首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The compound UIC-94017 (TMC-114) is a second-generation HIV protease inhibitor with improved pharmacokinetics that is chemically related to the clinical inhibitor amprenavir. UIC-94017 is a broad-spectrum potent inhibitor active against HIV-1 clinical isolates with minimal cytotoxicity. We have determined the high-resolution crystal structures of UIC-94017 in complexes with wild-type HIV-1 protease (PR) and mutant proteases PR(V82A) and PR(I84V) that are common in drug-resistant HIV. The structures were refined at resolutions of 1.10-1.53A. The crystal structures of PR and PR(I84V) with UIC-94017 ternary complexes show that the inhibitor binds to the protease in two overlapping positions, while the PR(V82A) complex had one ordered inhibitor. In all three structures, UIC-94017 forms hydrogen bonds with the conserved main-chain atoms of Asp29 and Asp30 of the protease. These interactions are proposed to be critical for the potency of this compound against HIV isolates that are resistant to multiple protease inhibitors. Other small differences were observed in the interactions of the mutants with UIC-94017 as compared to PR. PR(V82A) showed differences in the position of the main-chain atoms of residue 82 compared to PR structure that better accommodated the inhibitor. Finally, the 1.10A resolution structure of PR(V82A) with UIC-94017 showed an unusual distribution of electron density for the catalytic aspartate residues, which is discussed in relation to the reaction mechanism.  相似文献   

2.
Constituents of various wood-rotting basidiomycetes   总被引:7,自引:0,他引:7  
Phytochemical investigation of n-hexane and methanol extracts of fruiting bodies of the wood-rotting fungi Fomitopsis pinicola. Ganoderma lipsiense, Fomes fomentarius and Gloeophyllum odoratum led to the isolation and identification of several triterpene derivatives and some aromatic compounds derived from lignin. These are the new natural products, namely, pinicolic acid E (16alpha-hydroxy-3-oxolanosta-8,24-dien-21-oic acid) and pinicolol C (3-oxolanosta-7,9(11),24-trien-15alpha,21-diol) from the crust of F. pinicola, ganoderenic acid D [(E)-7beta-hydroxy-3,11,15,23-tetraoxolanosta-8,20(22)-di en-26-oic acid] and ganoderic acid N (7beta,20-dihydroxy-3,11,15,23-tetraoxolanost-8-en-26-oic acid) from G. lipsiense and ergosterol peroxide (5alpha,8alpha-epi-dioxyergost-6-en-3beta-ol) as well as ergost-7-en-3-one from F. fomentarius. From G. odoratum, dehydroeburicoic acid [24-methylene-3-oxolanosta-7,9(11)-dien-21-oic acid], the dimethylacetal of 4,4,14alpha-trimethyl-24-oxo-5alpha-chol-8-en-21-oic acid and some aromatic compounds, of which 1-(4'-methoxyphenyl)-1,2-ethandiol is a new natural product, were isolated. Furthermore, a complete set of 13C NMR data of the steryl esters 3beta-linoleyloxyergosta-7,24(28)-diene, 3beta-linoleyloxyergosta-7,24-diene and 3beta-linoleyloxyergost-7-ene, which could be identified as a mixture in all investigated fungi, could be recorded. It was proved by HPLC and TLC investigations, that the crust on top of the fruiting bodies of F. pinicola consists of lanostane derivatives.  相似文献   

3.
HIV-1 protease (PR) has been a significant target for design of potent inhibitors curing acquired immunodeficiency syndrome. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area method were performed to study interaction modes of four inhibitors MKP56, MKP73, MKP86, and MKP97 with PR. The results suggest that the main force controlling interactions of inhibitors with PR should be contributed by van der Waals interactions between inhibitors and PR. The cross-correlation analyses based on MD trajectories show that inhibitor binding produces significant effect on the flap dynamics of PR. Hydrogen bond analyses indicate that inhibitors can form stable hydrogen bonding interactions with the residues from the catalytic strands of PR. The contributions of separate residues to inhibitor bindings are evaluated by using residue-based free energy decomposition method and the results demonstrate that the CH–π and CH–CH interactions between the hydrophobic groups of inhibitors with residues drive the associations of inhibitors with PR. We expect that this study can provide a significant theoretical aid for design of potent inhibitors targeting PR.  相似文献   

4.
The human immunodeficiency virus 1 (HIV-1) protease (PR) is an aspartyl protease essential for HIV-1 viral infectivity. HIV-1 PR has one catalytic site formed by the homodimeric enzyme. We chemically synthesized fully active HIV-1 PR using modern ligation methods. When complexed with the classic substrate-derived inhibitors JG-365 and MVT-101, the synthetic HIV-1 PR formed crystals that diffracted to 1.04- and 1.2-A resolution, respectively. These atomic-resolution structures revealed additional structural details of the HIV-1 PR's interactions with its active site ligands. Heptapeptide inhibitor JG-365, which has a hydroxyethylamine moiety in place of the scissile bond, binds in two equivalent antiparallel orientations within the catalytic groove, whereas the reduced isostere hexapeptide MVT-101 binds in a single orientation. When JG-365 was converted into the natural peptide substrate for molecular dynamic simulations, we found putative catalytically competent reactant states for both lytic water and direct nucleophilic attack mechanisms. Moreover, free energy perturbation calculations indicated that the insertion of catalytic water into the catalytic site is an energetically favorable process.  相似文献   

5.
Sayer JM  Louis JM 《Proteins》2009,75(3):556-568
The importance of the active site region aspartyl residues 25 and 29 of the mature HIV-1 protease (PR) for the binding of five clinical and three experimental protease inhibitors [symmetric cyclic urea inhibitor DMP323, nonhydrolyzable substrate analog (RPB) and the generic aspartic protease inhibitor acetyl-pepstatin (Ac-PEP)] was assessed by differential scanning calorimetry. DeltaT(m) values, defined as the difference in T(m) for a given protein in the presence and absence of inhibitor, for PR with DRV, ATV, SQV, RTV, APV, DMP323, RPB, and Ac-PEP are 22.4, 20.8, 19.3, 15.6, 14.3, 14.7, 8.7, and 6.5 degrees C, respectively. Binding of APV and Ac-PEP is most sensitive to the D25N mutation, as shown by DeltaT(m) ratios [DeltaT(m)(PR)/DeltaT(m)(PR(D25N))] of 35.8 and 16.3, respectively, whereas binding of DMP323 and RPB (DeltaT(m) ratios of 1-2) is least affected. Binding of the substrate-like inhibitors RPB and Ac-PEP is nearly abolished (DeltaT(m)(PR)/DeltaT(m)(PR(D29N)) > or = 44) by the D29N mutation, whereas this mutation only moderately affects binding of the smaller inhibitors (DeltaT(m) ratios of 1.4-2.2). Of the nine FDA-approved clinical HIV-1 protease inhibitors screened, APV, RTV, and DRV competitively inhibit porcine pepsin with K(i) values of 0.3, 0.6, and 2.14 microM, respectively. DSC results were consistent with this relatively weak binding of APV (DeltaT(m) 2.7 degrees C) compared with the tight binding of Ac-PEP (DeltaT(m) > or = 17 degrees C). Comparison of superimposed structures of the PR/APV complex with those of PR/Ac-PEP and pepsin/pepstatin A complexes suggests a role for Asp215, Asp32, and Ser219 in pepsin, equivalent to Asp25, Asp25', and Asp29 in PR in the binding and stabilization of the pepsin/APV complex.  相似文献   

6.
The mutation Ala28 to serine in human immunodeficiency virus, type 1, (HIV-1) protease introduces putative hydrogen bonds to each active-site carboxyl group. These hydrogen bonds are ubiquitous in pepsin-like eukaryotic aspartic proteases. In order to understand the significance of this difference between HIV-1 protease and homologous, eukaryotic aspartic proteases, we solved the three-dimensional structure of A28S mutant HIV-1 protease in complex with a peptidic inhibitor U-89360E. The structure has been determined to 2.0 A resolution with an R factor of 0.194. Comparison of the mutant enzyme structure with that of the wild-type HIV-1 protease bound to the same inhibitor (Hong L, Treharne A, Hartsuck JA, Foundling S, Tang J, 1996, Biochemistry 35:10627-10633) revealed double occupancy for the Ser28 hydroxyl group, which forms a hydrogen bond either to one of the oxygen atoms of the active-site carboxyl or to the carbonyl oxygen of Asp30. We also observed marked changes in orientation of the Asp25 catalytic carboxyl groups, presumably caused by the new hydrogen bonds. These observations suggest that catalytic aspartyl groups of HIV-1 protease have significant conformational flexibility unseen in eukaryotic aspartic proteases. This difference may provide an explanation for some unique catalytic properties of HIV-1 protease.  相似文献   

7.
8.
A Gustchina  I T Weber 《Proteins》1991,10(4):325-339
The different isolates available for HIV-1 and HIV-2 were compared for the region of the protease (PR) sequence, and the variations in amino acids were analyzed with respect to the crystal structure of HIV-1 PR with inhibitor. Based on the extensive homology (39 identical out of 99 residues), models were built of the HIV-2 PR complexed with two different aspartic protease inhibitors, acetylpepstatin and a renin inhibitor, H-261. Comparison of the HIV-1 PR crystal structure and the HIV-2 PR model structure and the analysis of the changes found in different isolates showed that correlated substitutions occur in the hydrophobic interior of the molecule and at surface residues involved in ionic or hydrogen bond interactions. The substrate binding residues of HIV-1 and HIV-2 PRs show conservative substitutions of four residues. The difference in affinity of HIV-1 and HIV-2 PRs for the two inhibitors appears to be due in part to the change of Val 32 in HIV-1 PR to Ile in HIV-2 PR.  相似文献   

9.
No drug has been targeted specifically for HIV-2 (human immunodeficiency virus type 2) infection despite its increasing prevalence worldwide. The antiviral HIV-1 (human immunodeficiency virus type 1) protease (PR) inhibitor darunavir and the chemically related GRL98065 and GRL06579A were designed with the same chemical scaffold and different substituents at P2 and P2′ to optimize polar interactions for HIV-1 PR (PR1). These inhibitors are also effective antiviral agents for HIV-2-infected cells. Therefore, crystal structures of HIV-2 PR (PR2) complexes with the three inhibitors have been solved at 1.2-Å resolution to analyze the molecular basis for their antiviral potency. Unusually, the crystals were grown in imidazole and zinc acetate buffer, which formed interactions with the PR2 and the inhibitors. Overall, the structures were very similar to the corresponding inhibitor complexes of PR1 with an RMSD of 1.1 Å on main-chain atoms. Most hydrogen-bond and weaker C-H…O interactions with inhibitors were conserved in the PR2 and PR1 complexes, except for small changes in interactions with water or disordered side chains. Small differences were observed in the hydrophobic contacts for the darunavir complexes, in agreement with relative inhibition of the two PRs. These near-atomic-resolution crystal structures verify the inhibitor potency for PR1 and PR2 and will provide the basis for the development of antiviral inhibitors targeting PR2.  相似文献   

10.
Biochemical experiments have recently revealed that the p-S8 peptide, with an amino-acid sequence identical to the conserved fragment 83-93 (S8) of the HIV-1 protease, can inhibit catalytic activity of the enzyme by interfering with protease folding and dimerization. In this study, we introduce a hierarchical modeling approach for understanding the molecular basis of the HIV-1 protease folding inhibition. Coarse-grained molecular docking simulations of the flexible p-S8 peptide with the ensembles of HIV-1 protease monomers have revealed structurally different complexes of the p-S8 peptide, which can be formed by targeting the conserved segment 24-34 (S2) of the folding nucleus (folding inhibition) and by interacting with the antiparallel termini β-sheet region (dimerization inhibition). All-atom molecular dynamics simulations of the inhibitor complexes with the HIV-1 PR monomer have been independently carried out for the predicted folding and dimerization binding modes of the p-S8 peptide, confirming the thermodynamic stability of these complexes. Binding free-energy calculations of the p-S8 peptide and its active analogs are then performed using molecular dynamics trajectories of the peptide complexes with the HIV-1 PR monomers. The results of this study have provided a plausible molecular model for the inhibitor intervention with the HIV-1 PR folding and dimerization and have accurately reproduced the experimental inhibition profiles of the active folding inhibitors.  相似文献   

11.
Emergence of drug-resistant mutants of HIV-1 protease is an ongoing problem in the fight against AIDS. The mechanisms governing resistance are both complex and varied. We have determined crystal structures of HIV-1 protease mutants, D30N, K45I, N88D, and L90M complexed with peptide inhibitor analogues of CA-p2 and p2-NC cleavage sites in the Gag-pol precursor in order to study the structural mechanisms underlying resistance. The structures were determined at 1.55-1.9-A resolution and compared with the wild-type structure. The conformational disorder seen for most of the hydrophobic side-chains around the inhibitor binding site indicates flexibility of binding. Eight water molecules are conserved in all 9 structures; their location suggests that they are important for catalysis as well as structural stability. Structural differences among the mutants were analyzed in relation to the observed changes in protease activity and stability. Mutant L90M shows steric contacts with the catalytic Asp25 that could destabilize the catalytic loop at the dimer interface, leading to its observed decreased dimer stability and activity. Mutant K45I reduces the mobility of the flap and the inhibitor and contributes to an enhancement in structural stability and activity. The side-chain variations at residue 30 relative to wild-type are the largest in D30N and the changes are consistent with the altered activity observed with peptide substrates. Polar interactions in D30N are maintained, in agreement with the observed urea sensitivity. The side-chains of D30N and N88D are linked through a water molecule suggesting correlated changes at the two sites, as seen with clinical inhibitors. Structural changes seen in N88D are small; however, water molecules that mediate interactions between Asn88 and Thr74/Thr31/Asp30 in other complexes are missing in N88D.  相似文献   

12.
The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method combined with molecular dynamics (MD) simulations were used to investigate the functional role of protonation in human immunodeficiency virus type 1 (HIV-1) protease complexed with the inhibitor BEA369. Our results demonstrate that protonation of two aspartic acids (Asp25/Asp25′) has a strong influence on the dynamics behavior of the complex, the binding free energy of BEA369, and inhibitor–residue interactions. Relative binding free energies calculated using the MM-PBSA method show that protonation of Asp25 results in the strongest binding of BEA369 to HIV-1 protease. Inhibitor–residue interactions computed by the theory of free energy decomposition also indicate that protonation of Asp25 has the most favorable effect on binding of BEA369. In addition, hydrogen-bond analysis based on the trajectories of the MD simulations shows that protonation of Asp25 strongly influences the water-mediated link of a conserved water molecule, Wat301. We expect that the results of this study will contribute significantly to binding calculations for BEA369, and to the design of high affinity inhibitors.  相似文献   

13.
HIV-1 protease (PR) is the target for several important antiviral drugs used in AIDS therapy. The drugs bind inside the active site cavity of PR where normally the viral polyprotein substrate is bound and hydrolyzed. We report two high-resolution crystal structures of wild-type PR (PRWT) and the multi-drug-resistant variant with the I54V mutation (PRI54V) in complex with a peptide at 1.46 and 1.50 A resolution, respectively. The peptide forms a gem-diol tetrahedral reaction intermediate (TI) in the crystal structures. Distinctive interactions are observed for the TI binding in the active site cavity of PRWT and PRI54V. The mutant PRI54V/TI complex has lost water-mediated hydrogen bond interactions with the amides of Ile50 and Ile50' in the flap. Hence, the structures provide insight into the mechanism of drug resistance arising from this mutation. The structures also illustrate an intermediate state in the hydrolysis reaction. One of the gem-diol hydroxide groups in the PRWT complex forms a very short (2.3 A) hydrogen bond with the outer carboxylate oxygen of Asp25. Quantum chemical calculations based on this TI structure are consistent with protonation of the inner carboxylate oxygen of Asp25', in contrast to several theoretical studies. These TI complexes and quantum calculations are discussed in relation to the chemical mechanism of the peptide bond hydrolysis catalyzed by PR.  相似文献   

14.
The success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. In addition, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.  相似文献   

15.
Wei Y  Ma CM  Chen DY  Hattori M 《Phytochemistry》2008,69(9):1875-1879
Three triterpenoids, 16beta-hydroxy-2,3-seco-lup-20(29)-ene-2,3-dioic acid (1), 3beta,21beta,24-trihydroxy-30-noroleana-12,20(29)-dien-28-oic acid (2) and 16beta-hydroxylupane-1,20(29)-dien-3-one (3), along with eleven known triterpenes were isolated from stems of Stauntonia obovatifoliola Hayata subsp. intermedia (Y.C. Wu) T. Chen. Their structures were determined by analysis of HR-EI/FAB-MS and 1D and 2D NMR spectroscopic data and comparison with those in the literature. Ten of the compounds showed inhibitory activity against HIV-1 protease.  相似文献   

16.
HIV-1 protease is most active under weakly acidic conditions (pH 3.5-6.5), when the catalytic Asp25 and Asp25' residues share 1 proton. At neutral pH, this proton is lost and the stability of the structure is reduced. Here we present an investigation of the effect of pH on the dynamics of HIV-1 protease using MD simulation techniques. MD simulations of the solvated HIV-1 protease with the Asp25/25' residues monoprotonated and deprotonated have been performed. In addition we investigated the effect of the inclusion of Na(+) and Cl(-) ions to mimic physiological salt conditions. The simulations of the monoprotonated form and deprotonated form including Na(+) show very similar behavior. In both cases the protein remained stable in the compact, "self-blocked" conformation in which the active site is blocked by the tips of the flaps. In the deprotonated system a Na(+) ion binds tightly to the catalytic dyad shielding the repulsion between the COO(-) groups. Ab initio calculations also suggest the geometry of the active site with the Na(+) bound closely resembles that of the monoprotonated case. In the simulations of the deprotonated form (without Na(+) ions), a water molecule bound between the Asp25 Asp25' side-chains. This disrupted the dimerization interface and eventually led to a fully open conformation.  相似文献   

17.
A series of experimentally reported as well as computationally designed monoadducts and bisadducts of [60]fullerene analogues have been used in order to analyze the binding interactions between fullerene based inhibitors and HIV-1 PR employing docking studies. MD simulations of ligand-free and the inhibitor bound HIV-1 PR systems complemented the above studies and provided proper input structure of HIV-1 PR in docking simulations. The obtained results revealed a different orientation of the beta-hairpin flaps at these two systems. In inhibitor bound system, the flaps of the enzyme are pulled in toward the bottom of the active site (the closed form) while, in ligand-free system flaps shifted away from the dual Asp25 catalytic site and this system adopts a semi-open form. The structural analysis of these systems at catalytic and flexible flap regions of the HIV-1 PR through the simulation, assisted in understanding the structural preferences of these regions, as well as, the adopted orientations of fullerene derivatives within the active site of the enzyme. Five different combinations of steroelectronic fields of 3D QSAR/CoMSIA models were obtained from the set of biologically evaluated and computationally designed fullerene derivatives (training set=43, test set=6) in order to predict novel compounds with improved inhibition effect. The best 3D QSAR/CoMSIA model yielded a cross validated r(2) value of 0.739 and a non-cross validated r(2) value of 0.993. The derived model indicated the importance of steric (42.6%), electrostatic (12.7%), H-bond donor (16.7%) and H-bond acceptor (28.0%) contributions. The derived contour plots together with de novo drug design were then used as pilot models for proposing the novel analogues with enhanced binding affinities. Such structures may trigger the interest of medicinal chemists for novel HIV-1 PR inhibitors possessing higher bioactivity.  相似文献   

18.
Drug resistance is a major problem affecting the clinical efficacy of antiretroviral agents, including protease inhibitors, in the treatment of infection with human immunodeficiency virus type 1 (HIV-1)/AIDS. Consequently, the elucidation of the mechanisms by which HIV-1 protease inhibitors maintain antiviral activity in the presence of mutations is critical to the development of superior inhibitors. Tipranavir, a nonpeptidic HIV-1 protease inhibitor, has been recently approved for the treatment of HIV infection. Tipranavir inhibits wild-type protease with high potency (K(i) = 19 pM) and demonstrates durable efficacy in the treatment of patients infected with HIV-1 strains containing multiple common mutations associated with resistance. The high potency of tipranavir results from a very large favorable entropy change (-TDeltaS = -14.6 kcal/mol) combined with a favorable, albeit small, enthalpy change (DeltaH = -0.7 kcal/mol, 25 degrees C). Characterization of tipranavir binding to wild-type protease, active site mutants I50V and V82F/I84V, the multidrug-resistant mutant L10I/L33I/M46I/I54V/L63I/V82A/I84V/L90M, and the tipranavir in vitro-selected mutant I13V/V32L/L33F/K45I/V82L/I84V was performed by isothermal titration calorimetry and crystallography. Thermodynamically, the good response of tipranavir arises from a unique behavior: it compensates for entropic losses by actual enthalpic gains or by sustaining minimal enthalpic losses when facing the mutants. The net result is a small loss in binding affinity. Structurally, tipranavir establishes a very strong hydrogen bond network with invariant regions of the protease, which is maintained with the mutants, including catalytic Asp25 and the backbone of Asp29, Asp30, Gly48 and Ile50. Moreover, tipranavir forms hydrogen bonds directly to Ile50, while all other inhibitors do so by being mediated by a water molecule.  相似文献   

19.
The crystal structure of the complex between human immunodeficiency virus type 1 (HIV-1) protease and a peptidomimetic inhibitor of ethyleneamine type has been refined to R factor of 0.178 with diffraction limit 2.5 A. The peptidomimetic inhibitor Boc-Phe-Psi[CH2CH2NH]-Phe-Glu-Phe-NH2 (denoted here as OE) contains the ethyleneamine replacement of the scissile peptide bond. The inhibitor lacks the hydroxyl group which is believed to mimic tetrahedral transition state of proteolytic reaction and thus is suspected to be necessary for good properties of peptidomimetic HIV-1 protease inhibitors. Despite the missing hydroxyl group the inhibition constant of OE is 1.53 nm and it remains in the nanomolar range also towards several available mutants of HIV-1 protease. The inhibitor was found in the active site of protease in an extended conformation with a unique hydrogen bond pattern different from hydroxyethylene and hydroxyethylamine inhibitors. The isostere nitrogen forms a hydrogen bond to one catalytic aspartate only. The other aspartate forms two weak hydrogen bridges to the ethylene group of the isostere. A comparison with other inhibitors of this series containing isostere hydroxyl group in R or S configuration shows different ways of accommodation of inhibitor in the active site. Special attention is devoted to intermolecular contacts between neighbouring dimers responsible for mutual protein adhesion and for a special conformation of Met46 and Phe53 side chains not expected for free protein in water solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号