purpose of this work was to evaluate the size‐dependent antifungal activity of different silver nanoparticles (SN) colloidal suspensions against Candida albicans and Candida glabrata mature biofilms. Methods and Results: The research presented herein used SN of three different average sizes (5, 10 and 60 nm), which were synthesized by the reduction of silver nitrate through sodium citrate and which were stabilized with ammonia or polyvinylpyrrolidone. Minimal inhibitory concentration (MIC) assays were performed using the microdilution methodology. The antibiofilm activity of SN was determined by total biomass quantification (by crystal violet staining) and colony forming units enumeration. MIC results showed that all SN colloidal suspensions were fungicidal against the tested strains at very low concentrations (0·4–3·3 μg ml?1). With regard to biomass quantification, SN colloidal suspensions were very effective only against C. glabrata biofilms, achieving biomass reductions around 90% at a silver concentration of 108 μg ml?1. In general, all SN suspensions promoted significant log10 reduction of the mean number of cultivable biofilm cells after exposure to silver concentrations at or higher than 108 μg ml?1. Moreover, the results showed that the particle size and the type of stabilizing agent used did not interfere in the antifungal activity of SN against Candida biofilms. Conclusions: This study suggests that SN have antifungal therapeutic potential, but further studies are still required namely regarding formulation and delivery means. Significance and Impact of the Study: SN may contribute to the development of new strategies for the improvement of oral health and quality of life particularly of the complete denture wearers.  相似文献   

16.
Aims: The purpose of this study was to evaluate the antimicrobial efficacy of thirteen bismuth thiol preparations for bactericidal activity against established biofilms formed by two bacteria isolated from human chronic wounds. Methods: Single species biofilms of a Pseudomonas aeruginosa or a methicillin‐resistant Staphylococcus aureus were grown in either colony biofilm or drip‐flow reactors systems. Biofilms were challenged with bismuth thiols, antibiotics or silver sulfadiazine, and log reductions were determined by plating for colony formation. Conclusions: Antibiotics were ineffective or inconsistent against biofilms of both bacterial species tested. None of the antibiotics tested were able to achieve >2 log reductions in both biofilm models. The 13 different bismuth thiols tested in this investigation achieved widely varying degrees of killing, even against the same micro‐organism in the same biofilm model. For each micro‐organism, the best bismuth thiol easily outperformed the best conventional antibiotic. Against P. aeruginosa biofilms, bismuth‐2,3‐dimercaptopropanol (BisBAL) at 40–80 μg ml?1 achieved >7·7 mean log reduction for the two biofilm models. Against MRSA biofilms, bismuth‐1,3‐propanedithiol/bismuth‐2‐mercaptopyridine N‐oxide (BisBDT/PYR) achieved a 4·9 log reduction. Significance and Impact of the Study: Bismuth thiols are effective antimicrobial agents against biofilms formed by wound bacteria and merit further development as topical antiseptics for the suppression of biofilms in chronic wounds.  相似文献   

17.
Yeast biofilms contribute to quality impairment of industrial processes and also play an important role in clinical infections. Little is known about biofilm formation and their treatment. The aim of this study was to establish a multi-layer yeast biofilm model using a modified 3.7 l bench-top bioreactor operated in continuous mode (D = 0.12 h?1). The repeatability of biofilm formation was tested by comparing five bioprocesses with Rhodotorula mucilaginosa, a strain isolated from washing machines. The amount of biofilm formed after 6 days post inoculation was 83 μg cm?2 protein, 197 μg cm?2 polysaccharide and 6.9 × 106 CFU cm?2 on smooth polypropylene surfaces. Roughening the surface doubled the amount of biofilm but also increased its spatial variability. Plasma modification of polypropylene significantly reduced the hydrophobicity but did not enhance cell attachment. The biofilm formed on polypropylene coupons could be used for sanitation studies.  相似文献   

18.
Abstract

P22 phage >105 PFU ml?1 could be used to inhibit Salmonella Typhimurium biofilm formation by 55–80%. Concentrations of EDTA >1.25?mM and concentrations of nisin >1,200?µg ml?1 were also highly effective in reducing S. Typhimurium biofilm formation (≥96% and ≥95% reductions were observed, respectively). A synergistic effect was observed when EDTA and nisin were combined whereas P22 phage in combination with nisin had no synergistic impact on biofilm formation. Triple combination of P22 phage, EDTA and nisin could be also used to inhibit biofilm formation (≥93.2%) at a low phage titer (102 PFU ml?1), and low EDTA (1.25?mM) and nisin (9.375?µg ml?1) concentrations. A reduction of 70% in the mature biofilm was possible when 107 PFU ml?1 of P22 phage, 20?mM of EDTA and 150?μg ml?1 of nisin were used in combination. This study revealed that it could be possible to reduce biofilm formation by S. Typhimurium by the use of P22 phage, EDTA and nisin, either alone or in combination. Although, removal of the mature biofilm was more difficult, the triple combination could be successfully used for mature biofilm of S. Typhimurium.  相似文献   

19.
Infectious diseases caused by bacteria and fungi are the major cause of morbidity and mortality across the globe. Multi-drug resistance in these pathogens augments the complexity and severity of the diseases. Various studies have shown the role of biofilms in multi-drug resistance, where the pathogen resides inside a protective coat made of extracellular polymeric substances. Since biofilms directly influence the virulence and pathogenicity of a pathogen, it is optimal to employ a strategy that effectively inhibits the formation of biofilm. Pomegranate is a common food and is also used traditionally to treat various ailments. This study assessed the anti-biofilm activity of a methanolic extract of pomegranate against bacterial and fungal pathogens. Methanolic extract of pomegranate was shown to inhibit the formation of biofilms by Staphylococcus aureus, methicillin resistant S. aureus, Escherichia coli, and Candida albicans. Apart from inhibiting the formation of biofilm, pomegranate extract disrupted pre-formed biofilms and inhibited germ tube formation, a virulence trait, in C. albicans. Characterization of the methanolic extract of pomegranate revealed the presence of ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione) as the major component. Ellagic acid is a bioactive tannin known for its antioxidant, anticancer, and anti-inflammatory properties. Further studies revealed the ability of ellagic acid to inhibit the growth of all species in suspension at higher concentrations (>75?μg?ml?1) and biofilm formation at lower concentrations (<40?μg?ml?1) which warrants further investigation of the potential of ellagic acid or peel powders of pomegranate for the treatment of human ailments.  相似文献   

20.

Aims

The aim of this study was to clarify the effects of homologous and heterologous extracellular DNAs (eDNAs) and histone‐like DNA‐binding protein (HLP) on Streptococcus intermedius biofilm development and rigidity.

Methods and Results

Formed biofilm mass was measured with 0·1% crystal violet staining method and observed with a scanning electron microscope. The localizations of eDNA and extracellular HLP (eHLP) in formed biofilm were detected by staining with 7‐hydoxyl‐9H‐(1,3‐dichloro‐9,9‐dimethylacridin‐2‐one) and anti‐HLP antibody without fixation, respectively. DNase I treatment (200 U ml?1) markedly decreased biofilm formation and cell density in biofilms. Colocalization of eHLP and eDNA in biofilm was confirmed. The addition of eDNA (up to 1 μg ml?1) purified from Strep. intermedius, other Gram‐positive bacteria, Gram‐negative bacteria, or human KB cells into the Strep. intermedius culture increased the biofilm mass of all tested strains of Strep. intermedius, wild‐type, HLP‐downregulated strain and control strains. In contrast, the addition of eDNA (>1 μg ml?1) decreased the biofilm mass of all Strep. intermedius strains.

Conclusions

These findings demonstrated that eDNA and eHLP play crucial roles in biofilm development and its rigidity.

Significance and Impact of the Study

eDNA‐ and HLP‐targeting strategies may be applicable to novel treatments for bacterial biofilm‐related infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号