首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Pomès R  Roux B 《Biophysical journal》2002,82(5):2304-2316
The conduction of protons in the hydrogen-bonded chain of water molecules (or "proton wire") embedded in the lumen of gramicidin A is studied with molecular dynamics free energy simulations. The process may be described as a "hop-and-turn" or Grotthuss mechanism involving the chemical exchange (hop) of hydrogen nuclei between hydrogen-bonded water molecules arranged in single file in the lumen of the pore, and the subsequent reorganization (turn) of the hydrogen-bonded network. Accordingly, the conduction cycle is modeled by two complementary steps corresponding respectively to the translocation 1) of an ionic defect (H+) and 2) of a bonding defect along the hydrogen-bonded chain of water molecules in the pore interior. The molecular mechanism and the potential of mean force are analyzed for each of these two translocation steps. It is found that the mobility of protons in gramicidin A is essentially determined by the fine structure and the dynamic fluctuations of the hydrogen-bonded network. The translocation of H+ is mediated by spontaneous (thermal) fluctuations in the relative positions of oxygen atoms in the wire. In this diffusive mechanism, a shallow free-energy well slightly favors the presence of the excess proton near the middle of the channel. In the absence of H+, the water chain adopts either one of two polarized configurations, each of which corresponds to an oriented donor-acceptor hydrogen-bond pattern along the channel axis. Interconversion between these two conformations is an activated process that occurs through the sequential and directional reorientation of water molecules of the wire. The effect of hydrogen-bonding interactions between channel and water on proton translocation is analyzed from a comparison to the results obtained previously in a study of model nonpolar channels, in which such interactions were missing. Hydrogen-bond donation from water to the backbone carbonyl oxygen atoms lining the pore interior has a dual effect: it provides a coordination of water molecules well suited both to proton hydration and to high proton mobility, and it facilitates the slower reorientation or turn step of the Grotthuss mechanism by stabilizing intermediate configurations of the hydrogen-bonded network in which water molecules are in the process of flipping between their two preferred, polarized states. This mechanism offers a detailed molecular model for the rapid transport of protons in channels, in energy-transducing membrane proteins, and in enzymes.  相似文献   

2.
R Deslauriers  I C Smith 《Biopolymers》1977,16(6):1245-1257
Nuclear magnetic resonance of 13C is used to probe the overall and internal motions of proline. Spin-lattice relaxation times (T1) are reported for proline monomer dissolved in water/glycerol mixtures. Rates of overall molecular motion and internal motion depend on solvent composition but to different degrees. The effective correlation times (τeff) of the various proton-bearing carbon atoms in proline vary linearly as a function of solvent composition (%v/v) rather than of solution viscosity. The effective correlation time for molecular motion (τeff) is separated into contributions from overall molecular motion (τmol) and internal motion (τint). The γ-carbon of proline shows the smallest dependence of τint on solvent composition. The data indicate a high degree of intramolecular motion for the γ-carbon of proline. Inclusion of anisotropic molecular reorientation in the data analysis was found not to affect the above conclusions. The observed values of τeff indicate that the rotational diffusion model of molecular reorientations should apply to proline. The values of τeff calculated for proline using the Stokes-Einstein relation are larger than those observed; the discrepancy is discussed in terms of solvent-solute interactions.  相似文献   

3.
The molecular mechanism for proton conduction along hydrogen-bonded chains, or "proton wires," is studied with free energy simulations. The complete transport of a charge along a proton wire requires two complementary processes: 1) translocation of an excess proton (propagation of an ionic defect), and 2) reorientation of the hydrogen-bonded chain (propagation of a bonding defect). The potential of mean force profile for these two steps is computed in model systems comprising a single-file chain of nine dissociable and polarizable water molecules represented by the PM6 model of Stillinger and co-workers. Results of molecular dynamics simulations with umbrella sampling indicate that the unprotonated chain is preferably polarized, and that the inversion of its total dipole moment involves an activation free energy of 8 kcal/mol. In contrast, the rapid translocation of an excess H+ across a chain extending between two spherical solvent droplets is an activationless process. These results suggest that the propagation of a bonding defect constitutes a limiting step for the passage of several protons along single-file chains of water molecules, whereas the ionic translocation may be fast enough to occur within the lifetime of transient hydrogen-bonded water chains in biological membranes.  相似文献   

4.
5.
The ability to survive the removal of water in anhydrous biosystems is especially remarkable as a departure from the manifold structural and functional dependences on the presence of H2O molecules. Identifiable pools of water present in dry soybean axes were investigated by means of the thermally stimulated depolarization current method. Samples were examined in the temperature range 100-340 K and over water contents (h, in gram H2O per gram sample dry weight) ranging from h = 0.05 to 0.30 g/g. Three water-dependent relaxation mechanisms were detected; one attributed to dipolar reorientation of H2O molecules hydrogen-bonded to other water molecules, one to reorientation of CH2OH groups, and one to a glass transition in sugar-water domains. These glassy domains can protect intracellular components against destruction in the dehydrated state. Interestingly, protecting glassy domains were not found in dehydration intolerant seeds, supporting the hypothesis that the ability to withstand dehydration is associated with intracellular glass formation. A model for the state of cell water at interfaces is proposed.  相似文献   

6.
Abstract

An analysis of the distribution of water around DNA surface focusing on the role of the distribution of water molecules in the proper recognition of damaged site by repair enzyme T4 Endonuclease V was performed. The native DNA dodecamer, dodecamer with the thymine dimer (TD) and complex of DNA and part of repair enzyme T4 Endonuclease V were examined throughout the 500 ps of molecular dynamics simulation. During simulation the number of water molecules close to the DNA atoms and the residence time were calculated. There is an increase in number of water molecules lying in the close vicinity to TD if compared with those lying close to two native thymines (TT). Densely populated area with water molecules around TD is one of the factors detected by enzyme during scanning process. The residence time was found higher for molecule of the complex and the six water molecules were found occupying the stabile positions between the TD and catalytic center close to atoms P, C3′ and N3. These molecules originate water mediated hydrogen bond network that contribute to the stability of complex required for the onset of repair process.  相似文献   

7.
An M intermediate of wild-type bacteriorhodopsin and an N intermediate of the V49A mutant were accumulated in photostationary states at pH 5.6 and 295 K, and their crystal structures determined to 1.52A and 1.62A resolution, respectively. They appear to be M(1) and N' in the sequence, M(1)<-->M(2)<-->M'(2)<-->N<-->N'-->O-->BR, where M(1), M(2), and M'(2) contain an unprotonated retinal Schiff base before and after a reorientation switch and after proton release to the extracellular surface, while N and N' contain a reprotonated Schiff base, before and after reprotonation of Asp96 from the cytoplasmic surface. In M(1), we detect a cluster of three hydrogen-bonded water molecules at Asp96, not present in the BR state. In M(2), whose structure we reported earlier, one of these water molecules intercalates between Asp96 and Thr46. In N', the cluster is transformed into a single-file hydrogen-bonded chain of four water molecules that connects Asp96 to the Schiff base. We find a network of three water molecules near residue 219 in the crystal structure of the non-illuminated F219L mutant, where the residue replacement creates a cavity. This suggests that the hydration of the cytoplasmic region we observe in N' might have occurred spontaneously, beginning at an existing water molecule as nucleus, in the cavities from residue rearrangements in the photocycle.  相似文献   

8.
H. Hanssum  H. Rüterjans 《Biopolymers》1980,19(9):1571-1585
13C spin-lattice relaxation times of poly(L -lysine) have been obtained at 67.9 MHz in aqueous solution and in a mixed solvent (40% methanol/60% water). A concomitant determination of the conformation by CD permits the correlation of conformation and rotational diffusion of the polymer. The dependence on pH of the spin-lattice relaxation times of the 13Cα and the side-chain carbon resonances reflects the diffusional motion in the random-coil conformation, in the helix–coil transition, and in the conformation of the α-helix. In the mixed solvent the reorientational correlation time of the Cα-Hα vector increases from τ = 0.37 nsec (random coil) to τ = 12.0 nsec (α-helix). In aqueous solution the correlation time of this vector increases from τ = 0.33 nsec (random coil) to τ ? 11 nsec. The reorientation rates of the side-chain methylene groups in the two solvents are markedly different. The reorientation of all methylene groups is reduced in the mixed solvent.  相似文献   

9.
The trinuclear arene-ruthenium cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+, containing a μ3-oxo cap and three arene ligands that span a hydrophobic pocket above the metal skeleton, has been crystallised as tetrafluoroborate salt in the presence of various guest molecules. The host-guest complexes have been characterised by single-crystal X-ray structure analysis. With chloroform as the guest molecule, a CHCl3 molecule sits perfectly in the hydrophobic pocket, the hydrogen atom being encapsulated inside the cavity. When dioxane is added during the crystallisation process, the cluster forms infinite chains which are connected by a complex network of hydrogen bonds involving the μ3-oxo ligand, water and dioxane molecules. Interestingly, in the presence of phenol, a water molecule is hydrogen-bonded between the μ3-oxo ligand and the phenol molecule, forming a one-dimensional μ3-O ? H2O ? HO hydrogen-bonded chain. Finally, with benzoic acid, a head-to-tail host-guest chain is obtained, the phenyl ring being incorporated in the hydrophobic pocket, while the acid group is hydrogen-bonded to the μ3-oxo ligand.  相似文献   

10.
Dynamics simulations of excited-state multiple proton transfer (ESMPT) reactions in 7-azaindole (7AI) with ammonia, mixed water–ammonia, and water molecules were investigated by quantum dynamics simulations in the first-excited state using RI-ADC(2)/SVP-SV(P) in the gas phase. 7AI(WW), 7AI(WA), 7AI(AW) and 7AI(AA) clusters (W, water and A, ammonia) show very high probability of the excited-state triple proton transfer (ESTPT) occurrence in ranges from 20% for 7AI(WA) to 60% for 7AI(AW), respectively. Furthermore, 7AI(AW) clusters with ammonia placed near N–H of 7AI has the highest probability among other isomers. In 7AI with three molecules of bridged-planar of water, ammonia and mixed water–ammonia clusters, the excited-state quadruple proton transfer reactions occur ineffectively and rearrangement of hydrogen-bonded network on solvents also takes place prior to either ESTPT or excited-state double proton transfer. The role played by mixed-solvent is revealed with replacing H2O with NH3 in which the ESMPT is found to be more efficient corresponding to lower barrier in the excited state. The preferential number of solvent surrounding 7AI that facilitates the proton transfer process is two for methanol and water but this preferential number for ammonia is one.

Highlights: (i) replacing H2O with NH3 assists ESPT corresponding to lower barrier in the excited state; (ii) the ESMPT time of 7AI with mixed water–ammonia is in the sub-picosecond timescale; (iii) the PT tends to be concerted process with at least one ammonia, but synchronous without ammonia.  相似文献   


11.
Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri (mkSerRS) and histidyl tRNA synthetases from Thermus thermophilus (ttHisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.  相似文献   

12.
Abstract

The results of a Monte Carlo simulation of the hydration of uracil and thymine molecules, their stacked dimers and hydrogen-bonded base pairs are presented. Simulations have been performed in a cluster approximation. The semiempirical atom-atom potential functions have been used (cluster consisting of 200 water molecules). It has been shown that the stacking interactions of uracil and thymine molecules in water arise mainly due to the increase in the water-water interaction during the transition from monomers to dimer. It has been found out that stacked base associates are more preferable than base pairs in water. This preference is mainly due to the energetically more favourable structure of water around the stack.  相似文献   

13.
Steady-state and pulsed NMR techniques have been used to investigate molecular motion in sols and gels of agarose. In passing through the sol–gel transition, the molecular mobility of water molecules is reduced only by a small amount, whereas motion of the polymer chains is greatly attenuated. The results are discused in terms of the network theory of gelation, with references to the role of water in the process and the nature of the “junction zones” between polymer chains. T2 and line-width measurements are dominated by exchange broadening. The effects of exchange rate and differences in relaxation time between the exchanging sites are discussed. The temperature hysteresis behavior of agarose gels has been investigated and the effects of “ageing” correlated with changes in nuclear relaxation times. The synergistic increase in gel strength obtained on adding locust bean gum (LBG) to agarose has been investigated. The results indicate that LBG does not form double-helix junctions and may decrease rates of gelation by steric effects. At high agarose concentration, the LBG remains mainly in solution in interstitial water, but at low agarose concentration, it is suggested that the LBG can link gel aggregates together into a self-supporting structure, producing a synergistic increase in gel strength. Comparisons have been made between the nature of the agarose–LBG interaction and agarose–cellulose interactions in biological systems.  相似文献   

14.
Abstract

The molecular structure of nucleoprotamine from Gibbula divaricata and its packing in oriented fibers has been modelled both to fit the X-ray diffraction pattern and to avoid steric compression. The representative model consists of 51 poly(dinucleotide) B-DNA helices with 51 poly(hexapeptide) chains associated with the major grooves. The prevailing peptide conformation is β, The four arginine residues present are hydrogen-bonded to DNA phosphates while neutral peptides protrude into the minor grooves of neighboring nucleoprotamine molecules which are packed 2.61 nm apart in a screw-disordered, quasi-hexagonal lattice. This model reconciles a number of earlier, apparently conflicting experimental results and explains the remarkable stability of nucleoprotamines.  相似文献   

15.
Specific strain-induced orientation and interactions in three Acetobacter cellulose composites: cellulose (C), cellulose/pectin (CP) and cellulose/xyloglucan (CXG) were characterized by FT-IR and dynamic 2D FT-IR spectroscopies. On the molecular level, the reorientation of the cellulose fibrils occurred in the direction of the applied mechanical strain. The cellulose-network reorientation depends on the composition of the matrix, including the water content, which lubricates the motion of macromolecules in the network. At the submolecular level, dynamic 2D FT-IR data suggested that there was no interaction between cellulose and pectin in CP and that they responded independently to a small amplitude strain, while in CXG, cellulose and xyloglucan were uniformly strained along the sample length.  相似文献   

16.
High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M state in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH(-)) ions from the extracellular to the cytoplasmic side.  相似文献   

17.
The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO, the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center to the end of the water file we obtain the energy 3.8 kcal mol−1 which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol−1. Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin.  相似文献   

18.
The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so‐called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position‐restrained MD simulations. Our conclusions indicate that the sole mobility of α9 helix side‐chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by α5 helix movement. The role of selected α5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
X-ray diffraction analysis of pressure-induced structural changes in the Aequorea yellow fluorescent protein Citrine reveals the structural basis for the continuous fluorescence peak shift from yellow to green that is observed on pressurization. This fluorescence peak shift is caused by a reorientation of the two elements of the Citrine chromophore. This study describes the structural linkages in Citrine that are responsible for the local reorientation of the chromophore. The deformation of the Citrine chromophore is actuated by the differential motion of two clusters of atoms that compose the β-barrel scaffold of the molecule, resulting in a slight bending of the β-barrel. The high-pressure structures also show a perturbation of the hydrogen bonding network that stabilizes the excited state of the Citrine chromophore. The perturbation of this network is implicated in the reduction of fluorescence intensity of Citrine. The blue-shift of the Citrine fluorescence spectrum resulting from the bending of the β-barrel provides structural insight into the transient blue-shifting of isolated yellow fluorescent protein molecules under ambient conditions and suggests mechanisms to alter the time-dependent behavior of Citrine under ambient conditions.  相似文献   

20.
Abstract

In preceding publications we discussed some properties of pure water in condensed phases using an ab initio approach. Here this study is used as a basis of comparison for analysing the behaviour of water as a solvent in the presence of an apolar molecule. Our analysis is focused on the process of organization of the hydrogen bonding network around the solute. For this purpose we perform some ab initio calculations for a system of 32 water molecules and one methane molecule at 300 K; in particular, the average molecular dipole moment of water is determined and the result is compared with that of pure water. Next the attention is switched to the methane molecule; related properties such as excluded volume and sphericity of its shape are illustrated and discussed. A comparison with results obtained using classical approaches suggests that some classical models of water can be considered to be still valid when they are used to analyse the water-methane system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号